Complex Monge-Ampère Equation Workshop: Open problems

Editor: M. Dellatorre

September 8, 2016

- 1. Monge-Ampère masses supported by analytic sets
 - (a) Compact Kähler case (e.g., $\mathbb{C}P^n \setminus H$) [S. Dinew]
 - (A good) definition? Possible criteria:
 1. If u_n ↓ and v_n ↓, u_n, v_n ∈ L[∞] ∩ PSH and lim u_n = lim v_n, then lim MA(u_n) = lim MA(v_n).
 2. Take u and u_n = max(u, -n). Try MA(u) = MA(u_n) (if it exists).
 - Solvability of $MA(u) = \mu$, where μ = measure supported on an analytic set (not a point), Green's function, possibly with prescribed singularities.
 - (b) Similar questions for the Dirichlet problem on $\Omega \subset \mathbb{C}^n$.
 - (c) Suppose \exists KE metric on X, with $c_1(X) > 0$: Consider e.g. the continuity method $\psi_t := \phi_t \sup \phi_t$. Show that a subsequence $\psi_t \rightarrow \psi$ whose $MA(\psi)$ is defined and $MA(\psi) = \mu$, μ supported in the multiplier ideal sheaf. (e.g., $X = \mathbb{C}P^2$ with one point blown-up.)
 - (d) Real analogues (from the Toric case, for example).
 - (e) X Fano, D smooth anti-canonical divisor. Let ω_{ϵ} satisfy

 $\operatorname{Ric}(\omega_t) = \epsilon \omega_t + (1 - \epsilon)[D].$

What is the limit of (subsequence) ω_{ϵ} ? In particular, is its Ricci (in a suitable sense) supported on D? [H. Guenancia]

- 2. Are there non-product solutions of $(dd^c u)^n = 0$ on M compact (e.g., $\mathbb{C}P^2$), where u is smooth and not necessarily PSH? [Y. Rubinstein]
- 3. Are there solutions of $(dd^c u)^n = 0$ on \mathbb{C}^n , where u is PSH? [W. He]
- 4. Let Ω be a strongly pseudo-convex domain, $\partial \Omega \in C^{3,1}$. Consider the problem $(dd^c u)^n = f, f \geq 0, f^{\frac{1}{n}} \in C^{1,1}$ and $u|_{\partial\Omega} = \phi, \phi \in C^{3,1}(\partial\Omega)$. Find an analytic (independent from Krylov's) proof of $u \in C^{1,1}(\overline{\Omega})$.

- 5. Same question as above but with $f^{\frac{1}{n-1}} \in C^{1,1}$ (in this case, not covered by Krylov.) (Special case known: $\Omega = B^n$, $\phi = 0$: yes by Pliś.)
- 6. Can one construct a counterexample to the maximal rank question from the example of Ross-Witt-Nystrom of solutions of the HCMA without foliation? [M. Paun]
- 7. Solving $(\pi^*\omega + i\partial\overline{\partial}u)^{n+1} = 0$ on $X \times A$, where A is an annulus, and ω is possibly degenerate. $u|_{X \times \{t=1,e\}} = \phi_0, \phi_1, \phi_0$ and $\phi_1 \omega$ -psh (with some regularity) and $\int_X \omega^n > 0$. [E. Di Nezza]
- 8. Find a PDE proof of Kolodziej's L^∞ estimate; find optimal constant for a ball. [Z. Błocki]
- 9. Find X KE Fano and $u \in \Lambda_1$ such that $\int_X u^3 \omega_{KE}^n \neq 0$. [H. Macbeth]
- 10. $(dd^c u)^n = 1$ on Ω , $\Delta u \in L^{n(n-1)} \implies u \in C^{\infty}$? [T. Collins]
- 11. Complex version of Pogorelov's estimate.
- 12. Let $p: X \to \mathbb{D}$, X Kähler and K_X nef. Study solutions of $\operatorname{Ric}(\omega_{\epsilon}^t) = -\omega_{\epsilon}^t \epsilon \beta_t$ on X_t . [M. Paun]
- 13. Find an analytic proof of the ACC Conjecture/Theorem. [T. Collins]