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WORKSHOP SUMMARY

The aim of this workshop was to begin to consolidate the numerous groups studying
different models of discrete algebraic topology, and in particular homotopy theory in graph

theory and combinatorics. To the best of our knowledge, this was the first workshop
specifically devoted to this area, and bringing together these different groups for talks and

discussions, most of whom had been previously working largely in isolation from one
another, proved to be extremely fruitful.

Each morning from Monday to Wednesday, there were two talks, on Thursday monning
there was a single talk followed by a group discussion, and on Friday morning, there were
two regular talks followed by an additional, closing talk. The goal of the presentations from
Monday to Wednesday was to give an overview of the different models of homotopy which
had been studied in the area, and in particular for graphs, and the talks on Thursday and

Friday were slightly more specialized.

The speakers were:

• Monday - Nikola Milicevic and Conrad Plaut
• Tuesday - Daniel Carranza and Laura Scull
• Wednesday - Nicholas Scoville and Anton Dochtermann
• Thursday - Federico Vigolo (followed by a group discussion)
• Friday - Ling Zhou, Chris Kapulkin, and Curtis Greene/Eric Babson, the latter two
of whom gave a joint talk

On Monday afternoon, there was a problem session moderated by Antonio Rieser, which
generated a list of around 14 open problems and research topics.

From Tuesday to Friday during the afternoons after the talks, the participants in the
workshop divided into groups and worked on the following 5 problems.

Computing Homotopy Groups of the Digital Sphere
This group worked to define and compute several homotopy groups of a digital sphere. For
some digital image X (a reflexive undirected graph on some lattice), the homotopy group
πn(X, x0) was defined to be the homotopy classes of maps α : I → X, where I ⊂ Zn is a

rectangular subset of the lattice and α maps the boundary ∂I to the point x0.

Let X ⊂ Z3 be the 6-point set consisting of the basis vectors ±ei. When considered with
diagonal adjacencies, X resembles the octahedron, which is a typical stand-in for a “digital
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sphere”. The digital homotopy group π2(X, x0) ∼= Z was computed using an elementary
argument defining a combinatorial analogue of the degree for the map α : I → X. The

constructions and arguments used are reminiscent of Sperner’s lemma.

Higher Homotopy Groups for ×-Homotopy
The second group worked on defining the notion of (higher) homotopy groups in the
×-homotopy theory of graphs with (optional) loops. Previously, Chih and Scull had

defined the fundamental group(oid) of a graph, so this group’s goal was to generalize this
earlier work.

They proceeded to define the loop graph of a graph via the path space. The definition
takes as input a graph with a map to (Z/2)n together with a chosen vertex and chosen
edge, and produces a new graph with a map to (Z/2)(n+ 1) along with a canonically
chosen looped vertex, which, in turn, produces the distinguished edge. By iterating this

construction, they obtained higher loop spaces, and they then defined the higher homotopy
groups as connected components of the corresponding higher loop space.

Our definition makes the n-th homotopy group admit natural (Z/2)n grading. One
direction that appears to be worth exploring further is whether this grading could be used
to prove the non-existence of certain maps, which could have potential applications to

colorability.

Much of the work was spent refining the definition, and the group has a number of
ambitious goals ahead, including: (1) Proving that higher homotopy groups are abelian, (2)
Constructing the Hurewicz homomorphisms and proving the Hurewicz theorem, and (3)
Relating their construction to the one of Dochtermann in case of fully looped graphs.

Homology Theories for General Graphs
The problem explored by this group was to search for a good construction for homology of
graphs with (optional) loops, and they explored several possibilities. Noticing that two of
their possible constructions gave isomorphic results, both definitions arising from the

homology of certain simplicial complexes associated to the graph. They then conjectured
that the two complexes are in fact homotopy equivalent and sketched the proof of this fact.

It was then verified that this fact was well-known to experts, and, in particular, had
appeared in a paper by Eric Babson.

A-Theory Weak Equivalence of Suspensions of Different Length
This problem asks whether a natural map f : Σn+1(G) → Σn(G) induces an isomorphism
from Ad(Σn+1(G), v0) to Ad(Σn(G), v0), for d ≥ 0, n ≥ 3. Here G denotes a graph, Σn(G)
denotes the quotient In□G/ ∼ , where In is a path with vertices 0, 1, . . . , n, □ denotes box

product, and ∼ identifies the top and bottom levels to single points.

The group explored the problem using a diagrammatic template suggested by Kris
Kapulkin (the proposer), initially considering the special case where G = Z5, the pentagon

graph, and n = 3. Specifically, given a graph map σ : Idk → Σ3(G), where Idk is a
d-dimensional grid of length k, we must show that, up to homotopy, any lifting of σ to

Σ4(G) on the boundary of Idk can (after expanding Idk to a larger grid), be extended to the
interior.

∂Id3k+2[d, hook][r]∂I
d
k [r, ”σ̃”][d, hook]

∑
4

(G)[d, “f”]
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Id3k+2[r, “j”
′][rru, dashed, “gσ”]I

d
k [r, ”σ”

′]
∑

3(G).

They found algorithms for constructing such an extension in dimensions d = 1, 2, and 3,
proving that the induced map f ∗ is an isomorphism in dimensions 1 and 2, and that it
is surjective in dimension 3. More generally, the algorithm works if d ≤ n, but may fail
otherwise. However, they found no evidence that the result is false, and no obstacle to this
overall approach.

Homotopy at scale and closure spaces
The objective of this group was to understand the similarities and differences between mul-
tiple approaches to coarse homotopy groups on metric spaces. It is known that there is not
an algorithm to compute any of them as it would solve the word problem in groups, and it
is easy to verify that all of them are close in some sense (interleaving distance).

The setting is the following: One has a pointed metric space (Y, ∗), an integer k, and a
scale parameter ε > 0. One then wants to compute the k-th homotopy group of (Y, ∗) while
disregarding whatever happens at scale < ε. With the closure structure cε,− : P(Y ) → P(Y )
given by cε,−(A) := {y ∈ Y |d(y, A) < ε}, one could study the following:

(1) A-theory groups Ak((Y, cε,−), ∗).
(2) ×-homotopy groups π×

k ((Y, cε,−), ∗).
(3) Vietoris–Rips homotopy groups πk(V R<ε(Y ), ∗).
(4) closure space homotopy groups πk((Y, cε,−), ∗).
(5) semi-uniform space homotopy groups πk((X,Fϵ), ∗).
(6) ε-continuity homotopy groups πε

k(Y, ∗).
Approach 6 is isomorphic to certain special cases of approach 5, and we conjecture that 3 is
isomorphic to 5, but a proof seems very hard. Approaches 1 and 2 appear to be able to be
reduced via suitable loop spaces:

Ak(X, ∗) = Ak−1(Ω
A(X), ∗), π×

k (X, ∗) = π×
k−1(Ω

×(X), ∗).
There was an attempt to obtain such reduction for approach 4. The main issue is that the
set of continuous maps in the category of closure spaces from S1 to (Y, cε,−) is not yet known
to be a closure space, as it is only a priori a pseudo-topological space. What one would like
is something of the form

πk((Y, cε,−), ∗) = πk−1(Hom∗
Cl(S1, Y, cε,−), ∗).

The group has conjectured that when Y is a nice space, such as a Riemannian manifold,
one could substitute approach 6 by πε

k−1(Ω(Y ), ∗). This is inspired by the classical approach
when one shows that Ω(Y ) is homotopy equivalent to a Riemannian manifold where standard
analysis tools such as Morse theory are available.


