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Abstract. The paper surveys open problems and questions related to geodesics

defined by Riemannian, Finsler, semi Riemannian and magnetic structures on

manifolds. It is an extended report on problem sessions held during the In-

ternational Workshop on Geodesics in August 2010 at the Chern Institute of

Mathematics in Tianjin.

This paper is an extended report on problem sessions held during the Interna-
tional Workshop on Geodesics in August 2010 at the Chern Institute of Mathematics
in Tianjin. The focus of the conference was on geodesics in smooth manifolds. It
was organized by Victor Bangert and Yiming Long and supported by AIM, CIM,
and NSF.

1. Notation and Definitions

In this paper M is a connected C∞ manifold and M̃ is its universal cover. We
consider various structures on M that create geodesics: Riemannian (later also
semi-Riemannian) metric g, Finsler metric F , magnetic structure ω. The unit
tangent bundle defined by such a structure is denoted bySM and φt is the geodesic
flow on SM . The geodesic defined by a vector v ∈ SM is denoted by γv; it is
parametrized by arclength unless otherwise specified.

The free loop space ΛM is the set of all piecewise smooth mappings from the
circle S1 to the manifold equipped with the natural topology. When M has a
Riemannian metric (or other suitable structure) we can consider the subspace ΛTM
of loops with length ≤ T . Similarly given two points p, q ∈M , we denote by Ω(p, q)
the space of piecewise smooth paths from p to q and by ΩT (p, q) the subspace of
paths with length at most T .

We define the energy functional on ΛM by

c 7→
∫

S1

‖ċ(s)‖2 dλ(s),

where ‖ · ‖ is the norm induced by a Riemannian metric or other suitable structure
and λ is Lebesgue measure on S1 normalized to be a probability measure. The
critical points of this functional are the closed geodesics for the metric (parametrized
at the constant speed Length(c)). In the case of Ω(p, q), the circle S1 is replaced
by the interval [0, 1].

2. Closed geodesics

Given a Riemannian manifold, does there exist a closed geodesic? If yes, how
many (geometrically different) closed geodesics must exist? Existence is known if
the manifold is closed. For surfaces (and certain manifolds of higher dimension,
e.g. Sn), the result is essentially due to Birkhoff [Birkhoff1927, Chap. V]. He used
two arguments. The first is a variational argument in the free loop space ΛM . From
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the subspace of ΛM consisting of all loops homotopic to a given loop, one selects
a sequence of loops whose lengths converge to the infimum of the length function
on the subspace. If the loops from this sequence lie in a compact region of the
manifold (for example, if the manifold itself is compact), then by the Arzelà-Ascoli
theorem there exists a loop where the infimum is achieved; if the infimum is not
zero, this loop is automatically a nontrivial closed geodesic. These arguments show
the existence of closed geodesics in many cases, in particular for compact manifolds
with non trivial fundamental group.

If the infimum of the length of the loops homotopic to a given loop is zero,
Birkhoff suggested another procedure (actually, a trick) to prove the existence of
closed geodesics, which is explained for example in [Birkhoff1927, §§6,7 of Chap.
V]. This trick is nowadays called the Birkhoff minimax procedure, and was used for
example to show the existence of closed geodesics on any Riemannian sphere with
dimension ≥ 2.

Let us recall this procedure in the simplest case, when the manifold is S2. We
consider the foliation of the sphere without two points (north and south poles) as
in the picture: if we think of the standard embedding in R3, the fibers are the
intersections of the sphere with the planes {x3 = const}.

Now apply a curve shortening procedure to every curve of this foliation, for
example the curvature flow (Birkhoff used another shortening procedure). We need
that the evolution of the curves in this procedure depends continuously on the
curve. We obtain a sequence Fi of the foliations of the sphere without two points
into curves. For each foliation Fi of the sequence, let γi be a leaf of maximal
length. Because of topology, the lengths of the circles γi are bounded from below
by a certain positive number. By the Arzelà-Ascoli theorem, the sequence of curves
γi has a convergent subsequence. The limit of this subsequence is a stable point of
the shortening procedure, and is therefore a geodesic.

For arbitrary closed manifolds, the existence of a closed geodesic is due to
Lyusternik and Fet ([Lyu-Fet1951] and [Fet1952]). They considered the energy
functional on the loop space ΛM and showed that the topology of ΛM is compli-
cated enough so that the energy functional must have critical points with nonzero
energy (which are non trivial closed geodesics). Lyusternik and Schnirelmann
[Lyu-Sch1934] had earlier used a related argument to show that any Riemannian
metric on S2 has at least 3 simple closed geodesics.

How many closed geodesics must exist on a closed manifold? For surfaces, the
answer is known: there are always infinitely many geometrically different closed
geodesics. This is easily proved using Birkhoff’s first argument when the fundaman-
tal group is infinite. The remaining cases of the sphere and the projective plane were
settled by [Bangert1993] and [Franks1992]. In higher dimensions Rademacher has
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shown that a closed manifold with a generic Riemannian metric admits infinitely
many geometrically different closed geodesics [Rademacher1989].

The main approach to proving the existence of infinitely many closed geodesics
has been to apply Morse theory to the energy functional on the free loop space ΛM .
The critical points of this functional are precisely the closed geodesics. But it has
to be remembered that each closed geodesic can be traversed an arbitrary number
of times. It is thus important to distinguish geometrically different geodesics from
repetitions of the same geodesic. This distinction is difficult to make and so far,
despite some published claims, the existence of infinitely many closed geodesics on a
general compact Riemannian manifold has not been proven. Nor have the resources
of the Morse theory approach been fully exhausted.

One can modify these classical questions in different directions; this will be done
below.

2.1. Riemannian metrics on spheres. Except in dimension 2, all that is cur-
rently known for a general Riemannian metric on a sphere are the results that hold
for all compact Riemannian manifolds. Is there an extension of Lyusternik and
Schnirelmann’s result to higher dimensions, in particular to S3?

2.2. Finsler metrics on S2. The arguments of Fet (and Morse) can be adapted
to the Finsler setting: one can show the existence of at least one closed geodesic
on every compact manifold. Moreover, if the Finsler metric is reversible, or if the
manifold is a surface other than the sphere or the projective plane, one can show
the existence of infinitely many geometrically different closed geodesics.

The following example constructed in [Katok1973] shows that the number of
closed geodesics on a 2-sphere with an irreversible metric can be 2. Consider the
sphere S2 with the standard metric g0 of constant curvature, and a Killing vector
field V on it. For small enough α ∈ R one has the following Finsler metric, known
as a Randers metric:

F (x, ξ) =
√
g0(ξ, ξ) + αg0(V, ξ).

Katok has shown that for certain values of α there are precisely 2 closed geodesics;
they are the unique great circle tangent to V , parametrized in both directions. This
example can be generalized to higher dimensions: one obtains a Finsler metric on
Sn with precisely 2[(n+ 1)/2] distinct prime closed geodesics; see [Katok1973].

V. Bangert and Y. Long in [Ban-Lon2010] and [Long2006] proved that there are
always at least 2 distinct prime closed geodesics for every irreversible Finsler metric
on S2.

Conjecture 2.2.1 (Long, Bangert, Problem 15 from [Álvarez2006]). Every irre-
versible Finsler metric on S2 has either exactly 2 or infinitely many distinct prime
closed geodesics.

There exist results supporting this conjecture. In particular, H. Hofer, K. Wysocki
and E. Zehnder in [Ho-Wy-Ze2003] studied Reeb orbits on contact S3. Their result
can be projected down to S2, and implies that the total number of distinct prime
closed geodesics for a bumpy Finsler metric on S2 is either 2 or infinite, provided
the stable and unstable manifolds of every hyperbolic closed geodesics intersect
transversally. See also A. Harris and G. Paternain in [Har-Pat2008].

The closed geodesics in Katok’s example are elliptic.
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Conjecture 2.2.2 (Long). The existence of one hyperbolic prime closed geodesic on
a Finsler S2 implies the existence of infinitely many distinct prime closed geodesics.

Conjecture 2.2.3 (Long). Every Finsler S2 has at least one elliptic prime closed
geodesic.

The conjecture agrees with a result of Y. Long and W. Wang who proved that
there are always at least 2 elliptic prime closed geodesics on every irreversible
Finsler S2, if the total number of prime closed geodesics is finite [Lon-Wan2008].
The conjecture does not contradict [Grjuntal1979] where an example of a metric
such that all closed simple geodesic are hyperbolic is constructed. Indeed, for
certain metrics on the sphere (and even for the metric of certain ellipsoids) most
prime closed geodesics are not simple.

2.3. Of complete Riemannian metrics with finite volume.

Question 2.3.1 (Bangert). Does every complete Riemannian manifold with finite
volume have at least one closed geodesic?

The question was answered affirmatively for dimension 2. Moreover, in dimen-
sion 2 a complete Riemannian manifold of finite volume even has infinitely many
geometrically different geodesics [Bangert1980]. The argument that was used in
the proof is based on the Birkhoff minimax procedure we recalled in the beginning
of §2, and does not work in dimensions ≥ 3. One can even hope to construct coun-
terexamples in the class of Liouville-integrable geodesic flows. In this case, most
orbits of the geodesic flow are rational or irrational windings on the Liouville tori;
they are closed, if all of the corresponding frequencies are rational. Since there
are essentially (n − 1) frequencies in dimension n, one can hope that if n > 2 it
would be possible to ensure that there is always at least one irrational frequency.
Initial attempts to find a counterexample on T 2 × R with the metric of the form
a(r)dφ2 + b(r)dψ2 + dr2 were, however, unsuccessful.

A more difficult problem would be to prove that on any complete Riemannian
manifold of finite volume there exist infinitely many closed geodesics.

