1. Questions

1.1. Computable approximability (Calvert)

Definition. \(\mathcal{M} \) is computably approximable if for every computable \(\mathcal{L}_{\omega_1, \omega} \) sentence \(\varphi \) true of \(\mathcal{M} \) there is a computable \(\mathcal{N} \models \varphi \) such that \(\text{SR}(\mathcal{N}) < \omega_1^{\text{CK}} \), where \(\text{SR} \) denotes Scott rank.

Question 1. Is it the case that every computable structure is computable approximable?

Date: August 12, 2013.
Question 2. Let $\varphi \in L_{\omega_1,\omega}$ be a satisfiable sentence of quantifier rank α, and suppose that either $\omega_1 > \beta > \alpha$ or $\beta > \alpha + \omega$. Is there an $\mathcal{M} \models \varphi$ such that $\text{SR}(\mathcal{M}) < \beta$?

1.2. **Strongly minimal nontrivial locally modular nonorthogonal groups (Medvedev).**
Let \mathcal{M} be a strongly minimal nontrivial locally modular structure. There is a nonorthogonal interpretable strongly minimal group G.

Question 3. How difficult is it to find a presentation of G in terms of \mathcal{M}?

Question 4. How difficult is it to find a presentation of \mathcal{M} in terms of G?

Consider a three-to-one map $(\mathbb{Q}, +) \leftarrow (\mathcal{M}, \oplus)$ where (\mathcal{M}, \oplus) is strongly minimal.

Question 5. Must \oplus be definable in some $\mathbb{Q} \times F$, where F is a finite set?

1.3. **Continuous sections (Miller).**
Consider T stable. Then for all $\mathcal{M} \prec \mathcal{N} \models T$, the map $S_1(\mathcal{N}) \rightarrow S_1(\mathcal{M})$ has a continuous section, which sends p to the unique nonforking extension.

Question 6. Is there a computable section?

Question 7. How complicated is the map $\varphi \mapsto d_p\varphi$ (possibly with uniformity in p)?

Question 8. Does the existence of a computable section give other computable information for other characterizations of stability?

1.4. **κ^+-computable categoricity (Knight).**

Definition. Let κ be a cardinal. Then a set is κ^+-recursively enumerable when it is Σ_1 on L_{κ^+}.

Definition. \mathcal{K} is relatively κ^+-categorical when for any two κ^+-computable \mathcal{N}, \mathcal{M} of cardinality κ^+, they are isomorphic in $L_{\kappa^+}(\mathcal{M}, \mathcal{N})$.
Recall that when an AEC is quasiminimal excellent, it is κ-categorical for all uncountable κ.

Question 9. Let \mathcal{K} be a quasiminimal excellent class, and $\lambda < \kappa$. Suppose that \mathcal{K} is κ^+-computably categorical. Must \mathcal{K} be λ^+-computably categorical?

Question 10. Suppose that \mathcal{K} is relatively κ^+-computably categorical. Must \mathcal{K} be relatively λ^+-computably categorical?

1.5. Σ-definable isomorphisms for copies of \mathbb{C} (Goncharov).

Question 11. Let $\mathbb{A} = HF(\mathbb{C})$, and suppose $K \cong \mathbb{C}$ is Σ-definable in \mathbb{A}. Is there a Σ-definable isomorphism?

The answer is yes if we replace \mathbb{C} by \mathbb{R} and both $(K, \oplus, \odot) \cong \mathbb{R}$ and $K \subseteq \mathbb{R}$ hold. It is open if merely $K \subseteq \mathbb{R}^2$.

1.6. λ-many models of each cardinality $\lambda \geq \aleph_1$ (Greenberg).

Question 12. (Assume $V = L$ if it makes things easier.) Suppose that for all $\lambda \geq \aleph_1$ a theory T has at most λ-many models of cardinality λ. Must each such model have a λ-computable presentation?

Such a T is necessarily ω-stable and non-multidimensional. The question is true if T is \aleph_1-categorical.

Question 13. What if T has finitely many models in \aleph_1? (Maybe look at models in \aleph_n.)

1.7. Non-abelian free groups (Knight). Consider n-generated groups with a single relator of length at most t. (For each t, n there are finitely many such groups.) For every sentence φ define

$$h_{n,t,\varphi} = \frac{|\{G \in H_{n,t} : G \models \varphi\}|}{|H_{n,t}|}.$$

Conjecture 14. The limit $\lim_{t \to \infty} h_{n,t,\varphi}$ exists, and always takes the value 0 or 1, moreover in a way that may depend on φ but not on n.

Conjecture 15. Furthermore, the asymptotically almost sure (a.a.s.) theory determined by this $0 - 1$ law is that of \mathbb{F}_2.
1.8. Standard systems of RCF (Marker).

Question 16. What are the possible standard systems of recursively saturated real closed fields? (This is essentially asking: What are the possible sets of cuts of \(\mathbb{Q} \) that are realized in some models?)

The ideal answer might be “all Scott sets”.

1.9. Models of \(\aleph_1 \)-categorical theories. (Andrews).

Conjecture 17. For any \(\aleph_1 \)-categorical \(T \) there is an \(n \) such that if \(T \) has a computable model then every countable model has a presentation computable in \(0^{(n)} \).

Note that if \(T \) is strongly minimal then \(n = 4 \) works.

1.10. Computable prime models (Andrews).

Question 18 (Millar). Let \(T \) be a decidable theory having countably many countable models. When must the prime model have a decidable presentation? (Note that \(\omega \)-stability suffices.)

Question 19. Let \(T \) be a decidable theory having countably many countable models. What do we need to know to build a computable prime model of \(T \)? (Of course \(\omega \)-stability again suffices.)

1.11. Turing degrees of DCFs (Calvert).

Question 20 (Harizanov). Let \(d \) be a Turing degree. Is there a differentially closed field with a copy that is computable in \(d \) and such that every copy computes \(d \)?

Definition. \(\text{Spec}(T) = \{ d : \text{there is a model of } T \text{ computable in } d \} \).

Conjecture 21. If \(T \) is totally categorical then \(\text{Spec}(T) \) is a cone.

This is true in a finite language.
1.13. **Model theoretic consequences of Erdős-Rado** (Greenberg).

Task 22 (Hirschfeldt). *Find proofs in second-order arithmetic of model-theoretic consequences of Erdős-Rado (e.g., forking = dividing in simple theories)*.

Question 23. *Let T' be an expansion of T by one constant. Suppose $\cong_{T'}$ is Borel complete. Is \cong_T Borel complete?*

Question 24. *Suppose \cong_T is Borel complete. Is $\cong_{T'}$ Borel complete?*