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Workshop Summary

Overview

• Organizers: Rostislav Grigorchuk (Texas A&M University), Constantine Medynets
(United States Naval Academy), and Dmytro Savchuk (University of South Florida)
• Dates: June 3 – June 7, 2024

This workshop, sponsored by AIM and NSF, brought together researchers interested in
group theory, number theory, dynamical systems, and C∗-algebras with interests revolving
around topological full groups, groups acting on rooted trees, orbit equivalence theory, au-
tomata groups, symbolic and tiling dynamics, and arboreal representations of Galois groups
to discuss recent developments in the subject with the focus on ample-like groups, their
actions and algebraic properties.

The main topics for the workshop were:

• The interplay between topological dynamics, group theory, and number theory,
• Self-similarity of groups and their actions,
• Orbit equivalence theory of group Actions,
• Growth of groups and graphs

This event was run as an AIM-style workshop. Participants were invited to suggest
open problems and questions before the workshop began. These included a variety of specific
problems on which there is hope of making some progress in the near future as well as
more ambitious problems which may influence the future activity of the field. Lectures at
the workshop were focused on familiarizing the participants with the background material
leading up to specific problems and the speakers were selected in accordance to the problems
and questions proposed by the workshop participants.

Workshop Speakers

(1) Jamie Juul, Colorado State University, Title of the talk: Arboreal Representations of
Galois Groups.

(2) Volodymyr Nekrashevych, Texas A&M University, Title of the talk: The Groups of
Dynamical Origin.

(3) Natalie Priebe Frank, Vassar College, Title of the talk: Tiling Spaces.
(4) Nicolás Matte-Bon, Université Lyon 1, Title of the talk: Amenability of Topological

Full Groups.
(5) Rachel Skipper, University of Utah, Title of the talk: Maximal Subgroups of Thomp-

son’s Groups.
(6) Collin Bleak, University of St Andrews, Title of the talk: Hyperbolic groups satisfy

the Boone-Higman conjecture.
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(7) Yaroslav Vorobets, Texas A&M University, Title of the talk: Overview of Topological
Full Group.

(8) Alina Vdovina, The City College of New York (CUNY), Title of the talk: On Multi-
dimensional Grigrochuk Groups.

(9) Ophelia Adams, University of Rochester, Title of the talk: Arboreal Representations
of Galois Groups.

(10) Sebastian Barbieri, Universidad de Santiago de Chile, Title of the talk: On Multidi-
mensional Sofic Shifts.

Working Groups
Each day the workshop participants broke into smaller groups to work on a particular

problem. Some groups stayed active for the duration of the workshop, while others shifted
their focus to different problems. In what follows we present a subset of problems the
participants of the workshop worked on.

The Fixed Point Proportion of Dynamically Exceptional Polynomials (Moderator Santiago
Radi).

Let G be a group acting on a infinite rooted tree, and denote Gn the action of G on
the first n levels of the tree. We define the fixed-point proportion of G as

FPP (G) = lim
n→+∞

# {g ∈ Gn : g fixes at least one element on level n}
#Gn

.

Let k be a field, f ∈ k(z) of degree at least 2, and t ∈ k. Define kn = k(f−n(t)),
Gn = Gal(kn/k(t)) and G∞ = lim←−Gn. The group Gn acts on f−n(t) via the natural action
of the Galois group, so G∞ acts on the infinite rooted tree of the n-th preimages, n = 1, 2, . . .
of t via f .

In particular, if k = C(t) with t transcendental over C, G∞ is isomorphic to the closure
of the iterated monodromy group of f , denoted IMG(f) (see [?, Proposition 6.4.2]). Results
in this direction can be found in [JonesIteratedmonodromygroups], whereitisprovedthatfornondynamicallyexceptionalrationalfunctions,FPP(IMG(f))
= 0.

