\( \newcommand{\sym}{\mathrm{sym}} \newcommand{\ext}{\mathrm{ext}} \newcommand{\spin}{\mathrm{spin}} \newcommand{\tr}{\mathrm{tr}} \newcommand{\A}{{\mathbb A}} \newcommand{\Q}{{\mathbb Q}} \newcommand{\Z}{{\mathbb Z}} \newcommand{\R}{{\mathbb R}} \newcommand{\C}{{\mathbb C}} \newcommand{\idm}{{1}} \newcommand{\HH}{\mathcal H} \newcommand{\p}{\mathfrak p} \newcommand{\OF}{{\mathfrak o}} \newcommand{\GL}{{\rm GL}} \newcommand{\PGL}{{\rm PGL}} \newcommand{\SL}{{\rm SL}} \newcommand{\SO}{{\rm SO}} \newcommand{\Symp}{{\rm Sp}} \newcommand{\Sp}{{\rm Sp}} \newcommand{\GSp}{{\rm GSp}} \newcommand{\PGSp}{{\rm PGSp}} \newcommand{\sgn}{{\rm sgn}} \newcommand{\St}{{\rm St}} \newcommand{\triv}{{\mathbf1}} \newcommand{\K}[1]{{\rm K}(\p^{#1})} \newcommand{\Kl}[1]{{\rm Kl}(\p^{#1})} \newcommand{\Si}[1]{{\rm Si}(\p^{#1})} \newcommand{\para}{K^{\rm para}} \newcommand{\val}{{\rm val}} \newcommand{\GSO}{{\rm GSO}} \newcommand{\GO}{{\rm GO}} \newcommand{\Ind}{{\rm Ind}} \newcommand{\ind}{{\rm ind}} \renewcommand{\P}{\mathfrak{P}} \newcommand{\Hom}{{\rm Hom}} \newcommand{\SSp}{{\rm Sp}} \newcommand{\mat}[4]{{\begin{pmatrix} #1 & #2 \cr #3 & #4 \end{pmatrix}}} \newcommand{\forget}[1]{} \renewcommand{\labelenumi}{\roman{enumi})} \renewcommand{\labelenumii}{\alph{enumii})} \)
Abstract
We give conditions for when two Euler products are the same given that they satisfy a functional equation and their coefficients satisfy a partial Ramanujan bound and do not differ by too much. Additionally, we prove a number of multiplicity one type results for the number-theoretic objects attached to $L$-functions. These results follow from our main result, which has slightly weaker hypotheses than previous multiplicity one theorems for L-functions.