Problems related to "Definability and Decidability Problems in Number Theory"

moderated by T. Scanlon, notes by J. Demeyer September 9–13, 2013

Question 1 (Shlapentokh, Eisenträger). Let K be a number field.

(a) Does there exist a $(\forall x)(\exists \vec{y})$ -formula $\theta_K(x)$ such that

$$\theta_K(a) \iff a \in \mathcal{O}_K$$
?

- (b) Same question with \mathbb{Z} in place of \mathcal{O}_K .
- (c) Does there exist a \forall -formula $\varphi_K(x)$ such that

$$\theta_K(a) \iff a \in \mathbb{Z}$$
?

Question 2 (Pheidas). Let K be a number field. Does there exist an \exists -formula $\delta(x,y)$ such that

 $\delta(a,b) \iff (\text{for every } p \text{ above a prime 1 mod 4})(v_p(a) < 0 \ \to \ v_p(b) < 0).$

This is known (more or less) for $K = \mathbb{Q}$ for primes 3 mod 4. A positive answer would imply existential definability of \mathbb{Z} in \mathbb{Q} , hence a negative answer to HTP over \mathbb{Q} .

Question 3 (Demeyer). A uniform statement of the theorem that r.e. sets are diophantine for $\mathbb{F}_p[t]$. How should we even state this precisely?

Question 4 (Pheidas). Is \mathbb{Q} existentially definable inside $\mathbb{Q}(t)$ (using the language of rings with t)? It is known to be definable (even without t in the language).

Using elliptic curves, one can easily existentially define dense subsets of \mathbb{Q} .

Question 5 (Koenigsmann). Given $\mathbb{Q}^* \subseteq \mathbb{Q}^{**}$, both elementary equivalent to \mathbb{Q} (in the language of rings). Does it imply that $(\mathbb{Q}^*)^{alg} \cap \mathbb{Q}^{**} = \mathbb{Q}^*$ (i.e. is \mathbb{Q}^* relatively algebraically closed inside \mathbb{Q}^{**})?

If the answer is "NO" in some case, then we know that \mathbb{Z} is not \exists -definable in \mathbb{Q} .

We know that \mathbb{Q}^* is quadratically closed in \mathbb{Q}^{**} .

Question 6 (Koenigsmann). Consider the language $\mathcal{O}_2 = \{0, 1, +, P_2\}$ where P_2 is the set of squares. Is every $\exists -\mathcal{O}_2$ -definable set in \mathbb{Q} already $\exists^+-\mathcal{O}_2$ -definable?

Equivalently, are the following sets \exists^+ - \mathcal{O}_2 -definable:

- $\{x \in \mathbb{Q} \mid x \neq 0\},\$
- $\{x \in \mathbb{Q} \mid (\forall y)(y^2 \neq x)\}.$

Question 7 (Miller). Given a countable graph (V, E), find a field K (of characteristic 0), polynomials $P \in \mathbb{Q}[x, t]$, $Q, R \in \mathbb{Q}[x, y, z]$ and a bijection $\alpha: V \to \{x \in K \mid (\exists t \in K)(P(x, t) = 0)\}$ such that for all $v, w \in V$:

- 1. $(v, w) \in E \leftrightarrow (\exists z)(R(\alpha(v), \alpha(w), z) = 0)$.
- $2. \ (v,w) \not\in E \ \leftrightarrow \ (\exists z)(Q(\alpha(v),\alpha(w),z)=0).$

Poonen: let P define a curve without non-trivial automorphism. For the empty graph:

Find a polynomial $P \in \mathbb{Q}[x,t]$ such that K is a field generated by $x_1, x_2, \ldots, t_1, t_2, \ldots$ such that all $\{x_1, x_2, \ldots\}$ are algebraically independent and such that $P(x_i, t_i) = 0$ for all i and such that

- 1. For every permutation π of \mathbb{N} there is a unique automorphism σ_{π} of K such that $\sigma_{\pi}(x_i) = x_{\pi(i)}$.
- 2. $\{x_i \mid i \in \mathbb{N}\} = \{y \in K \mid (\exists t)(P(y, t) = 0)\}.$

Question 8 (Pasten). Do we know an r.e. subset of \mathbb{Q} which is not diophantine? There is some evidence that \mathbb{Z} is not diophantine, but we have no proof yet.

What is the "thinnest" subset of \mathbb{Q} known to be diophantine?

Does Bombieri–Lang imply that the diophantine subsets of \mathbb{Q} are either finite or have "fast" growth rates? This would give a different proof, assuming Bombieri–Lang, that \mathbb{Z} is not diophantine.

Question 9 (Flenner). Is there a sentence φ in the language of rings such that $\mathbb{Q}(t_1,\ldots,t_n)$ satisfies φ if and only if n is even?

Using ultrapowers, one might show this is not possible.

Question 10 (Pop). For K and L finitely generated fields, does $K \equiv L$ imply $K \cong L$?

Question 11 (Flenner). Does there exist a formula $\varphi(x,y)$ such that for any finitely generated field K and every rank one divisorial valuation v on K, there exists a parameter a such that $\mathcal{O}_v = \{b \in K \mid \varphi(b,a)\}$?

Question 12 (Videla). Is there an existential analogue of Robinson's Q?

Question 13 (Vidaux). Applications of exceptional sets for Büchi's problem for higher powers in characteristic p?

Question 14 (Pasten). Existential undecidability of K(t) in the language $\{0, 1, +, \cdot, T\}$ where $T(f) \leftrightarrow f \notin K$? This question is open for every field K.

Question 15 (Demeyer). For various fields K, consider the relation on K[t] defined by

$$R(f,g) \iff \deg(f) = \deg(g).$$

- (a) Is this relation (existentially) definable for $K = \mathbb{C}$?
- (b) For $K = \mathbb{F}_p$, is there an existential definition, uniform in p?

Question 16 (Miller). Situate with respect to \leq_T the following sets:

$$HTP_{\infty}(\mathbb{Q}), HTP_{\infty,1}(\mathbb{Q}), HTP_{\infty}(\mathbb{Z}), HTP_{\infty,1}(\mathbb{Z}).$$

(known: $0' \leq_T HTP_{\infty}(\mathbb{Z}) \leq_T 0''$)

Question 17 (Koenigsmann). Decidability of \mathbb{Q}^{solv} , \mathbb{Q}^{ab} , \mathbb{Z}^{solv} and \mathbb{Z}^{ab} .

Question 18 (Jarden). Various questions from Jarden's talk.