HIGH-DIMENSIONAL PHENOMENA IN DISCRETE ANALYSIS

organized by David Conlon, Sarah Peluse, and Yufei Zhao

Workshop Summary

Project group summaries

During the workshop, participants heard talks and discussed a wide range of topics related to additive combinatorics, discrete geometry, and extremal graph/hypergraph theory, with focus on high dimensional phenomenon. Here are some summaries from group discussions during the week.

Roth with constrained differences (contact: speluse@umich.edu).

Let p be an odd prime and D a proper subset of \mathbf{F}_p containing 0. We studied the problem of obtaining bounds on the size of subsets of \mathbf{F}_p^n lacking nontrivial 3-term arithmetic progressions

$$x, x + y, x + 2y; y \neq 0$$

with common difference $y \in D^n$. One particular case of this problem was considered by Bhangale, Khot, and Minzer, who proved that when $D = \{0, 1, 2\}$, then any subset $A \subset \mathbf{F}_p^n$ free of nontrivial 3-term arithmetic progressions with common difference in D^n satisfies the bound $|A| = O\left(\frac{p^n}{\log\log\log n}\right)$. We worked out an argument that improves this bound in the case p = 5 to $|A| = O\left(\frac{p^n}{\log\log n}\right)$, though our strategy seems unlikely to generalize to larger p.

Incidences between points and circles (contact: cosmin.pohoata@emory.edu).

This project concerned the problem of establishing a nontrivial incidence theorem for points and unit circles in \mathbb{F}_p^2 .

In a remarkable paper from the early 2000s, Bourgain–Katz–Tao showed that

for any $\epsilon > 0$ and every set of n points P and n lines L in \mathbb{F}_p^2 with $n \leq p^{2-\epsilon}$, there must exist $\delta = \delta$