Questions of this nature are also interesting in the realm of Finsler geometry. One
would expect the results for reversible Finsler metrics to be very similar to those for
Riemannian metrics. For irreversible Finsler metrics, Katok’s example shows that
there are compact Finsler manifolds with only finitely many closed geodesics, but
it is still possible that all non compact Finsler manifolds with finite volume might
have infinitely many closed geodesics. On the other hand, the following question is
completely open:

Question 2.3.2 (Bangert). Does there exist an irreversible Finsler metric of finite
volume on R× S1 with no closed geodesics?

2.4. Of magnetic flows on closed surfaces. It is known that the trajectory
of a charged particle in the presence of magnetic forces (=“magnetic geodesic”)
is described by a Hamiltonian system with the “kinetic” Hamiltonian of the form∑

i,j pipjg
ij on T ∗M with the symplectic form dp∧dx+π∗ω, where ω is a closed (but

not necessarily exact) form on M and π : T ∗M →M is the canonical projection.
We assume that our surface M2 is closed.

Question 2.4.1 (Paternain). Is there at least one closed magnetic geodesic in every
energy level?
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If the form is exact, the affirmative answer was obtained by Contreras, Macarini
and Paternain in [Co-Ma-Pa2004], which is partially based on [Taimanov1992].

It seems that the standard variational method to solve this problem does not
work in this setting, because the form is not exact and therefore corresponds to
no Lagrangian. One can try to solve this problem by applying a result of Hofer,
Wysocki and Zehnder [Ho-Wy-Ze1993]. In view of this paper, it is sufficient to
show that the flow is of contact type.

We also refer the reader to a survey [Ginzburg1996].

3. Path and loop spaces

As noted in the previous section, one of the main approaches to proving the
existence of closed geodesics is to use topological complexity of the loop space ΛM
to force the existence of critical points of the energy functional. Loops with length
≤ T correspond to critical points in ΛTM . Similarly geodesics joining two points
p and q can be studied by investigating the path spaces Ω(p, q) or ΩT (p, q). The
homology of these spaces have been much studied.

3.1. Sums of the Betti numbers. Let p, q be points in a Riemannian manifold.
The space ΩT (p, q) of paths from p to q with length ≤ T has the homotopy type
of a finite complex (see eg. [Milnor1963]), and hence the sum of its Betti numbers
is finite for each T . The same is true for the space ΛTM of loops with length at
most T .

Question 3.1.1 (Paternain). How do the sums of the Betti numbers for ΛTM and
Ω(T (p, q) grow as T → ∞? Does the growth depend on the metric?

It was shown by Gromov in [Gromov2001] that if M is simply connected there

is a constant C such that sum of the Betti numbers of ΛCN is at least
∑N

i=0 bi(Λ).

Question 3.1.2 (Gromov). Does the number of closed geodesics with length ≤ T
grow exponentially as T → ∞ if the Betti numbers of the loop space grow exponen-
tially?

From [Gromov1978] it follows that the answer is positive for generic metrics.
Here is a potentially interesting example. Consider f : S3 × S3 → S3 × S3 such

that the induced action on H3(S
3×S3) is hyperbolic. LetM be the mapping torus

for f , i.e. S3 × S3 × [0, 1] with (x, 1) identified with (f(x), 0) for each x ∈ S3 × S3.

Then π1(M) = Z and the universal cover M̃ is homotopy equivalent to S3 × S3.
Hence the Betti numbers of the loop space grow polynomially. On the other hand,
the hyperbolic action of f on H3 gives hope for exponential growth of the sum of
the Betti numbers of ΩT (p, q).

3.2. Stability of minimax levels (communicated by Nancy Hingston).
Let M be a compact manifold with a Riemannian (or Finsler) metric g. Let
G be a finitely generated abelian group. Given a nontrivial homology class
X ∈ H∗(ΛM ;G), the critical (minimax) level of X is

cr X = inf{a : X ∈ Image H∗(ΛaM ;G)}
= inf

xǫX
sup

γ∈Imagex
Length(γ)

Here ΛaM is the subset of the free loop space ΛM consisting of loops whose length
is at most a. The second definition is the minimax definition: the singular chain x
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ranges over all representatives of the homology class X, and γ over all the points
in the image of x, which are loops in M .

Question 3.2.1 (Hingston). Do there exist a metric on Sn and a homology class
X ∈ H∗(ΛM ;Z) with

0 < cr(mX) < cr(X)

for some m ∈ N? The simplest case is already interesting: Can we find a metric on
S2 and m ∈ N so that cr(mX) < cr(X), where X is a generator of H1(ΛS

2;Z)?

Let us explain how this question is related to closed geodesics.

Given a metric g onM and a finitely generated abelian group G, the global mean
frequency is defined as

(3.1) αg,G = lim
degX→∞

degX

crX
,

where the limit is taken over all nontrivial homology classes X ∈ H∗(ΛS
n;G).

The Resonance Theorem from [Hin-Rad2013] says that if M is a sphere and G
is a field, the limit (3.1) exists. It is clear in this case that αg,G depends on the
metric g. But does it really depend on the field G? The degree of X does not
depend on anything but X. But what about the critical level cr X? Does cr X
depend on the coeficients?

Let us note that for the spheres the nontrivial homology groups of the free loop
space (with integer coefficients) are all Z or Z2 =: Z/2Z. (For odd spheres they
are all Z.) Let us look at the case where X ∈ Hk(Λ;Z) = Z. For each m ∈ N

there is a critical level

cr(mX) = inf{a : mX ∈ Image H∗(ΛaM)}.
If j,m ∈ N, then clearly (since Image H∗(Λa) is an additive subgroup of H∗(Λ))

cr(jmX) ≤ cr(mX).

But can there be strict inequality? Here is a little “example” to show how this
would affect the global mean frequency : Suppose it were the case that there were
real numbers a < b < c < d with

cr(mX) =





d if gcd(m, 3) = gcd(m, 7) = 1
c if 3|m but gcd(m, 7) = 1
b if 7|m but gcd(m, 3) = 1

a if 21|m





Conjecture 3.2.2 (Hingston).

αg,G = a if G = Q

αg,G = b if G = Z3

αg,G = c if G = Z7

αg,G = a if G = Zp, p 6= 3, 7.
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4. Curvature conditions and hyperbolicity of the geodesic flow

Many results about geodesics and the geodesic flow assume that all sectional
curvatures are negative or one of the following increasingly weaker properties:

(1) all sectional curvatures are non positive,
(2) no focal points,
(3) no conjugate points.

These properties can be characterized by the behaviour of Jacobi fields:

(0) Negative curvature: the length of any (non trivial) Jacobi field orthogonal
to a geodesic is a strictly convex function.

(1) Non positive curvature: the length of any Jacobi field is a convex function.
(2) No focal points: the length of an initially vanishing Jacobi field is a non

decreasing function along a geodesic ray.
(3) No conjugate points: a (non trivial) Jacobi field can vanish at most once.

The no focal point property is equivalent to convexity of spheres in the universal
cover. Most interesting results about manifolds with non positive curvature extend
readily to manifolds with no focal points.

For a compact manifold, negative curvature implies that the geodesic flow is
uniformly hyperbolic, in other words an Anosov flow. This means that there is a
Dφt-invariant splitting of the tangent bundle of the unit tangent bundle SM ,

TSM = Es ⊕ E0 ⊕ Eu,

in which E0 is the one dimensional subbundle tangent to the orbits of the geodesic
flow, and there are constants C ≥ 1 and λ > 0 such that for any t ≥ 0 and any
vectors ξ ∈ Es and η ∈ Eu we have

(4.1) ‖Dφt(ξ)‖ ≤ Ce−λt‖ξ‖ and ‖Dφ−t(η)‖ ≤ Ce−λt‖η‖.

(Here we have in mind the usual Sasaki metric; the same property would also
hold for any equivalent metric with different constants C and λ.) This splitting is
Hölder-continuous, but usually not smooth.

The bundles Es and Eu for an Anosov geodesic flow are integrable; their integral
foliations are usually denoted by W s and Wu. The lifts to the universal cover of

the leaves ofW s andWu are closely related to horospheres. If ṽ is the lift to SM̃ of

v ∈ SM , the lifts to SM̃ of W s(v) and Wu(v) are formed by the unit vectors that
are normal to the appropriate horospheres orthogonal to ṽ and are on the same
side of the horosphere as ṽ; see the picture below.
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4.1. Relations between these concepts. The notions introduced above are re-
lated as follows:

negative curvature +3

��

non positive curvature +3 no focal points

��

Anosov geodesic flow +3 no conjugate points

That Anosov geodesic flow implies no conjugate points is proved in part B of
[Mañé1987].

The class of compact manifolds that support metrics with variable negative
curvature is much larger than the class that support hyperbolic metrics (of con-
stant negative curvature). The earliest examples of manifolds that support variable
but not constant negative curvature were given by Mostow-Siu [Mos-Siu1980] and
Gromov-Thurston [Gro-Thu1987]. Recent work of Ontaneda has vastly increased
the supply of examples [Ontaneda2011, Ontaneda2014].

Conjecture 4.1.1 (Klingenberg). If a closed manifold admits a metric with Anosov
geodesic flow, then it admits a metric with negative sectional curvature.

All known examples of metrics with Anosov geodesic flow are pertubations of
metrics with negative curvature. It is not difficult to show using the uniformisa-
tion theorem and the Thurston geometerisation theorem that conjecture is true
in dimensions 2 and 3. Klingenberg [Klingenberg1974] showed that seven proper-
ties of Riemannian manifolds with negative curvature extend to those with Anosov
geodesic flow. One of these is Preissman’s theorem [Preissman1943] that the fun-
damental group of a manifold with negative sectional curvatures cannot contain a
copy of Z× Z.

