Carleson theorems and multilinear operators: Open problems

Shaoming Guo

Question 1 (Thiele). Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function. Define the maximal operator along the planar vector field $(1, u)$ by

$$
\begin{equation*}
M_{u} f(x, y):=\sup _{\epsilon>0}\left|\frac{1}{2 \epsilon} \int_{-\epsilon}^{\epsilon} f(x-t, y-u(x) t) d t\right| . \tag{0.1}
\end{equation*}
$$

Does M_{u} satisfy any L^{p} bound for certain $p<\infty$?

Question 2 (Christ). On \mathbb{R}^{d}, let $E \subset \mathbb{R}^{d}$ with $|E|=1$. Given $q>2$, describe the set E that maximises the quantity $\left\|\widehat{\mathbb{1}_{E}}\right\|_{q}$.

Certain partial progress has been made.
Theorem 0.1 (Christ [3]). 1. For any $q>2$, the extremizing set exists.
2. For any dimension d, for any sufficiently large q which is also sufficiently close to $2 \mathbb{N}$, a set E is a extremizer iff E is an ellipsoid.
3. If $d=1$, then for any q close to $2 \mathbb{N}$, a set E is a extremizer iff E is an ellipsoid.
4. If $d=2$, then for any q close to 4 , a set E is a extremizer iff E is an ellipsoid.

Question 3 (Christ). Let B be the unit ball in \mathbb{R}^{3}. Let N be a positive integer. Let $\left\{V_{j}: 1 \leq j \leq N\right\}$ be N different light cones in \mathbb{R}^{3}. Prove that

$$
\begin{equation*}
\left|\int_{B} e^{i \lambda x_{3}^{2}} \prod_{j=1}^{N} f_{j}\left(x \cdot v_{j}\right) d x\right| \lesssim \lambda^{-\epsilon} \prod_{j=1}^{N}\left\|f_{j}\right\|_{\infty} \tag{0.2}
\end{equation*}
$$

for certain positive ϵ, where $v_{j} \in V_{j}$. If possible, find the optimal ϵ.

So far (0.2) has only been proved for $N \leq 5$, see [4].

Question 4 (Bennett). Suppose we are in \mathbb{R}^{4}. Let $\epsilon>0$. Suppose that \mathbb{T}_{1}, \mathbb{T}_{2} and \mathbb{T}_{3} are three transversal families of δ-tubes (short sides δ and long side 1) such that for each $j \in\{1,2,3\},\left\{e\left(T_{j}\right): T_{j} \in \mathbb{T}_{j}\right\}$ forms a δ-separated subset of \mathbb{S}^{3}. If $q \geq \frac{4}{3}$ and $\frac{1}{p}+\frac{3}{q} \leq 3$, then there exists a constant $C_{\epsilon}>0$ such that

$$
\begin{equation*}
\left\|\prod_{j=1}^{3}\left(\sum_{T_{j} \in \mathbb{T}_{j}} \chi_{T_{j}}\right)\right\|_{L^{q / 3}\left(\mathbb{R}^{4}\right)} \leq C_{\epsilon} \prod_{j=1}^{3} \delta^{\frac{4}{q}-\frac{3}{p^{\prime}}-\epsilon}\left(\# \mathbb{T}_{j}\right)^{1 / p} \tag{0.3}
\end{equation*}
$$

Here $e(T) \in \mathbb{S}^{3}$ denotes the direction of the long side of a tube T.

Question 5 (Di Plinio). Let $N \in \mathbb{N}$. Given a collection of N directions $\left\{v_{j} \in \mathbb{S}^{1}: 1 \leq j \leq N\right\}$. Does it hold true that

$$
\begin{equation*}
\left\|\sup _{j \in\{1,2, \ldots, N\}}\left|H_{v_{j}} f\right|\right\|_{L^{2, \infty}\left(\mathbb{R}^{2}\right)} \lesssim \sqrt{\log N}\|f\|_{2} ? \tag{0.4}
\end{equation*}
$$

Here $H_{v_{j}} f$ denotes the Hilbert transform along the given direction v_{j}, namely

$$
\begin{equation*}
H_{v_{j}} f(x):=\int_{\mathbb{R}} f\left(x-t v_{j}\right) \frac{d t}{t} \tag{0.5}
\end{equation*}
$$

The maximal variant of the estimate (0.4) has been proved by Katz [8]. Moreover, (0.4) has also been verified for sets of two "extreme" structures: the lacunary set and the Vargas set. One typical example of the Vargas set is the set of uniformly distributed directions. See Demeter [5], Demeter and Di Plinio [6].