Questions:

(1) What can we say about the fixed-point proportion of groups acting on rooted trees?
(2) Fixing the tree T , can we find a family of groups such that its fixed-point proportion

is nonzero and its Hausdorff dimension converges to 1?
(3) What can we say about the fixed-point proportion of Galois groups?
(4) What can we say about the fixed-point proportion of IMG(f) of complex rational

functions?
(5) What can we say about the fixed-point proportion of IMG(f) of complex polynomials

that are not dynamically exceptional?
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A progress on this problem has been made and a preprint [radi:fpp] authored by San-
tiago Radi, one of the group participants, is available per request and will be posted and
submitted soon.

Analogues of Paths for Calculating Profinite Iterated Monodromy Groups
(Moderator Ophelia Adams)

Let k be a field, f ∈ k(z) of degree at least 2, and t be a transcendental number. Define
k∞ = k (∪n≥0f

−n(t)), L = k∞ ∩ k, G∞ = Gal(k∞/k(t)) and Ggeom
∞ = Gal(k∞/L(t)). This is

the geometric profinite iterated monodromy group associated to the rational function f .

When k = C, then Ggeom
∞ = IMG(f) (topological closure within the profinite group

of all tree automorphisms) and for the iterated monodromy group of a continuous covering
map, there is an explicit way to construct it by choosing (specific) paths between the chosen
base point z0 and points in f−1(z0) (see [?, Proposition 6.4.2]). This allows one to explicitly
describe the generators by wreath recursions within the automorphism group of the tree,
giving more immediate access to its structure. We lack the tools to do so algebraically.
However, Richard Pink showed that, in some cases (quadratic PCF), these groups can be
determined algebraically over arbitrary fields (characteristic not 2) without so directly using
paths and topological methods.

Question: Can we algebraically construct “specific paths” to describeGgeom
∞ by more explicit

wreath recursions? More precisely, given z ∈ f−1(t), can we find explicit endomorphisms of
K∞, perhaps recursively described, sending t to z with nice properties?

Presently, we can only get wreath recursions up to conjugacy by algebraic methods,
and Pink shows that for quadratic PCF polynomials these choices do not matter. We cannot
expect to easily obtain “specific” paths in general, because this would be significant progress
toward calculating the étale fundamental group of punctured P1

K̄
in purely algebraic terms, a

problem which has been open for several decades. This is why we might expect, for example,
a recursive description at best, something highly dependent on the structure of K∞.

(Outer) (Tree) Automorphism Groups of (Profinite) Iterated Monodromy
Groups (Ophelia Adams)

The arithmetic iterated monodromy group contains, as a normal subgroup, the geo-
metric iterated monodromy group, and so it induces automorphisms (by conjugation) of the
geometric iterated monodromy group. This naturally suggests a series of related questions,
where Ggeom denotes the (profinite) geometric iterated monodromy group.

Questions:

• What is the automorphism group of Ggeom?
• Which automorphisms of Ggeom are induced by tree automorphisms?
• What is the outer automorphism group of Ggeom?
• Which outer automorphisms of Ggeom are induced by tree automorphisms?

Broadly speaking, it is the outer automorphism group which is most interesting to
those in arithmetic dynamics.

Richard Pink calculated the tree automorphism and outer automorphism groups asso-
ciated to post-critically finite quadratic polynomials and applied this analysis to determine
or constrain the associated constant field extensions, arithmetically interesting objects. For
example, in the strictly pre-periodic non-Chebyshev cases, the outer automorphism group
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turns out to be 2-torsion, hence the absolute Galois group’s image in it has order at most 4.
Pink’s main results are somewhat stronger than this, but a version of this fact for rational
maps or higher degree polynomials would be quite interesting; simply distinguishing finite
from infinite image in the outer automorphism group, especially with good control over the
size in the finite case, would have interesting applications in dynamics.

It is worth pointing out that Pink’s calculations rest on a semirigidity result for profi-
nite IMGs: he shows that a subgroup of the automorphism group of the binary tree with
generators satisfying certain wreath recursions up to conjugacy is conjugate, within the au-
tomorphism group, to a particular “model group”. This allows to avoid topological methods
over C. He then calculates the automorphism and outer automorphism groups from the
more explicitly defined model group.