Several examples of manifolds that admit metrics of non positive curvature but
cannot support a metric of negative curvature (or with Anosov geodesic flow) can
be found in the introduction to [Ba-Br-Eb1985]. These examples have a copy of
Z×Z in their fundamental group. The simplest of them is due to Heintze who took
two cusped hyperbolic 3-manifolds, cut off the cusps, glued the two pieces together
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along their boundary tori and then smoothed out the metric to obtain a manifold
with non positive curvature.

Question 4.1.2. If (M, g) has no conjugate points, does M carry a metric with
nonpositive sectional curvature?

Again it is not difficult to use the uniformisation theorem to show that the answer
is affirmative in dimension 2. But the problem is still open even in dimension 3. See
[Cro-Sch1986], [Lebedeva2002] and [Iva-Kap2014] for results of the nature that the
fundamental groups of manifolds with no conjugate points share properties with
those of non positive curvature. Section 8 of [Iva-Kap2014] contains a number of
open problems of which we mention:

Question 4.1.3. Is the fundamental group of a closed manifold without conjugate
points semihyperbolic?

Semihyperbolicity is a condition introduced by Alonso and Bridson [Alo-Bri1995]
to describe non-positive curvature in the large for an arbitrary metric space.

Question 4.1.4 (Hermann). Is there an example of a geodesic flow that is partially
hyperbolic?

The geodesic flow is partially hyperbolic if there are a Dφt-invariant splitting

TSM = Es ⊕ Ec ⊕ Eu

and constants C ≥ 1 and λ > µ > 0 such that (4.1) holds and in addition for all t
and all ζ ∈ Ec we have

C−1e−µ|t|‖ζ‖ ≤ ‖Dφt(ζ)‖ ≤ Ceµ|t|‖ζ‖.
Anosov geodesic flows give a degenerate positive answer to the question. Gen-

uine examples have been constructed by Carneiro and Pujals; see [Car-Puj2011]
and [Car-Puj2013]. They deformed a higher rank locally symmetric space of non
compact type.

5. Negative curvature and hyperbolicity of the geodesic flow

5.1. Does the marked length spectrum determine the metric? Suppose
(M, g) is a closed Riemannian manifold. The marked length spectrum of M is
the function that assigns to each free homotopy class of loops the infimum of the
length of loops in the class (i.e. the length of the shortest closed geodesic lying in
this class).

Conjecture 5.1.1 ([Bur-Kat1985]). Two metrics with negative curvature on a
compact manifold must be isometric if they have the same marked length spectrum.

Croke and Otal showed that this conjecture is true for metrics on surfaces
[Otal1990, Croke1990]. Indeed it is enough to assume that the metrics have non-
positive curvature. The problem is open in higher dimensions. Hamenstädt showed
that the geodesic flows of the two metrics must be C0-conjugate, thereby reducing
the problem to Conjecture 5.2.1 in the next subsection [Hamenstädt1991].

One obtains a natural interesting modification of this conjecture by replacing
negative curvature by nonexistence of conjugate points. On the other hand some
restriction on the metrics is necessary as the examples of Croke and Kleiner which
we describe in the next subsection provide non-isometric metrics with the same
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marked length spectrum. It is also necessary to consider the marked length spec-
trum rather than the length spectrum. Vignéras gave examples of non-isometric
hyperbolic surfaces that have the same set of lengths for their closed geodesics
[Vignéras1980].

One can ask a similar question for non-manifolds. Consider a 2-dimensional
(metrical) simplicial complex such that every simplex is hyperbolic with geodesic
edges and such that CAT (−1) condition holds on every vertex. Assume in addition
that every edge is contained in at least two simplices.

Question 5.1.2 (Schmidt). Does the marked length spectrum determine such a
metric (in the class of all locally CAT (−1) metrics on this space, or in the class of
all 2-dimensional (metrical) simplicial complexes with the above properties homeo-
morphic to the given complex)?

If the simplicial complex is (topologically) a manifold, the answer is positive and
is due to [Her-Pau1997]. One can also also ask the question in higher dimensions.
An easier, but still interesting version of the question is when we assume that every
edge is contained in at least three simplices.

The questions above are closely related to the boundary rigidity problem, which
we now recall. Given a compact manifoldM with smooth boundary N , a Riemann-
ian metric g on M induces a nonnegative real valued function d on N × N where
d(p, q) is the distance in (M, g) between p and q. We call (M, g) boundary rigid if
a Riemannian manifold g′ on M that induces the same function on N ×N must be
isometric to g′.

Question 5.1.3 ([Michel1981]). What conditions on M , N and g imply boundary
rigidity?

One can modify this question by requiring that the other Riemannian metric
g′ in the definition of boundary rigid manifolds above also satisfies some addi-
tional assumption. Special cases of the last question were answered in [Croke1990,
Cr-Da-Sh2000, Sha-Uhl2000, Bur-Iva2013].

One can also ask the boundary rigidity question for Finsler metrics; recent ref-
erences with nontrivial results include [Coo-Del2010, Bur-Iva2010].

5.2. The conjugacy problem. Two Riemannian manifolds (M1, g1) and (M2, g2)
have Ck-conjugate geodesic flows if there is an invertible map h : SM

1 → SM
2 such

that h and h−1 are Ck and h ◦φ1t = φ2t ◦h for all t. Here φit is the geodesic flow for
the metric gi. A long standing conjecture is

Conjecture 5.2.1. Compact Riemannian manifolds with negative curvature must
be isometric if they have C0-conjugate geodesic flows.

As with Conjecture 5.1.1 it may be possible to relax the hypothesis of nega-
tive curvature to no conjugate points, but some restriction on the metrics is re-
quired. Weinstein pointed out that all of the Zoll metrics on S2 have conjugate
geodesic flows. Using the explicit rotationally-symmetric examples of Zoll metrics
(Tannery metrics in the terminology of [Besse1978, Chapter 4]) Croke and Kleiner
constructed examples of different metrics on an arbitrary closed manifold such that
their geodesic flows are conjugate and their marked length spectra coincide, see
[Cro-Klei1994].

The conjecture is true in dimension two; indeed it is enough to assume that
one of the manifolds has nonpositive curvature [Cr-Fa-Fe1992]. It follows from
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the theorem of Besson-Courtois-Gallot discussed in the next subsection that the
conjecture holds if one of the metrics is locally symmetric. Croke and Kleiner
showed that C1 conjugacy implies that the volumes of the manifolds are the same
with no restrictions on the metrics and implies isometry of the metrics if one of them
has a global parallel vector (as is the case in a Riemannian product) [Cro-Klei1994].

5.3. Entropy and locally symmetric spaces with negative curvature. Let
hLiou denote the entropy of the geodesic flow with respect to the Liouville measure,
htop its topological entropy and hvol the volume entropy

hvol = lim
r→∞

1

r
log VolB

M̃
(p, r),

where B
M̃
(p, r) is the ball of radius r around a point p in the universal cover M̃ .

It is always true that hvol ≤ htop and they are equal if there are no conjugate
points, in particular if the curvature is negative [Manning1979, Fre-Mañ1982]. By
the variational principle for entropy hLiou ≤ htop for any metric; these entropies
are equal for a locally symmetric metric.

Katok [Katok1982] showed that if g is an arbitrary metric and g0 a metric of
constant negative curvature on a surface of genus ≥ 2 such that area(g) = area(g0),
then

hLiou(g) ≤ hLiou(g0) = htop(g0) ≤ htop(g)

and both inequalities are strict unless g also has constant negative curvature. He
explicitly formulated the following influential and still open conjecture:

Conjecture 5.3.1 ([Katok1982]). htop = hLiou for a metric of negative curvature
on a compact manifold if and only if it is locally symmetric.

Katok’s arguments extend to higher dimensions provided the two metrics are
conformally equivalent. Flaminio showed that Conjecture 5.3.1 holds for deforma-
tions of constant curvature metrics [Flaminio1995].

Katok’s paper implicity raised the questions of whether in higher dimensions
htop is minimized and hLiou maximized (among metrics of negative curvature of
fixed volume on a given manifold) by the locally symmetric metrics. It is now
known that the locally symmetric metrics are critical points for both entropies
[Ka-Kn-We1991], but the locally symmetric spaces do not maximize hLiou except
in the two dimensional case [Flaminio1995]. The topological entropy, however, is
minimized.

Gromov [Gromov1983] conjectured that if f : (M, g) → (M0, g0) is a continuous
map of degree d 6= 0 between compact connected oriented n-dimensional Riemann-
ian manifolds and M0 has constant negative curvature, then

hvol(g)
nVol(M, g) ≥ |d|hvol(g0)nVol(M0, g0)

with equality if and only if g also has constant negative curvature and f is homotopic
to a d-sheeted covering. The quantity hnVol has the advantage of being invariant
under homothetic rescaling of the manifold; this obviates the assumption that the
two manifolds have the same volume.

Theorem 5.3.2 ([Be-Co-Ga1995]). The above conjecture of Gromov is true even
when (M0, g0) is allowed to be a locally symmetric space of negative curvature.

We refer the reader to Section 9 of [Be-Co-Ga1995] and the survey [Eberlein2001]
for a list of the many corollaries of this remarkable theorem.
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5.4. Regularity of the Anosov structure. An extensive list of results about the
regularity of the Anosov splitting for the geodesic flow in negative curvature (and
for other Anosov systems) can be found in the introduction to [Hasselblatt1994].
In dimension two, or if the curvature is 1/4-pinched, the splitting is always at least
C1. In higher dimensions it is always Hölder continuous but typically not C1. It is
natural to ask:

Question 5.4.1. Does there exist a closed Riemannian manifold of negative curva-
ture such that Es and Eu are C1 smooth, but the dimension is > 2 and the metric
is not 1/4-pinched?

