at the

American Institute of Mathematics, San Jose, California

organized by

Alexandr Buryak, Renzo Cavalieri, Emily Clader, and Paolo Rossi

The main topics for the workshop are:

- DR/DZ equivalence conjecture

The Dubrovin-Zhang hierarchy is another construction of an integrable system of PDEs associated to a given semi-simple cohomological field theory. Guided by the evidence contained in the first computed examples, A. Buryak proposed the conjecture that, for semi-simple CohFTs, the Dubrovin-Zhang hierarchy is equivalent, through some coordinate transformation of the phase space, with the DR hierarchy. In subsequent publications a stronger and more precise conjecture was formulated, which uniquely identifies the coordinate transformation. We feel that the moment is ripe for a full proof and that bringing together the two communities would provide the needed expertise and technical tools to overcome the technical difficulties. - Generalizations of CohFTs and Givental-Teleman classification

The DR hierarchy works with more general objects than just cohomological field theories. In fact the axioms of CohFT can be relaxed to partial CohFTs to still produce integrable Hamiltonian hierarchies and even more, to F-CohFTs, to obtain still integrable, albeit not Hamiltonian, systems. While for actual CohFTs, powerful classification and reconstruction theorems exist (by Givental and Teleman, in particular), their generalizations have never been studied in such depth. Partial results have recently been obtained in this direction for F-CohFTs and with application to the existence of dispersive deformation of integrable systems of conservation laws. We propose to develop this theory and compute several explicit examples. - DR cycles and admissible covers DR cycles

The DR locus is an extension to the moduli space of stable curves of the locus in the open moduli space parameterizing smooth curves with a map to the projective line of prescribed ramification. An alternative extension, the locus of "admissible covers", is given by simply taking the closure of the locus of such smooth curves. A direct relationship between these two compactifications has been explicitly studied in only a small number of cases, but recent work of Schmitt and van Zelm has provided new tools to investigate this geometrically compelling question. A natural goal would be to produce graph formulas for admissible covers cycles analogous to Pixton's formula for the DR cycle.

The workshop schedule.

A report on the workshop activities.

A list of open problems.

Papers arising from the workshop:

Pixton's formula and Abel-Jacobi theory on the Picard stack

by Younghan Bae, David Holmes, Rahul Pandharipande, Johannes Schmitt, and Rosa Schwarz