This working group focused mostly on the contributions to the outer automorphism
group from the Galois action; the presence of a totally ramified fixed point (∞) strongly
constrains the nature of these outer automorphisms (both group theoretically and number
theoretically) and allowed us to reduce our main questions to a single family of conjugacy
problems around the associated odometer.

Ophelia Adams and Trevor Hyde had independently began work on these questions
prior to the workshop, and have merged their work into a collaborative project through
AIM. At the workshop, the group made very good progress on these questions for unicritical
PCF polynomials and intend to continue and finish this work in the near future.

Orbit Equivalence Theory for Groups Acting on the Boundary of Rooted
Trees (Moderator Maria Cortez)

Orbit equivalence theory tries to understand the topological structure of group orbits up
to orbit equivalence. Let G,H two groups acting on Cantor setsX and Y . We say that G and
H are orbit equivalent if there is a homeomorphism fromX to Y that sends orbits ofG onto
orbits of H. The classification of minimal actions of the group of integers up to orbit equiva-
lence has been obtained in the seminal works by Giordano, Putnam, and Skau [giordanops :
fullgroupsofcantorminimalsystems99].TheyalsomadesomeinroadsintotheclassificationofminimalZn-
actions [MR2563761] where it was shown that every minimal Zn is orbit equivalent to a
Z-action. In particular, (X,Z2) and (Y,Z) are orbit equivalent. However, finding an orbit
equivalence map between both systems presents a significant challenge.

The focus of this group was to try to extend the orbit equivalence results to other classes
of groups, in particular, in the spirit of this workshop, to the class of iterated monodromy
groups.

Question 0.1. Find an explicit orbit equivalence map between to orbit equivalent odometers.

Question 0.2. Suppose that Γ is a group acting on the boundary of a rooted tree, e.g. the
iterated monodromy group of a continuous map. Is there a Z-action with the same orbits?
Find an explicit homeomorphism implementing the orbit equivalence.

The structure of Topological Full Groups (Moderators Constantine Medynets
and Volodymyr Nekrashevych)

There were several work groups interested in the study of topological full groups of
minimal symbolic systems.
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Algebraic Characterization of the Topological Entropy. Let A be a finite al-
phabet, A∗ the set of finite words in A and F ⊆ A∗ a set of forbidden patterns that contains
the set {aa : a ∈ A}. Let

SF =
{
x ∈ AZ : x contains no subword in F

}
.

Define φa ∈ Homeo(SF) as follows:

φa :

 shift x to the left, if x(1) = a,
shift x to the right, if x(0) = a
x, otherwise

and GF = ⟨φa : a ∈ A⟩.

Recall that the topological entropy is defined as

HF := lim
n→+∞

log (# of words of length n that appear in some x ∈ SF )

n
.

and F (GF) is the full topological group. A group G is called residually finite if⋂
H≤G:[G:H]<∞

H = 1

Question 0.3 (Medynets). (1) Describe relations in GF .
(2) Can HF be algebraically interpreted as an invariant inside GF?
(3) If HF = 0, does either GF of F (GF) not contain free subgroups?
(4) When is GF residually finite?
(5) When does GF contains a finitely generated subgroup of intermediate growth?

The discussions held by the group that worked on this topic concentrated their efforts on
the second question. Namely, on whether the topological entropy can be recovered abstractly
from an algebraic description of a topological full group.

It is worth mentioning that for Cantor minimal systems, it is well-known that the topo-
logical full group is a full invariant of flip conjugacy [giordanops : fullgroupsofcantorminimalsystems99]andthatflipconjugacypreservesthetopologicalentropyoftheunderlyingsystem(X,T).