Another motivation for this question is the question of Pollicott in the next
subsection.

A program to construct open sets of metrics for whose geodesic flows have Anosov
splitting that have low regularity of the Anosove splitting on large subsets of the
unit tangent bundle is explained in section 4 of [Has-Wil1999]; see in particular
Proposition 12. The idea is to perturb a suitable base example. This base example
must have directions in its unstable manifolds with widely different expansion rates.
Unfortunately there are no known examples of geodesic flows that are suitable
bases for the perturbation argument; see the discussion at the end of section 4 in
[Has-Wil1999]. Along all geodesics in complex hyperbolic space one has Lyapunov
exponents of 1 and 2 corresponding to parallel families of planes with curvature −1
and −4 respectively.

Question 5.4.2. Is there a metric of negative curvature for which the ratio of
largest positive Lyapunov exponent to smallest positive Lyapunov exponent is
greater than 2 for typical geodesics (not just exceptional closed geodesics)?

The Anosov splitting is C∞ only if and only the metric is locally symmetric.
This follows from [Be-Fo-La1992] and [Be-Co-Ga1995]. For surfaces Hurder and
Katok [Hur-Kat1990] showed that the splitting must be C∞ if one of the stable
or unstable foliations is C1+o(x log |x|). In higher dimensions it is expected that the
splitting must be C∞ if it is C2, but this question still seems to be open.

5.5. How many closed geodesics of length ≤ T exist? (Communicated by
Pollicott). Let (M, g) be a closed Riemannian manifold with negative sectional
curvatures. It is known [Margulis2004] that the number N(T ) of closed geodesics
of length ≤ T grows asymptotically as ehT /hT .

Conjecture 5.5.1. N(T ) = (1 +O(e−εT ))

∫ ehT

2

du

log u
.

The conjecture is true for all metrics such that the stable and unstable bundles
Es and Eu are C1 smooth, which is the case for surfaces and for 1/4 pinched
metrics. Question 5.4.1 above asks whether there are other examples.

5.6. Infinitely many simple closed geodesics.

Question 5.6.1 (Miller [Miller2001], Reid). Are there infinitely many simple closed
geodesics in every hyperbolic three-manifold of finite volume?

One can ask the same question for manifolds of variable negative curvature in any
dimension. The answer is positive for surfaces, since in this case a free homotopy
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class contains a simple closed geodesic if and only if it contains a simple closed
curve. The answer is also positive for generic metrics of negative curvature.

Reid [Reid1993] has examples of (arithmetic) hyperbolic manifolds of finite vol-
ume in which every closed geodesic is simple.

6. Nonpositive curvature and non uniform hyperbolicity of the
geodesic flow

Recall that the rank of a vector v in such a manifold is the dimension of the space
of Jacobi fields along the geodesic γv that are covariantly constant. It is easily seen
that rank is upper semi continuous. All vectors have rank ≥ 1, since the velocity
vector field is a covariantly constant Jacobi field. The rank of the manifold is the
minimum rank of a vector. The set of vectors of minimum rank is obviously open
and is known to be dense [Ballmann1982]. The definitions generalize the classical
notion of rank for locally symmetric spaces of non compact type.

6.1. Ergodicity of geodesic flows.

Question 6.1.1. Is the geodesic flow of a metric of non positive curvature on a
closed surface of genus ≥ 2 ergodic with respect to the Liouville measure?

It is known that the flow is ergodic on the set of geodesics passing through points
where the curvature is negative [Pesin1977]. The complement of this set consists of
vectors tangent to zero curvature geodesics, i.e. geodesics along which the Gaussian
curvature is always zero. It is not known whether this set must have measure zero.
There is an analogous question in higher dimensions: is the geodesic flow of a closed
rank one manifold of non positive curvature ergodic? Here it is known that the flow
is ergodic on the set of rank one vectors [Bal-Bri1982, Burns1983], but it is not
known if the complementary set (of higher rank vectors) must have measure zero.

Several papers published in the 1980s (notably [Burns1983], [Bal-Bri1982], and
[Ba-Br-Eb1985]) stated that this problem had been solved. These claims were based
on an incorrect proof that the set of higher rank vectors must have measure zero.

The measure considered above is the Liouville measure. There is a (unique)
measure of maximal entropy for the geodesic flow of a rank one manifold. It was
constructed by Knieper, who proved that it is ergodic [Knieper1998].

6.2. Zero curvature geodesics and flat strips. Consider a closed surface of
genus ≥ 2.

Question 6.2.1. [Burns] Is there a C∞ (or at least Ck, k ≥ 3) metric for which
there exists a non closed geodesic along which the Gaussian curvature is everywhere
zero?

A negative answer to this question would give a positive answer to Question 6.1.1.
If we assume that the curvature is only C0, then a metric with such a geodesic can

be constructed. Each end of the geodesic is asymptotic to a closed geodesic. But
a geodesic along which the curvature is zero cannot spiral into a closed geodesic if
the curvature is C2; see [Ruggiero1998]. Wu [Wu2013] has recently given a negative
answer to the question under the assumption that the subset of the surface where
the curvature is negative has finitely many components; he also shows under this
hypothesis that only finitely many free homotopy classes can contain zero curvature
closed geodesics.
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A flat strip is a totally geodesic isometric immersion of the Riemannian product
of R with an interval. Zero curvature geodesics can be viewed as flat strips with
infinitesimal width. It is known that all flat strips (with positive width) must close
up in the R-direction; in other words they are really immersions of the product
of S1 with an interval. Furthermore for each δ > 0 there are only finitely many
flat strips with width ≥ δ. Proofs can be found in a preprint of Cao and Xavier
[Cao-Xav]. The main idea is that if two flat strips of width δ cross each other at
a very shallow angle, then their intersection contains a long rectangle with width
close to 2δ.

It is possible that there are only finitely many flat strips. This is true when the
set where the curvature is negative has finitely many components [Wu2013], but
the only effort to prove it in general [Rodriguez Hertz2003] was unsuccessful.

Remark. Question 6.2.1 still makes sense even if the curvature of the manifold
is not restricted to be non positive. It might generalize also to higher dimensions.
What can be said about a geodesic along which all sectional curvatures are 0? Or
less stringently the sectional curvatures of planes containing the tangent vector?

6.3. Flats in rank one manifolds with nonpositive curvature. A flat is a
flat strip of infinite width, in other words a totally geodesic isometric immersion
of the Euclidean plane. Eberlein asked whether a compact rank one manifold that
contains a flat must contain a closed flat, i.e. a totally geodesic isometric immersion
of a flat torus. Bangert and Schroeder gave an affirmative answer for real analytic
metrics [Ban-Sch1991]. The problem is open for C∞ metrics.

6.4. Besson-Courtois-Gallot. Does their rigidity theorem from [Be-Co-Ga1995],
Theorem 5.3.2 in this paper, generalize to higher rank symmetric spaces of non
compact type?

Connell and Farb [Con-Far2003a, Con-Far2003b] extended the barycenter method,
which plays a vital role in [Be-Co-Ga1995], and proved that the theorem holds for
a product in which each factor is a symmetric space with negative curvature and
dimension ≥ 3. We also refer the reader to their extensive survey in [Con-Far2003c].

A recent preprint of Merlin [Merlin2014] uses a calibration argument to show
that h4volVol is minimized by the locally symmetric metric on a compact quotient
of the product of two hyperbolic planes.

6.5. Closed geodesics. Consider a closed surface of genus ≥ 2 with a metric of
nonpositive curvature. Let N(T ) be the number of free homotopy classes containing
closed geodesics along which the Gaussian curvature is everywhere zero.

Question 6.5.1 (Knieper). Suppose N(T ) grows subexponentially, i.e.

lim
T→∞

logN(T )

T
= 0.

Is there a quadratic upper bound on N(T ), i.e., does there exist C > 0 such that
N(T ) ≤ C · T 2?

The answer is positive for the torus. One can also study this problem in the
Finsler category.
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7. Manifolds without conjugate points (rigidity conjectures)

There are many rigidity results for manifolds with non positive curvature that
might extend to manifolds with no conjugate points. One still has the basic setting
of a universal cover homeomorphic to Rn in which any two points are joined by a
unique geodesic. However the convexity of the length of Jacobi fields, which is the
basis of many arguments used in non positive curvature, is no longer available.

Two major results of this nature are:

Theorem 7.0.2. A Riemannian metric with no conjugate points on a torus is flat.

Theorem 7.0.3. Let g be a complete Riemannian metric without conjugate points
on the plane R2. Then for every point p

lim inf
r→∞

areaB(p, r)

πr2
≥ 1,

with equality if and only if g is flat.

The two dimensional case of Theorem 7.0.2 was proved by E. Hopf [Hopf1948]
and the general case by Burago and Ivanov [Bur-Iva1994]. The Lorentzian ana-
logue of Theorem 7.0.2 is false; two dimensional counterexamples are constructed
in [Bav-Mou2013].

Theorem 7.0.3 is a recent result of Bangert and Emmerich [Ban-Emm2013],
which greatly improved on earlier results in [Bur-Kni1991] and [Ban-Emm2011].
Both results are easy for manifolds with non positive curvature but require subtle
arguments in the context of no conjugate points. Bangert and Emmerich’s work
was motivated by the following conjecture, which they prove using their theorem:

Conjecture 7.0.4 (Bangert, Burns and Knieper). Consider a complete Riemann-
ian metric without conjugate points on the cylinder R× S1. Assume that the ends
spread sublinearly, i.e.

lim
d(p,p0)→∞

l(p)

dist(p, p0)
= 0,

where l(p) is the length of the shortest geodesic loop with the based at p. Then the
metric is flat.

