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Workshop Summary

Project group summaries
During the workshop, participants heard talks and discussed a wide range of topics

related to additive combinatorics, discrete geometry, and extremal graph/hypergraph the-
ory, with focus on high dimensional phenomenon. Here are some summaries from group
discussions during the week.

Roth with constrained differences
(contact: speluse@umich.edu).

Let p be an odd prime and D a proper subset of Fp containing 0. We studied the
problem of obtaining bounds on the size of subsets of Fn

p lacking nontrivial 3-term arithmetic
progressions

x, x+ y, x+ 2y; y ̸= 0

with common difference y ∈ Dn. One particular case of this problem was considered by
Bhangale, Khot, and Minzer, who proved that when D = {0, 1, 2}, then any subset A ⊂ Fn

p

free of nontrivial 3-term arithmetic progressions with common difference in Dn satisfies the

bound |A| = O
(

pn

log log logn

)
. We worked out an argument that improves this bound in the

case p = 5 to |A| = O
(

pn

log logn

)
, though our strategy seems unlikely to generalize to larger

p.

Incidences between points and circles
(contact: cosmin.pohoata@emory.edu).

This project concerned the problem of establishing a nontrivial incidence theorem for
points and unit circles in F2

p.

In a remarkable paper from the early 2000s, Bourgain–Katz–Tao showed that

for any ϵ > 0 and every set of n points P and n lines L in F2
p with n ≤ p

2−ϵ, there must exist δ = δ(ϵ) > 0 such that the number of incidences I(P,L) determined by P and L satisfies I(P,L) ≤ n3/2−δ. This result established a qualitative analogue of the Szemerédi–Trotter theorem over finite fields of prime order. Our goal was to establish an analogous result in the case where L is a set of n unit circles. We didn’t quite manage to prove this during the AIM workshop, but we did show several results in this direction when n is large in terms of p by two different approaches. The first approach was to reduce the problem to the following question: given 3 circles a, b, c in F2
p and n point sets A,B,C on each respectively, what is the maximum number of triples of points (x, y, z) in A×B × C such that the circle passing through x, y, and z is a unit circle? To address this question, we then appealed to an analogue of the Elekes–Szabo theorem over finite fields due to Hrushovski. A second approach was to adapt a theorem of Vinh about incidences for points and lines in F2

p: given any set of points and lines P and L in F2
p, we have that |I(P,L)− |P ||L|/p| ≤

√
p|P ||L|. This implies the above when |P ||L| ≥ p3 for example. This estimate was originally proved using the pseudorandomness of the full point-line incidence graph in F2