An old result of Fremlin, which is also known as the Rubin reconstruction theorem,
states that any isomorphism between groups of automorphisms of complete Boolean alge-
bras is always generated by an isomorphism of the underlying algebras. In [Medynets2011]
it is shown that for general Cantor systems (not necessarily minimal!) satisfying a very
mild technical hypothesis, any isomorphism between topological full groups is induced by
a homeomorphism of the Cantor sets, which, in its turn, implements an orbit equivalence.
A key part of this is finding algebraic criteria to abstractly recover the boolean algebra of
clopen sets from local subgroups, which were already given a complete algebraic characteri-
zation in the original proof of Dye’s result. Finally, it can be shown that one (and hence also
the other) of the cocycles associated to the produced homeomorphism is continuous, and it
follows then from a theorem of Boyle that the underlying systems are flip conjugate.

Putting all of the aforementioned ingredients together, an abstract model for the en-
tropy may be recovered from the topological full group itself (at least in the case where it
comes from a Cantor minimal system).
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Defining relations for subgroups of full group of a shift. Let A be a finite
alphabet and Ω be a 2-sided subshift, i.e., a closed subset of AZ that is invariant under the
shift map σ. An element g ∈ Homeo(Ω) belong to the full group of the shift (F (Ω)) if each
point in Ω has an open neighborhood U such that g|U = (σn)|U for some n ∈ Z depending
on U is equal to resembles a power of the shift map.

Question 0.4 (Nekrashevych). Is it true that for all finitely generated subgroup H ≤ F (Ω),
H is either elementary amenable or for any K finitely presented subgroup such that K ↠ H,
K contains a free subgroup?

Two inspiring results come from [MR3061134], [MR3395261] and [nekrashevych:self-
similargroupsandtopologicaldimension] :

(1) There exists G such that the Grigorchuk group of intermediate growth embeds as a
subgroup of G but the Grigorchuk group does not have a group K in the conditions
of the question.

(2) The same as the previous item holds if we replace the Grigorchuk group but the
iterated monodromy group of a expanding covering map f : J → J with dim(J) = 1.

On the Commutator Width of Transformation Groups (Moderator Ashley
Johnson)

Thompson’s group F is the group of orientation-preserving piecewise linear automor-
phisms of the unit interval [0, 1] for which all slopes are powers of 2 and breakpoints lie in
the dyadic rationals. Thompson’s group T acts in a similar way but on S1, and Thompson’s
group V on the Cantor set. For a full introduction to F , T and V , see the Cannon, Floyd,
and Parry notes [MR1426438].

Let G be one of Thompson’s groups F, T or V , or a topological full group, and let g ∈ G
be an arbitrary element. Let ρ1(g) be the commutator width of g and ρ2(g) the minimum
number of involutions in a factorization of g.

(1) Prove that ρ1 and ρ2 are bounded.
(2) Prove that ρ1 = 1 and ρ2 = 3.
(3) Is there a finitely presented simple group with commutator width greater or equal to

2?

A result of Dennis and Vaserstein [MR1010982] applied to F gives that the commutator
width of F ′, the commutator subgroup of F , is at most 2. It is conjectured by Collin Bleak
that the commutator width of F ′ and V are both 1, and that the commutator width of T
is 2. We believe there are few examples (perhaps only one?) of infinite simple groups with
commutator width greater than 1, and none as naturally occurring as T . In particular, a
candidate for an element in T that is not a commutator was proposed to be ρ1/2, the half
rotation of S1.

Entropy of Subshifts of Finite Type (Moderator Sebastián Barbieri)
Let G be a finitely generated infinite amenable group, A be a finite alphabet and define

F = {f : B → A | B ⊆ G finite}

a finite set of forbidden patterns and

SG,F =
{
x ∈ AG : x contains no forbidden subpatterns

}
.
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G acts on SG,F on both sides as the regular representation, namely, permuting the
coordinates of the sequences by right or left translation. Choose {Fn}n∈N a Følner sequence
for G and define

HG,F = lim
n→+∞

1

n
log (# {f : Fn → A : f appears in some x ∈ SG,F ,A}) .