7.1. Divergence of geodesics. Let α and β be two geodesics in a complete simply
connected Riemannian manifold without conjugate points.

Question 7.1.1. Suppose α(0) = β(0). Does dist(α(t), β(t)) → ∞ as t→ ∞?

The answer is positive in dimension 2 in [Green1954]. The question is open in
higher dimensions; the proof in [Green1956] is incorrect.

A closely related question is:

Question 7.1.2. Suppose dist(α(t), β(t)) → 0 as t→ −∞. Does dist(α(t), β(t)) →
∞ as t→ ∞?

Without positive anwers to these questions there would seem to be little hope
for a satisfactory analogue of the sphere at infinity, which plays a prominent role
in the case of non positive curvature.
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7.2. Parallel postulate questions.
The flat strip theorem is another basic tool in the study of manifolds with non

positive curvature. It states that “parallel geodesics” must bound a flat strip. More
precisely if if α and β are two geodesics in a simply connected manifold with non
positive curvature such that dist(α(t), β(t)) is bounded for all t ∈ R, then the two
geodesics are the edges of a totally geodesic isometric immersion of the Riemannian
product of R with an interval.

The flat strip theorem fails for manifolds with no conjugate points (although
it does extend fairly easily to manifolds without focal points). Counter examples
have been given in [Burns1992] and by Kleiner (unpublished). Kleiner’s example
has a copy of Z×Z in its fundamental group, but does not contain a corresponding
flat torus. He perturbs the Heintze example (Example 4 in [Ba-Br-Eb1985]), which
we described in subsection 4.1. The following basic question appears to be open in
general (although Proposition 4 in [Eschenburg1977] suggests an affirmative answer
under some extra hypotheses).

Question 7.2.1. Must homotopic closed geodesics in a manifold with no conjugate
point have the same length?

One can still hope for a version of the theorem in manifolds with no conjugate
points in which there is a large enough family of “parallel” geodesics. One would
then hope to find a totally geodesic isometric immersion of the Euclidean plane.
Rigidity might hold in the large, even though the examples above show that it
breaks down locally.

The simplest question of this type asks if a Riemannian plane satisfying Euclid’s
5th postulate must be flat. Consider the plane R2 with a complete Riemannian
metric. Assume that for every geodesic and for every point not on the geodesic
there exists precisely one nontrivial geodesic that passes through the point and
does not intersect the geodesic. This assumption implies that the metric has no
conjugate points.

Question 7.2.2 ([Bur-Kni1991]). Must a metric satisfying this version of the par-
allel postulate be flat?

The question looks like a question in the synthetic geometry, but it is not, since
we do not require a priori that the other axioms of the Euclidean geometry are
fulfilled (for example the congruence axioms).

7.2.1. Higher rank rigidity.

Conjecture 7.2.3 (Spatzier). Let (M, g) be a closed symmetric space of noncom-
pact type and of higher rank. Then the only metrics on M with no conjugate points
are homothetic rescalings of g.

7.3. Is M × S with no conjugate points a direct product? Consider the
product of a closed surfaceM2 of genus≥ 2 with the circle S. Let g be a Riemannian
metric on M × S with no conjugate points.

Conjecture 7.3.1 (Burago-Kleiner). The metric on the Z-cover corresponding to
S1 factor is a direct product: (M × R, g) = (M, g1)× (R, dt2).

One can of course make more general conjectures, e.g. about metrics without
conjugate points on products, or on manifolds which admit nonpositively curved
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metrics with higher rank, but the above conjecture with M × S1 seems to be the
easiest one (and is probably still hard to prove).

7.4. Magnetic geodesics without conjugate points. One can generalize the
notion “conjugate points” for magnetic geodesics (even for arbitrary natural Hamil-
tonian systems.)

Question 7.4.1 (Paternain). Consider a magnetic flow on a closed surface of genus
≥ 2 and an energy level such that the topological entropy vanishes. Suppose that the
magnetic geodesics on this level do not have conjugate points. Is the system locally
symmetric in the sense that the metric has constant curvature and the magnetic
form is a constant multiple of the volume form?

Many of the earlier questions in this section can also be asked about magnetic
geodesics lying on a certain (possibly sufficiently high) energy level. Let us men-
tion [Bialy2000], where a natural analog of Theorem 7.0.2 was proved under the
assumption that the metric is conformally flat, and it was conjectured that this
assumption is not essential.

8. Unrestricted curvature

8.1. Ergodic geodesic flows. Does every closed manifold (with dimension ≥ 2)
admit a metric (Riemannian or Finsler) with ergodic geodesic flow?

This is known for surfaces [Donnay1988II], for 3-manifolds [Katok1994], for prod-
uct manifolds in which the factors have dimenson ≤ 3 [Bur-Ger1994], and for
spheres [Bur-Ged]. Donnay and Pugh have shown that any embedded surface can
be perturbed, in the C0 topology to an embedded surface whose geodesic flow is
ergodic [Don-Pugh2004]. These constructions all make essential use of the focusing
caps introduced by Donnay in [Donnay1988I].

The general problem is still wide open despite some reports of its solution (p. 87
of [Berger2000] and Section 10.9 of [Berger2003]).

8.2. Positive curvature.

Question 8.2.1. Is there a Riemannian metric on a closed manifold with every-
where positive sectional curvatures and ergodic geodesic flow?

Metrics close to the standard metric on S2 would be especially interesting.

8.3. The measure of transitive and recurrent sets. Let (M2, g) be a closed
surface with ergodic geodesic flow. Then every tangent vector lies in one of the
following sets:

Tb := {v ∈ SM | any lift of γv stays in a bounded subset of M̃},
Tp := {v ∈ SM | any lift of γv is unbounded, and approaches infinity properly},
Ti := TM \ (Tb ∪ Tp).
All three sets are measurable and invariant under the geodesic flow. By ergodicity

one of them has full measure.

Question 8.3.1 (Schmidt). Which of these sets has full measure?
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It is expected that the answer depends on the genus of the surface: on the torus
the set Ti has full measure, and on the surfaces of higher genus Tp has full measure.

In this context it is natural to consider only minimizing geodesics: if one shows
that the set of minimizing geodesics has nonzero measure, then it has full measure
by ergodicity of the geodesic flow. However, there exist examples of metrics on the
torus such that the set of minimising geodesics has small Hausdorff dimension.

The question seems to make sense in any dimension.

8.4. Generic metrics. Consider a smooth closed manifold M and denote by G
the space of all smooth Riemannian metrics on M . One can equip this space with
a natural Ck-topology: locally, in a coordinate chart it is induced by a Ck-norm of
the metric g viewed as an n × n matrix in this coordinate chart. More precisely,
let us consider a finite number U1, ..., Um of charts that cover the manifold. We
say that two metrics g and g′ are ǫ-close if for any coordinate chart Us and for
all i, j ≤ n the functions gij and g′ij (the (i, j)-components of the metrics in the

coordinate chart Us) are ǫ-closed in the standard Ck-norm, i.e., the difference of
the values of these functions and all their partial derivatives up to the order k is
less then ǫ). The notion of ǫ-closeness induces a notion of a ball in the space of the
metrics and also a topology in the space of the metrics: a ball with center g is the
set of g′ that are ǫ-close to g. As usual, we call a subset of G open if for any point
of the subset a ball around the point is contained in the subset.

It is an easy exercise to show that the topology does not depend on the choice
of the charts U1, ..., Um used to define it.

Question 8.4.1. Do the metrics with positive entropy form a dense subset of G?
This question can be asked for any k. For k = 2 it was recently positively

answered in all dimensions in [Contreras2010]; see also [Con-Pat2002]. For k = ∞
and dimension 2, it was answered positively in [Kni-Wei2002].

Question 8.4.2. Assuming n = dim(M) ≥ 3, do the metrics for which the geodesic
flow is transitive form a dense subset of G?

Recall that a geodesic flow is transitive, if there exists a geodesic γ with |γ̇| = 1
such that the set of its tangent vectors is dense on SM .

If n = dim(M) = 2, the answer is negative: if we take a metric with integrable
geodesic flow such that certain Liouville tori are irrational, any small perturbation
of the metric has nontransitive geodesic flow by the KAM theory.

This question is also closely related to the famous Arnold diffusion conjecture.

Question 8.4.3. Is there a dense subset of metrics in G for which the tangent
vectors to the closed geodesics are dense in SM?

Note that is relatively easy to construct, see e.g. [Weinstein1970], a metric on
any manifold such that a certain open subset of SM contains no vectors tangent
to a closed geodesic.

8.5. Density in the manifold. In the previous section we discussed the unit
tangent bundle SM . In this section we ask similar questions about M itself, and
we will not assume that the metrics are generic.

Question 8.5.1. Is the union of the closed geodesics always dense in the manifold?

Question 8.5.2. Does every metric on a compact surface of positive genus have a
geodesic that is dense in the surface?
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8.6. Gaidukov in higher dimensions. We consider a Riemannian metric on an
oriented closed surface M of genus ≥ 1. Let Γ be a nontrivial free homotopy class
and p a point in M . A theorem of Gaidukov [Gaidukov1966] says that there exist a
closed geodesic γ : R →M in Γ and a ray β : [0,∞) →M with β(0) = p such that
dist(β(t), γ(t)) → 0 as t → ∞. As explained in [Bia-Pol1986], Gajdukov’s results
follow easily from the classical results of [Morse1924] and [Hedlund1932].

Problem 8.6.1 (Schmidt). Generalize this statement to higher dimensions.

Gaidukov’s proof is profoundly two-dimensional and cannot be generalized. But
Mather’s work on minimizing orbits of Lagrangian systems (see eg. [Mather1991]
or [Con-Itu1999]) might offer an approach. Instead of a single closed geodesic one
should consider a minimizing set, namely the support of a minimal measure.