p and the expander mixing lemma. However, it is possible to show this more directly using Cauchy–Schwarz. This second method extends without much effort to point-unit circle incidences as well. All in all, these two different approaches lead us to quantitatively different results — and we are hoping to pursue these further in the months to come. Turán for linear hypergraphs(contact: nmani@mit.edu).We studied the extremal number of linear 3-uniform tripartite hypergraphs whose underlying graph skeleton is Kd,d,d, i.e. Latin square hypergraphs. It is currently known that for such hypergraphs n3−Θ(1/d) ≤ ex3(n,H) = O(n3−1/d2) For H = K
(3)
d,d,d, it is known that ex3(n,H) = n3−Θ(1/d2). Our primary goal was to improve the upper bound by improving the error term of −1/d2 by some explicit factor when H is a linear hypergraph. This question led us to study a closely related problem in graphs, maximizing the number of triangles in graphs without a Kd,d,d; in this setting, the triangle removal lemma gives some improvement over the bound coming from hypergraphs to o(n3−1/d2). We sought to improve either of these upper bounds including via a density increment-based argument and several dependent random choice-based approaches. None of these strategies appeared to immediately improve the existing upper bounds, and we are continuing to explore. Expansion of non-Sidorenko graphs(contact: sam.a.spiro@gmail.com).Given a graph F , we define its expansion F+ to be the 3-graph obtained by inserting a new vertex inside each edge. The central question we had for this project was: does there exist a non-bipartite graph F whose expansion F+ is Sidorenko (i.e. the number of homomorphic copies of F+ in any 3-graph is at least as much as we would expect in a random 3-graph of the same density)? The main focus during the workshop was in trying to reduce various cases of this problem into other problems. For example, by constructing an auxiliary 3-graph from a set of integers A ⊆ [n], we were able to show that in order to prove that graphs F which contain 5-cycles have non-Sidorenko expansions, one must in particular prove that there do not exist sets A of size n1−o(1) which have few solutions to a certain genus 2 equation. Entropic proof systems(contact: yufeiz@mit.edu).Sidorenko’s conjecture says that for every bipartite graph F , one has the graph homomorphism density inequality t(F,G) ≥ t(K2, G)e(F ) for every graph G. This beautiful conjecture has been proved for various families of graphs F , but it remains open in general. Many recent papers on Sidorenko’s conjecture use the entropy approach. The goal of this problem is to better understand the scope of the entropy approach, so that we can say something rigorously along the lines of “entropy can/cannot prove Sidorenko’s conjecture for F .” There are three steps to the program. We think that we have satisfactory understanding of the first two steps, but the third step is completely open. (1) Recast all existing proofs of Sidorenko’s conjecture in the language of entropy. Many of the recent work on Sidorenko’s conjecture are already in the language of entropy, starting with the work of Szegedy and Li (they phrased it as “logarithmic calculus”). Notable exceptions, i.e., non-entropy proofs, are recent works by Conlon and Lee on (1) norming graphs and reflection groups and (2) blow-ups. In our discussions, we understood how to recast the latter proofs also in the language of entropy, roughly speaking by reverse engineering the proofs to produce the relevant ensemble of probability distributions on random graph homomorphisms. (2) Define a sufficiently versatile proof system that captures all the entropy proofs of Sidorenko’s conjecture. Here is one such proposal of a proof system. Given some random variable XF that records a certain random homomorphism from F to G (XF is recursively constructured using a menu of allowed operations like uniform extension and glueing), one assigns to it a formal variable h(XF ) that is supposed to be some “abstract entropy.” We require that these abstract entropy quantities satisfy various linear equations and inequalities consistent with how entropy behaves (e.g., entropy for conditional independent variables, and subadditivity of entropy). We can also encode the final inequality t(F,G) ≥ t(K2, G)e(F ) as a linear inequality in terms of these abstract entropy quantities. The problem is then to determine whether the desired Sidorenko inequality follows as a linear combination of entropy relations. (3) Decide whether Sidorenko’s conjecture for F can be deduced inside this proof system. This part is completely open and we are not quite sure how to approach it. The “proof system” sketched in step (2) is linear, although with infinitely many variables (the “abstract entropy” quantities h(XF )). One of the following two possibilities must hold for each bipartite graph F : either (A) one can write the desired conclusion as a linear combination of entropy relations, in which case we have proved Sidorenko’s conjecture for F , or (B) no such linear combination if possible, and then by the Hahn–Banach theorem, one should be able to assign numbers to these “abstract entropy” variable so that all the entropy relations still hold, but the final Sidorenko conclusion fails. Suppose we wish to deduce conclusion (B) for some bipartite graph F . It seems that we need to conjure up “pseudo-entropy” quantities for random variables XF that behave like entropy but do not arise from entropy of random graph homomorphisms. We do not know how to do this. Lower bound for PFR(contact: zachtalkmath@gmail.com).Some preliminary coding suggested that in Fn

2 , the optimal constructions all arise from “tensoring” the optimal construction over F2. Such constructions have a “continuous downset” structure. Inspired by ideas of Green and Tao’s 2009 paper on PFR for discrete downsets in Fn
2 , we have been able to sketch a loose proof that tensoring the F2 construction is optimal over continuous downsets (thanks to the nature of entropy, there are various cancellations which make this problem much cleaner to understand sharply, as opposed to the discrete problem). It remains to understand the behavior for characteristic p > 2. Already for p = 5, some new complexity arises since the extremal example appears to be a “continuous double-sided downset”, where the weights in the 1-dimensional construction taper off in two ways rather than one. This may require introducing a ‘double-sided’ variant of tools like compression. It may also be interesting to understand “intermediate doublings”, since the n-fold tensorization X of the F2 construction X0 has d[X;X] = nd[X0;X0]. Is there a nice way to determine the best choice of Y with d[Y ;Y ] = 3

2
d[X0;X0] (say)? Partition rank vs analytic rank(contact: zakharov2k@gmail.com).We started working on extending the argument for 3-tensors to 4-tensors. A natural generalization of the argument seems to give the following weaker claim: if T is a 4-tensor with analytic rank at most t, then we can write T = T ′ + T ′′ where T ′ has partition rank at most O(t) and T ′′ is of ’lower order‘: T ′′ can be written as a sum of at most Ot(1) tensors with partition 1− 1− 2 (or any permutation of this pattern). This seems to be new though might be implicitly known in the literature. The outline we have seems to produce Ot(1) exponential in t but maybe with more work we can get it to O(t2) which would be optimal in some sense. Maybe eventually this will allow us to remove the low order part altogether (thus, resolving the conjecture for 4-tensors). Inverse theorems for equilateral triangles on spheres (contact: zakharov2k@gmail.com).The problem was to understand the triangle counting operator T on the n-dimensional sphere. As a first approximation, we considered the analogous operator in the 1 dimensional Gaussian space and computed the coefficients of T in the hermitian basis. As it turns out, T is not quite controlled by the low degree part and so the naive inverse theorem is false. It might be possible that if we testor T to the n-dimensional Gaussian space then one can still get some junta-type control by a small collection of vectors. We need to do more work to see if that’s the case or not. So I think that the approach is not completely hopeless but it might just not work out in the end.
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