It is a fact that HG,F does not depend on the selected Følner sequence. Define also

EG = {HG,F : F is a finite set of forbidden subwords} .

It is known (see [LindMarcus1995]and[MR2680402])thatEZ = {q log(λ) : q ∈ Q+, and λ is a Perron eigenvalue}andEZ2 =
{r ∈ R+ : r is a right-recursively enumerable number} ,whereaPerroneigenvalueistheeigenvaluegivenbythePerron−
Frobeniustheoremofasquarematrixwithnon−negativeentriessuchthatforsomepowerofthematrix, theentriesareallpositive, andarightrecursivelyenumerablenumberistheinfimumoftheimageofacomputablefunctionf : N→
Q.

Question 0.5 (Barbieri). (1) Given a recursively presented and finitely generated infi-
nite amenable group G, what is EG?

(2) Does there exist a recursively presented and finitely generated infinite amenable group
G such that EZ ⊊ EG ⊊ EZ2?

Results known: if G is a finitely generated branch group with decidable word problem,
then EG = EZ2 . See [MR4303334].

Growth Functions of Repetitive Graphs (Moderator Nicolas Matte-Bon)
A graph Γ is called repetitive if for all r > 0 there exists d > 0 such that for all

x, y ∈ Γ, there exists an isomorphic copy of Br(x) (the ball of radius r centered at x) at
distance less or equal to d from y.

Consider two kind of growths functions for Γ: pick x0 ∈ Γ and define fx0(n) = #Bn(x0)
and f(x) = max {fx(n) : x ∈ Γ}

Question 0.6 (Matte-Bon). What functions can be realized as growth functions of repetitive
graphs?

Simplicity of Nekrashevych algebras of contracting self-similar groups (Mod-
erator Benjamin Steinberg)

Nekrashevych associated a C∗-algebra to each self-similar group action [NekCrelle09],
which is in fact the groupoid C∗-algebra of an ample groupoid. He also studied [Nek-
Growth16] the complex ∗-algebra of this groupoid. Groupoids associated to faithful self-
similar group actions are minimal and effective, but rarely Hausdorff. Therefore, they
form a nice family of test examples in trying to understand when algebras associated to
non-Hausdorff groupoids are simple. An important open question is whether the reduced
C∗-algebra of an ample groupoid is simple if and only if the complex ∗-algebra is simple.
It is known that simplicity of the compelx ∗-algebra is necessary for simplicity of the C∗-
algebra [CESS19].

In [SS23], Steinberg and Szakács provided an algorithm to decide, given the nucleus as
input, simplicity of the complex ∗-algebra associated to a contracting self-similar group. It
was shown in [CESS19] that the C∗-algebra associated to the Grigorhcuk group is simple.



8

Gardella, Nekrashevych, Steinberg and Vdovina proved during the meeting that the
C∗-algebra associated to a contracting group is indeed simple if and only if the complex
∗-algebra is simple. It is well known that the obstruction to simplicity of the C∗-algebra
and the ∗-algebra depends on triviality of the essential ideal [CESS19,NekGrowth16]. The
key idea is to show that if the C∗-algebraic ideal is non-empty, then there is a sequence of
elements of this ideal, bounded away from 0, that accumulates in the span of the nucleus,
which is a finite dimensional subspace contained in the compelex ∗-algebra. This leads to
the existence of a nonzero element in the algebraic essential ideal.

Articles That Benefited from the Workshop

• Sasntiago Radi, A Family of Level-Transitive Groups with Positive Fixed-Point Pro-
portion and Hausdorff Dimension, 2024.
• Artem Dudko, Constantine Medynets, On Characters of Topological Full Groups of
Minimal Z-systems, 2024, in preparation.
• Delaram Kahrobaei, Arsalan AkramMalik, Dmytro Savchuk, Contracting Self-similar
Groups in Group-Based Cryptography,
https://arxiv.org/abs/2408.14355, 2024.