8.7. Systolic and diastolic inequalities for surfaces (communicated by
Guth, Rotman and Sabourau). Let (M, g) be a compact Riemannian surface.
The inequalities in question compare the length of certain short closed geodesics
with the square root of the area of (M, g), Recall that the systole sys(M, g) is the
least length of a non trivial closed geodesic. Two other geometrically meaningful
constants can be defined by the following minimax procedure:

L(M, g) = inf
f

max
t∈R

F [f−1(t)],

in which the infimum is taken over all (Morse) functions f : M → R and the
functional F is either (a) the total length of f−1(t) or (b) the length of its longest
component. In both cases L(M, g) is realized as the length of a certain union of
closed geodesics. In case (a), L(M, g) is one definition of the diastole dias(M, g) of
the Riemannian surface (at least two different notions of diastole have been studied;
see [Bal-Sab2010]).

By a result originally due to [Croke1988] and later improved in [Nab-Rot2002],
[Sabourau2004] and [Rotman2006], for every Riemannian metric g on the sphere
S2 one has

sys(S2, g) ≤
√
32
√

area(S2, g).

Actually, in [Croke1988] it was suggested that the constant
√
32 in the above in-

equality can be replaced by
√
2
√
3. The following example due to [Croke1988] shows

that one can not go below
√

2
√
3: take two congruent equilateral triangles and glue

them along their boundaries. The example is not smooth and suggests the study of
systolic inequalities on the space of smooth metrics with conical singularities. On
the space of such metrics, let us consider the function

σ(g) =
area(S2, g)

sys(S2, g)2
.

This function has many nice properties; for example it is Lipschitz with respect to
the appropriate distance on the space of metrics. By [Croke1988], the function has
a positive minimum, and the natural conjecture is that the minimum is attained
on the sphere constructed from two equilateral triangles as described above. But
other critical points of this functions are also interesting: for example the round
metric of the sphere is a critical point because of the huge set of Zoll metrics having
the same value of σ as the round metric, see [Balacheff2006].
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Question 8.7.1 (Babenko). Does there exist, in the space of metrics with conical
singularities, a (continuous or smooth) family of metrics gt such that g0 is the
round metric of the sphere, g1 is the metric from the example above, and σ(gt) is a
decreasing function of t.

A simpler version of this question is

Question 8.7.2 (Babenko). Does every Riemannian metric on S2 with area 4π
that is close enough to the round metric have a closed geodesic with length ≤ 2π?

For surfaces of higher genus Gromov proved the existence of a constant C such
that

sys(M, g) ≤ C log(genus(M))
√

area(M, g);

the dependence on the genus of M in this inequality is sharp. For the diastole
defined by (a), Balacheff and Sabourau showed in [Bal-Sab2010] that there is a
constant C such that

dias(M, g) ≤ C
√

genus(M))
√
area(M, g);

the dependence of this inequality on the genus is again optimal.

Question 8.7.3 (Guth). Is there a constant C such that the invariant defined by

(b) above is bounded from above by C
√
area(M, g)?

An affirmative answer to Guth’s question would mean that the three quantities
under consideration all depend on the genus in different ways, and are therefore
measuring different features of the surface. A positive answer would also show that
one can always find a pants decomposition of a closed Riemannian surface of genus
g into 3g − 3 disjoint closed geodesics of length at most C

√
area(M). This would

precisely give the optimal Bers’ constant for a genus g surface. Even for hyperbolic
surfaces, this question is still open (see [Buser1992] for partial results).

The question above also makes sense in higher dimensions, but the relation with
closed geodesics is not clear in this context. In this case f−1(t) would be an (n−1)-
complex, where n is the dimension of the manifold, and F would measure its total
volume or the volume of its largest component.

8.8. Questions related to the systole in higher dimensions.

Question 8.8.1 (Question 4.11 of [Gromov2001]). Does a Riemannian metric on
a real projective space with the same volume as the canonical metric have a closed
geodesic with length ≤ π?

In dimension two, an affirmative answer is in [Gromov2001, Proposition 4.10].

Question 8.8.2 (Alvarez Paiva). Can there be Riemannian metrics on S3 or S2×
S1 all of whose closed geodesics are long? More specifically, does every metric on
these spaces have a closed geodesic with length ≤ 1024 if the volume is 1?

8.9. Metrics such that all geodesics are closed. This is a classical topic —
the first examples go back at least to [Zoll1903]; see [Besse1978] for details. The
book [Besse1978] is still up to date, and many problems/questions listed in it (in
particular in Chapter 0 §D) are still open. As the most interesting question from
their list we suggest:
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Question 8.9.1. Let M be a closed manifold not covered by a sphere. Let g be
a metric on M for which all geodesics are closed. Is (M, g) a CROSS (=compact
rank one symmetric) manifold (with the standard metric)?

Of course, variants of this question can be asked about Finsler and Lorentzian
metrics. In the Finsler setting, one may ask for example to describe all Finsler met-
rics on CP (n) such that their geodesics are geodesics of the standard (Fubini-Studi)
metric on CP (n). In the Lorenzian setting, one can ask to construct all manifolds
such that all light-like geodesics are closed, see e.g. [Mou-Suh2013, Suhr2013b].

9. Lorentzian metrics and metrics of arbitrary signature.

9.1. Closed geodesics. Most of the questions we asked about the Riemannian
and Finsler metric can be modified such that they are also interesting in the semi-
Riemannian metrics (i.e. of arbitrary signature) and in particular when the signa-
ture is Lorentzian. It appears though that the answers in the Lorentzian case are
sometimes very different from those in the Riemannian case. Many methods that
were effectively used in the Riemannian case, for example the variational methods,
do not work in the case of general signature.

Let us consider as an example the question analogous to the one we considered
in Section 2: how many geometrically different closed geodesics must there be for
a Lorenzian metric on a closed manifold.

First let us note that there are two possible natural notions of closed geodesic
in the Lorentzian setting: one may define a closed geodesic as an embedding γ :
S1 → M such that ∇γ̇ γ̇ = 0, or as a curve γ : S1 → M that can be locally
reparameterized in such a way that it satisfies the equation ∇γ̇ γ̇ = 0.

In the Riemannian case, these definitions are essentially equivalent, since this
reparameterization can always be made “global”. If the signature is indefinite, it
is easy to construct examples of an embedding γ : S1 → M such that locally γ
can be reparameterized so that it becomes an affinely-parameterized geodesic, but
globally such reparameterisation is impossible: the velocity vector of the geodesic
after returning to the same point is proportional but not equal to the initial velocity
vector. Of course, this is possible only if the velocity vector is light-like.

We will follow most publications and define a closed geodesic as an embedding
γ : S1 →M such that ∇γ̇ γ̇ = 0.

To the best of our knowledge, the existence of a closed geodesic on a Lorentzian
manifold is a quite complicated problem and nothing is known in dimensions ≥ 3.
In dimension 2, a closed orientable manifold with a metric of signature (+,−) is
homeomorphic to the torus. By [Suhr2013a], every Lorentzian 2-dimensional torus
has at least two simple closed geodesics one of which is definite, i.e. timelike or
spacelike. Moreover, explicit examples show the optimality of this claim.

We therefore ask the following

Question 9.1.1. Does every closed Lorentzian manifold have at least one closed
geodesic?

One of course can ask this question about manifolds of arbitrary signature and
also about complete (note that in the Lorentzian setting there are many different
nonequivalent notions of completeness) manifolds of finite volume.

See the introduction to the paper [Fl-Ja-Pi2011] for a list of known results about
the existence of closed time-like geodesics under additional assumptions.
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9.2. Light-like geodesics of semi-Riemannian metrics. Let M be a closed
manifold with semi-riemannian metric g of indefinite signature.

Question 9.2.1. Can there exist a complete semi-Riemannian metric g and a
nontrivial 1-form η on a closed manifold such that for every light-like geodesic γ(t)
the function η(γ̇(t)) grows linearly in both directions: i.e. for every geodesic there
exist C1 6= 0, C2 such that η(γ̇(t)) = C1 · t+ C2?

A negative answer to this question would give an easy proof of the semi-Riemannian
version of the projective Lichnerowicz-Obata conjecture:

Let a connected Lie group G act on a complete manifold (Mn≥2, g) by projective
transformations (diffeomorphisms take geodesics to geodesics without necessarily
preserving the parametrization). Then G acts by isometries, or g has constant
sectional curvature.

If g is Riemannian, the conjecture was proved in [Matveev2005, Matveev2007].
The proof is complicated, and does not generalize to the semi-Riemannian setting in
dimensions ≥ 3 (in dimension 2, under the assumption that the manifold is closed,
the conjecture was proved in [Matveev2012b]). Fortunately, in the semi-Riemannian
case the following argument gives a proof for closed manifolds provided that the
answer to the question above is positive.

It is known (see, for example, [Matveev2007]) that a 1-form ηi generates a one-
parameter group of projective transformations, if and only if

ηi,jk + ηj,ik − 2

(n+ 1)
ηℓ,ℓkgij = λigjk + λjgik

(for a certain 1-form λi). We take a light line geodesic γ(t), multiply the above
equation by γ̇iγ̇j γ̇k (and sum with respect to repeating indexes) at every point γ(t)
of the geodesic. The terms with the metric g disappear since gij γ̇

iγ̇j = 0, so we

obtain the equation d2

dt2
η(γ̇(t)) = 0 implying that η(γ̇(t)) = t ·C1 +C2. A negative

answer to the question above implies that C1 = 0. Hence η(γ̇(t)) is constant, which
in turn implies that ηi,j + ηj,i is proportional to gij . Then the covector field ηi
generates a one-parameter group of conformal transformations. Finally, the proof
of the conjecture follows from a classical observation of H. Weyl [Weyl1921] that
every transformation that is projective and conformal is a homothety.

