Lifting representations to the mapping class group

\(B \) closed oriented surface of genus \(g(g(B) > 2) \).

\[\rho : \pi_1(B) \rightarrow \text{Sp}(2h, \mathbb{R}) \]

\(\Sigma(r) = \Sigma(Ep) \), \(Ep \) flat \(\text{Sp}(2h, \mathbb{R}) \) bundle
 with a choice of (non flat, in general) \(\alpha \) struct.

Toledo invariant of \(\rho = \langle \Sigma(Ep), B \rangle \).

Consider \(H^1(B; Ep) \), this carries a symmetric bilinear form

\[\begin{array}{c}
 \alpha, \beta \in H^1(B; Ep) \\
 \mapsto \langle \alpha \cup \beta, [B] \rangle
\end{array} \]

Fact \[|\text{Sign}(I)| = 4 |\langle c_1(Ep), [B] \rangle| \]

U. Meyer (1972)

\[|\alpha(I)| \]

\(\alpha \) group with generators \(x, y \)

If \(a, b \in \text{Sp}(2h, \mathbb{R}) \) consider \(\rho : \mathbb{Z}_2 \rightarrow \text{Sp}(2h, \mathbb{R}) \)

\[\begin{array}{c}
 x \mapsto a \\
 y \mapsto b
\end{array} \]

\[F_2 = \pi_1(\mathcal{O}) \]

The Meyer signature cocycle on \(\text{Sp}(2h, \mathbb{R}) \) can be defined as \(\sigma(a, b) = \sigma(I) \) where \(I \) is defined on \(Ep \rightarrow \mathcal{O} \)

Consider lifting problem:

mapping class group of \(\mathcal{O} \)

\[\pi_1(\mathcal{O}) \rightarrow \text{Sp}(2h, \mathbb{C}) \]

\[\text{Sp}(2h, \mathbb{C}) \rightarrow \text{Sp}(2h, \mathbb{R}) \]

Other possibilities:

[Diagram illustrating relationships between groups and mappings]

\[\text{Symplectic}(F_2, \omega) \]

\[\text{Diff}^+(F_2) \]
In this case, composing \(\tilde{\varphi} \) with the map \(\tilde{\varphi} \rightarrow \text{Sp}(12,\mathbb{R}) \) we obtain \(\varphi \) whose \(\varphi_0 \) is the fiberwise \(\mathcal{F}_1 \) of the fibration over \(\mathbb{R} \) the spectral sequence of \(X \) degenerates at \(E' \) and \[
abla^2(X) = H^2(B) \otimes H^2(F) \otimes H^2(B \otimes H^2(F))
\]
the hyperboloid space.

This implies \(\sigma(X) = \sigma(I) \), with \(I \) as above.

For \(\text{Sp}(2h,\mathbb{B}) \) we have \(|\langle G_{(p)}, [B_3] \rangle| \leq (g-1)h \). (proved by Thrall; Demir-Toldeo)

For \(X \rightarrow B \) as above, \(|\sigma(X)| \leq \beta_2(X) = X(X) - 2 + 2 \cdot \eta(X) \)

P.D. \(= 4(g-1)(h-1) - 2 + 9g + 4h \)
\(= 4g(h+2) \)

Using coverings, this implies (\(\sigma \) is multiplicative under unramified covering) \(|\sigma(X)| \leq 4(g-1)h \), which is the same as

Example \(h=1 \). A fibration \(T^2 \rightarrow X \) has \(\sigma(X) = 0 \), some \(X \) covers itself (fibers: \(t^2 \)).

Hence, if \(\varphi : \pi_1(B) \rightarrow \text{SL}(2;\mathbb{R}) \) can be lifted to \(\text{SL}(2;\mathbb{Z}) \)
then \(\varphi(\rho) = 0 \).

Furthermore, there is a section \(\rho \) if \(\varphi \) lifts \(\rho : \pi_1(B) \rightarrow \text{SL}(2;\mathbb{Z}) \)
then set fibration with \(T^2 \rightarrow X \) \(\gamma = \text{SL}(2;\mathbb{Z}) \)
with torsion fibration.
Theorem (Kwok-Chui-Lo 93) If $\phi: \pi_1(B) \to \pi_0(\mathcal{F}_h, \mathcal{P}_h)$, $h \geq 2$

Don't know sharp inequality.

Sketch of proof: By Thurston, X admits a hyperbolic structure on both choices of orientations. Use Taniyama theorem to show canonical class is represented by embedded symplectic surface. (Maybe disconnected)

Apply the same argument to both orientations.

If X admits a \mathfrak{g} structure, then it is holomorphically fibered, and the inequality is

\[|\sigma(X)| \leq \frac{1}{3} |\chi(X)| \quad \text{(Tan-Miyake)} \]

The example with the largest $|\sigma(X)|/|\chi(X)|$ are due to Bryant-Donagi (2002)

If we fix g,h, there are at most finitely many conjugacy classes of representations $\pi_1(B) \to \Gamma_h$ which correspond to \mathfrak{g} surfaces. But there are always infinitely many conjugacy classes, and they all correspond to C^0 fibered manifolds.
Example: $n = 2$, $\langle g(p), [B] \rangle \leq 2(g-1)$ (Milnor word, etc.)

- If p lifts to $\pi_1(B)$, then $g(p) = 0$.
 (For example, because $H^2(\mathbb{F}_2) = 0$)
- If p lifts to $Sp(\mathbb{Q}, \mathbb{Z})$ then $g(p)$ may be nonzero.
 (W. Meyer thesis) (Result of Hecke imply that it can be maximal)

Theorem (K'99) If $\overline{\rho}: \pi_1(B) \to \mathbb{F}_2$, then the following are equivalent:

1. $g(p) = 0$ and the corresponding X admits a c^0 structure
2. $\overline{\rho}$ has finite image

$(2) \Rightarrow (1)$ (Use Nielsen realization)

If Θ lifts

$\pi_1(B) \xrightarrow{\overline{\rho}} \mathbb{F}_2 \xrightarrow{\text{Diff}^+(\mathbb{F}_2)} X \xrightarrow{\text{is a flat bundle of surfaces, this is denoted } X}$

$X = (\mathbb{B} \times \mathbb{F}_2) / \pi_1(B)$

In fact, $\overline{\rho}: \pi_1(B) \to \mathbb{F}_2$ lifts to $\text{Diff}^+(\mathbb{F}_2)$ if the corresponding X admits a horizontal foliation.

What is the pullback of $g \in H^2(\mathbb{F}_2, \mathbb{R})$ to $H^2(\text{Diff}^+(\mathbb{F}_2), \mathbb{R})$?

Theorem (K-Moist, 05) Every surface bundle over a surface can be fibered immersed with signature 0 bundle to obtain a bundle with a horizontal foliation with area preserving total holonomy.

This implies that the pullback of g to $\text{H}^2(\text{Symp}(\mathbb{F}_2), \mathbb{R})$ is nonzero.