A version of the question above is whether, for a complete semi-Riemannian
metric on a closed manifold M , the tangent vector of almost every geodesic remains
in a bounded set of TM . A positive answer on this question immediately implies
that the answer to the initial question is negative, thereby proving the projective
Lichnerowicz-Obata conjecture on closed manifolds.

9.3. Completeness of closed manifolds of arbitrary siganature (commu-
nicated by H. Baum). F It is well-known that a closed Riemannian manifold
is geodesically complete, in the sense that every geodesic γ : (a, b) → M can be
extended to a geodesic γ̃ : R → M such that γ̃|[a,b] = γ. It is also well known
that for any indefinite signature there exist metrics on closed manifolds that are
not geodesically complete.

Question 9.3.1. What geometric assumptions imply that a metric (possibly, of a
fixed signature) on a closed manifold is geodesically complete?

We of course are interested in geometric assumptions that are easy to check or
which are fulfilled for many interesting metrics.
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Let us mention a few classical results. For compact homogeneous manifolds, ge-
odesic completeness was established in [Marsden1972]. For compact Lorentz mani-
folds of constant curvature geodesic completeness was proved in [Carrière1989] (flat
case) and [Klingler1996] (general case).

We refer to the paper [Sanchez2013] for a list of interesting results on this topic
and for a list of open questions from which we repeat here only:

Question 9.3.2 ([Sanchez2013]). Assume that a compact Lorentzian manifold is
globally conformal to a manifold of constant curvature. Must it be geodesically
complete?

Note also that in the noncompact case homogeneous manifolds of indefinite signa-
ture are not necessary geodesically complete; see for example [Sanchez2013, Exam-
ple 2 in §4]. It is interesting to understand whether completeness of a homogeneous
manifold can follow from algebraic properties of the isometry group.

10. Integrability and ergodicity of geodesic flows on surfaces of
higher genus

10.1. Metrics with integrable geodesic flow on surfaces of genus ≥ 2.

Question 10.1.1 (Bangert). Does there exist a Riemannian metric on a closed
surface of genus ≥ 2 whose geodesic flow is completely integrable?

The answer may depend on what we understand by “completely integrable”:
whether the integral is functionally independent of the Hamiltonian on an open
everywhere dense subset, or we additionally assume that the subset has full measure.

Mañé showed that a Hamiltonian flow on surfaces is generically Anosov or has
zero Liouville exponents [Mañé1996]. This suggests that an easier version of the
above question would be the following

Question 10.1.2 (Paternain). Is there a Riemannian metric on a closed surface
of genus ≥ 2 whose geodesic flow has zero Liouville entropy?

Bangert and Paternain have outlined a nonconstructive proof that there are
Finsler metrics with this property; finding a Riemannian metric is certainly harder.

A special case of the Finsler version of the question above would be:

Question 10.1.3. Let F1, F2 be Finsler metrics on a closed surface of genus ≥ 2.
Assume every (unparameterized) F1-geodesic is an F2-geodesic. Must F1 be obtained
from F2 by multiplication by a constant and adding a closed form?

One can also ask this question for arbitrary closed manifolds that can carry a hy-
perbolic metric (if F1, F2 are Riemannian, the answer is affirmative [Matveev2003]).

The previous question is related to the other questions in this section because
of the following observation from [Mat-Top1998]: one can use the second metric
to construct an integral of the geodesic flow of the first one. If both metrics are
Riemannian, the integral is quadratic in velocities and the affirmative answer follows
from [Kolokoltsov1983]; see [Mat-Top2000].

Question 10.1.4. Does there exist a nonriemannian Finsler metric satisfying the
Landsberg condition on a surface of genus ≥ 2?
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The Landsberg condition is defined in [Bao2007]. It implies the existence of an
integral for the geodesic flow of the metric, which is the relation of this question
with the present section. See [Gom-Rug2013] for a negative answer to the question
assuming nonexistence of conjugate points.

10.2. Integrable geodesic flows with integrals of higher degree.

Conjecture 10.2.1 ([Bo-Ko-Fo1995]). If the geodesic flow of a Riemannian metric
on the torus T 2 admits an integral that is polynomial of degree 3 in the velocities,
then the metric admits a Killing vector field.

A Killing vector field V allows us to construct an integral

I : TM → R, I(ξ) := g(V, ξ)

that is evidently linear in velocities; its third power is then an integral cubic in
velocities.

The motivation to study metrics admitting integrals polynomial in velocities
comes from the following observation (which dates back at least to Darboux and
Whittaker): if the geodesic flow admits an integral that is analytic in velocities,
then each component of this integral that is homogeneous in velocities is also an
integral. The natural idea is then to study the integrals that are polynomial in
velocities of low degree.

By the result of Kolokoltsov [Kolokoltsov1983], no metric on a surface of genus ≥
2 admits an integral that is polynomial in velocities and is functionally independent
of the energy integral. The state of the art if the surface is the sphere or the torus
can be explained by the following table:

Sphere S2 Torus T 2

Degree 1 All is known All is known
Degree 2 All is known All is known
Degree 3 Series of examples Partial negative results
Degree 4 Series of examples Partial negative results

Degree ≥ 5 Nothing is known Nothing is known

In the table, “Degree” means the smallest degree of a nontrivial integral polyno-
mial in velocities. “All is known” means that there exists an effective description
and classification (which can be found in [Bo-Ma-Fo1998]).

A simpler version of the question is when we replace the geodesic flow in the
question above by a Lagrangian system with the Lagrangian of the form L(x, ξ) :=
K + U =

∑
gijξ

iξj + U(x). In this case we assume that the integral is a sum of
polynomials of degrees 3 and 1 in velocities. The “partial negative results” in the
table above correspond to this case; moreover, in most cases it is assumed that the
metric gij is flat, see for example [Bialy1987, Mironov2010, De-Ko-Tr2012] (and
[Bialy2010] for results that do not require this assumption).

Similar conjectures could be posed for integrals of every degree. If the degree d
is odd, the conjecture is that the existence of an integral that is polynomial of the
degree d in velocities implies the existence of a Killing vector field. If the degree
d is even, the conjecture is that the existence of an integral that is polynomial of
the degree d in velocities implies the existence of an integral quadratic in velocities
and not proportional to the energy integral.
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10.3. Metrics such that one can explicitly find all geodesics. Geodesics of
a metric are solutions of a nonlinear ordinary differential equation ∇γ̇ γ̇ = 0 which
can not be explicitly solved in most cases. There are only a few examples of 2-
dimensional metrics for which one can explicitly find all geodesics using elementary
functions: they are metrics of constant curvature and Darboux-superintegrable
metrics (see [Br-Ma-Ma2008] for definition). An interesting problem is to construct
other examples of metrics such that all geodesics are explicitly known. A related
problem (asked recently in [Tao2010]) is to construct metrics with an explicitly
given distance function.

11. Stationary nets (Communicated by Rotman).

A graph G in a Riemannian surface (S, g) is called a stationary net, if every
edge is a geodesic and if at every vertex the sum of diverging unit vectors is zero.
Vertices must have valence at least 3.

11.1. Stationary Θ-nets. A Θ-graph is a graph that looks like the Greek letter
“Theta”: two vertices connected by three edges, see the picture below.

Question 11.1.1 ([Has-Mor1996]). Does every metric on S2 admit a stationary
Θ-graph?

Partial results in this direction were obtained in [Has-Mor1996]: they showed
that on every sphere of positive curvature there exists a stationary Θ-net, or a
stationary eight curve net, or a stationary eyeglasses net.

11.2. Density of stationary nets and of closed geodesics. We call a stationary
net nontrivial if it has at least one vertex of valency ≥ 3, in other words if it is not
a disjoint union of simple closed geodesics.

Question 11.2.1 (Gromov). Are nontrivial stationary nets dense on any closed
Riemannian surface? In other words, for each non empty open subset U , is there
a stationary net intersecting U?
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The answer is evidently positive for every surface of constant curvature. Indeed,
in this case tangent vectors to closed geodesics are dense in the unit tangent bundle
and we can take the union of closed intersecting geodesics as a stationary net. On
other manifolds, the answer is less trivial, for example because in higher dimensions
periodic geodesics may not intersect.

It is also not known whether the union of the images of the closed geodesics is
always a dense subset of the manifold. Weinstein showed that any manifold carries
a metric (even a bumpy metric) for which the tangent vectors to the closed geodesics
are not dense in the unit tangent bundle [Weinstein1970], but his argument says
nothing about the projection of the union of the closed geodesics to the manifold.
The following question is also still open:

Question 11.2.2. Are the tangent vectors to closed geodesics dense in the tangent
bundle for a generic Riemannian metric on a closed manifold?

It is known that this is the case for metrics with nonuniformly hyperbolic geodesic
flows.

12. How to reconstruct a metric from its geodesics.

A (Riemannian or semi-Riemannian) metric allows one to construct geodesics.
Every nonzero vector at every point is tangent to a unique curve from the family
of geodesics. This section is dedicated to open problems related to the following
questions: given a family of curves with this property, are they the geodesics for a
metric; and, if there is such a metric, is it unique and how can it be reconstructed?
These questions can also be posed for Finsler metrics, but in that context most
natural problems are either solved or seem to be out of reach.

Let us introduce some notation. By a path structure we will understand (follow-
ing [Thomas1925]) a family of curves γα(t) such that for any point x and for any
vector v ∈ TxM , v 6= 0, there exists a unique curve γ from this family such that
the for a certain t we have γ(t) = x and γ̇(t) ∈ span(v). We think that the curves
are smooth and smoothly depend on the parameters α = (α1, ..., α2n−2). We may
insist that the parametrization of the curves stays fixed, or we may be willing to
reparametrize them.

The first step is to find an affine connection for which the curves are the geodesics.
The problem reduces to a system of linear equations (whether one can actually
write down and solve them depends on the form in which the curves are given.) We
outline the main ideas.

First consider the case in which the parametrization of the curves is fixed. If
all the curves γ from this path structure are affinely parameterised geodesics of a

connection ∇ =
(
Γi
jk

)
, then at any point p ∈M the Christoffel symbols satisfy the

system of equations

(12.1) γ̈(t)i + Γi
jkγ̇(t)

j γ̇(t)k = 0

for all curves γ from the path structure such that γ(t) = p. This is a system of

n linear equations in the n2(n+1)
2 unknowns Γ(p)ijk. Consequently n(n+1)

2 curves

γα from the path structure give us a system of n2(n+1)
2 linear equations in n2(n+1)

2

unknowns Γ(p)ijk. It is an easy exercise to see that if the velocity vectors of the
curves at the point p are in general position, then this system is uniquely solvable; by
solving it we obtain the Christoffel symbols at this point. Clearly, these Christoffel
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symbols should satisfy the equation (12.1) for all curves γ from the path structure
(so generic path structures do not come from a connection). It depends on how
the curves γ are given whether it is possibly to check this. For example, if all the
curves are given by explicit formulas that depend algebraically on t and on α, then
this is an algorithmically doable but computationally complicated task.

Note that the above considerations show that reconstruction of a symmetric
affine connection from affinely parameterized geodesics is unique.

Let us now deal with the reconstruction of a connection from unparameterized

curves. Our goal is to find a connection ∇ =
(
Γi
jk

)
for which each curve γα from

our path structure, after an appropriate reparameterization, is a geodesic. In this
case, a similar idea works. The analog of (12.1) is

(12.2) γ̈(t)i + Γi
jkγ̇(t)

j γ̇(t)k = cγ̇i,

where the unknowns are Γ(p)ijk and c (though we are interested only in Γ(p)ijk).

For one curve γ containing p ∈ M we have therefore n equations in n2(n+1)
2 + 1

unknowns Γ(p)ijk and c. For two curves γ1, γ2 we obtain then 2n equations in
n2(n+1)

2 + 2 unknowns Γ(p)ijk, c1, c2 and so on. We see that for k > n2(n+1)
2(n−1) curves

γα from the path structure (passing through the point p) we have more equations
than unknowns; by solving this system (if it is solvable) we obtain a connection.
See [Matveev2012a, §2.1] for more details.

Note that (as was already known to [Levi-Civita1896] and [Weyl1921]) the so-

lution Γi
jk of (12.2), if it exists, is not unique: two connections ∇ =

(
Γi
jk

)
and

∇̄ =
(
Γ̄i
jk

)
have the same unparameterized geodesics, if and only if there exists a

(0, 1)-tensorfield φi such that

(12.3) Γ̄i
jk = Γi

jk + δikφj + δijφk.

Thus, the freedom in reconstructing of a connection is an arbitrary choice of a
1-form φi.

Connections ∇ =
(
Γi
jk

)
and ∇̄ =

(
Γ̄i
jk

)
related by (12.3) are called projectively

equivalent ; projective equivalence of two connections means that they have the
same geodesics considered as unparameterized curves.

Let us now touch on the question of whether/how one can reconstruct a met-
ric (Riemannian or of arbitrary signature) from a path structure. As we explained
above, it is relatively easy to reconstruct an affine connection (resp. a class of projec-
tively equivalent affine connections) from affinely (resp. arbitrary) parameterized
geodesics, so the actual question is how to reconstruct a metric from its affine
connection (resp. a class of projectively equivalent affine connections), when it is
possible, and what is the freedom. Let us first discuss how/whether it is possible to
reconstruct a metric parallel with respect to a given symmetric affine connection.

This question is well-studied; see for example the answers of Bryant and Thurston
in [Bry-Thu2011]. A theoretical answer is as follows: the affine connection deter-
mines the holonomy group. The existence of a metric with a given affine connection
is equivalent to the existence of a nondegenerate bilinear form preserved by the ho-
lonomy group, see e.g. [Schmidt1973]. A practical test for the existence of the
metric is as follows: the connection allows to construct the curvature tensor Ri

jkℓ,
and if the connection is the Levi-Civita connection of a metric, then this metric
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satisfies the following equations:

(12.4) Rs
jkℓgsi = −Rs

ikℓgsj , R
s
jkℓgsi = Rs

ℓijgsk.

These equations are essentially the algebraic symmetries of the Riemann curvature
tensor: the first one corresponds to Rijkm = −Rjikm, and the second corresponds
to Rijkm = Rkmij . One should view these equations as linear equations in the
unknowns gij ; the number of equations is bigger than the number of unknowns so
it is expected that the system has no nonzero or nondegenerate solution (and in
this case there exists no metric compatible with this connection). In many cases
the solution is unique (up to multiplication by a conformal coefficient) and in this
case we already have the conformal class of the metrics. Now, having the conformal
class of the metric we have the conformal class of the volume form and it is easy
to reconstruct the metric using the condition that the volume form is parallel,
which immediately reduces to the condition that a certain 1-form is closed; see also
[Mat-Trau2014].

Note that if the equations (12.4) do not give enough information one could
consider their “derivatives”

(12.5) Rs
jkℓ,mgsi = −Rs

ikℓ,mgsj , R
s
jkℓ,mgsi = Rs

ℓij,mgsk

which gives us again a huge system of equations in the same unknowns gij . If
necessary one then considers higher order derivatives until there is enough infor-
mation. The general theory says that in the analytic category the existence of a
nondegenerate solution of the resulting system of equations implies the existence of
a metric whose Levi-Civita connection is the given one. In the nonanalytic setting,
however, there exist C∞ counterexamples.

Let us now discuss how unique is the reconstruction of a metric from affinely
parameterized geodesics. Locally, the answer is known: for Riemannian metrics,
if was understood already by Cartan and Eisenhart [Eisenhart1923]; for metrics of
arbitrary signature, the answer is in the recent papers [Boubel2012, Boubel2014].
Both results are an explicit local description of all metrics having the same Levi-
Civita connection. In the Riemannian case, a global analog of the result of Cartan
is due to [DeRham1952]. As the only interesting unsolved problem in this topic we
suggest

Question 12.0.3. Suppose a closed manifold (M, g) admits a nonzero (1, 1)-tensor
field that is self-adjoint with respect to g, parallel and nilpotent. Does this manifold
or its double cover admit a nonzero light-like parallel vector field?

Also in the Finsler case parameterised geodesics determine the connection; we
will call two Finsler metrics affinely equivalent if any geodesic of the first metric
(considered as a curved parametrized such that the length of the velocity vector is
a constant) is a geodesic of the second metric.

Problem 12.0.4. Describe all affinely equivalent Finsler metrics.

The “unparameterized” versions of these problems for Riemannian metrics are
the subject of the recent survey [Matveev2012a]. Roughly speaking, the situation
is similar to the one in the “parameterized” case: locally, a general strategy for
reconstructing a metric is understood: the existence of a metric compatible with
a path structure is equivalent to the existence of (nondegenerate) parallel sections
of a certain tensor bundle [Eas-Mat2008]. A connection on this tensor bundle is
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constructed by the projective structure constructed by the path structure. Thus, a
theoretic answer is to see whether the holonomy group of this connection preserves
a certain nondegenerate element of the fiber, and a practical method is to construct
the curvatures of the connection and look for elements of the fiber compatible with
the curvature. As an interesting open problem we suggest:

Problem 12.0.5. Construct a system of scalar invariants of a projective structure
that vanish if and only if there exists (locally, in a neighborhood of almost every
point) a metric compatible with a given projective structure.

In dimension two, the problem was solved in [Br-Du-Eas2009], and the system of
invariants is quite complicated — the simplest invariant has degree 5 in derivatives.
It is possible that in higher dimensions the system of invariants could be easier
in some ways, since in this case the PDE-system corresponding to the existence
of a metric for a projective structure has a higher degree of overdeterminacy. In
particular fewer differentiations are needed to construct the first obstruction to the
existence of a metric class. See the recent paper [Dun-Eas2014].

Let us now discuss the freedom in reconstructing the metric by its geodesics;
an equivalent question is how many different metrics can have the same geodesics
considered as unparameterized curves. Of course, the metrics g and const · g have
the same geodesics; in [Matveev2012a] it was shown that for a generic metric any
projectively equivalent metric is proportional to it with a constant coefficient. There
exist local (the first examples are due already to Lagrange, Beltrami and Dini) and
global examples of nonproportional projectively equivalent metrics. Locally, in the
Riemannian case, a complete description of projectively equivalent metrics is due
to Levi-Civita [Levi-Civita1896] and in arbitrary signature is due to [Bol-Mat2013].
Globally, in the Riemannian case, the situation is also pretty clear, but if the
metrics have arbitrary signature, virtually nothing is known. A general problem is
to understand topology of closed manifolds admitting nonproptional projectively
equivalent metrics of indefinite signature and as the simplest version of this problem
we suggest

Question 12.0.6. Can a 3-dimensional sphere admit two nonproportional projec-
tively equivalent metrics of indefinite signature?
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[Mañé1987] R. Mañé, On a theorem of Klingenberg. Dynamical systems and bifurcation

theory (Rio de Janeiro, 1985), 319–345, Pitman Res. Notes Math. Ser., 160 Long-
man Sci. Tech., Harlow, 1987.



OPEN PROBLEMS AND QUESTIONS ABOUT GEODESICS 35
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