Question 6 (Street). Prove

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} f(x) g(y) h(x+y) \frac{1}{\operatorname{det}(x, y)} d x d y\right| \lesssim\|f\|_{p}\|g\|_{q}\|h\|_{r} \tag{0.6}
\end{equation*}
$$

for certain p, q and r.
This question has a quite satisfactory answer. See Gressman et al. [7].

Question 7 (Krause). On the plane \mathbb{R}^{2}, let $R: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be the rotation by $\pi / 3$. Prove

$$
\begin{equation*}
\left\|\sup _{t \in \mathbb{R}^{+}}\left|\int_{\mathbb{S}^{1}} f(x-t w) g(x-t R(w)) d \sigma(w)\right|\right\|_{r} \lesssim\|f\|_{p}\|g\|_{q} \tag{0.7}
\end{equation*}
$$

for certain p, q and r.
During the workshop, this has been shown to be equivalent to

$$
\begin{equation*}
\left\|\sup _{t \in \mathbb{R}^{+}}\left|\int_{\mathbb{S}^{1}} f(x-t w) g(x+t w) d \sigma(w)\right|\right\|_{r} \lesssim\|f\|_{p}\|g\|_{q} \tag{0.8}
\end{equation*}
$$

Question 8 (Anderson, Pierce). Generalise Stein and Wainger's polynomial Carleson's theorem to the discrete setting, namely to prove

$$
\begin{equation*}
\left\|\sup _{\lambda} \left\lvert\, \sum_{m \in \mathbb{Z}} f(n-m) \frac{e^{i \lambda m^{2}}}{m}\right.\right\|\left\|_{2} \lesssim\right\| f \|_{2} . \tag{0.9}
\end{equation*}
$$

Let $\Lambda \subset[0,1]$. Define

$$
\begin{equation*}
\sup _{\lambda \in \Lambda}\left|\sum_{m \in \mathbb{Z}} f(n-m) \frac{e^{i \lambda m^{2}}}{m}\right| \tag{0.10}
\end{equation*}
$$

A sufficient condition has been given on the set Λ, to guarantee the l^{2} boundedness of (0.10). See Krause and Lacey [9].

Question 9 (Li). Let $d \geq 3$. For $p \geq 2(d+1)$, prove

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} a_{n} e^{2 \pi i n^{d} t} e^{2 \pi i n \cdot x}\right\|_{L^{p}\left(\mathbb{T}^{2}\right)} \lesssim N^{\frac{1}{2}-\frac{d+1}{p}+\epsilon}\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{1 / 2} \tag{0.11}
\end{equation*}
$$

This is related to Waring's problem.

Question 10 (Bez). Let S_{1}, S_{2} and S_{3} be transversal patches of the unit sphere \mathbb{S}^{3} in \mathbb{R}^{4}. Let σ_{1}, σ_{2} and σ_{3} be the surface measure separately. Determine the full range of exponents $p, q>0$ such that the multi-linear singular convolution estimate

$$
\begin{equation*}
\left\|g_{1} d \sigma_{1} * g_{2} d \sigma_{2} * g_{3} d \sigma_{3}\right\|_{q} \lesssim \prod_{j=1}^{3}\left\|g_{j}\right\|_{p} \tag{0.12}
\end{equation*}
$$

holds.

Question 11 (Muscalu). Let $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that

$$
\begin{equation*}
\left|\partial^{\alpha} \hat{K}(\xi)\right| \lesssim \frac{1}{|\xi|^{|\alpha|}}, \forall \xi \in \mathbb{R}^{2} \backslash\{0\} \tag{0.13}
\end{equation*}
$$

for sufficiently many multi-indices α. Generalise Stein and Wainger's polynomial Carleson's theorem to the multi-linear setting. For example, to prove

$$
\begin{equation*}
\left\|\sup _{\lambda \in \mathbb{R}}\left|\int_{\mathbb{R}^{2}} f(x-t) g(x-s) K(t, s) e^{i \lambda s^{2} t^{2}} d t d s\right|\right\|_{2} \lesssim\|f\|_{4}\|g\|_{4} \tag{0.14}
\end{equation*}
$$

The multi-parameter Carleson's theorem has been proved by Li and Muscalu [11]: Let K be given as in (0.13). Define

$$
\begin{equation*}
C_{2}(f, g)(x):=\sup _{N_{1}, N_{2}}\left|\int_{\mathbb{R}^{2}} \hat{K}\left(\xi_{1}-N_{1}, \xi_{2}, N_{2}\right) \hat{f}_{1}\left(\xi_{1}\right) \hat{f}_{2}\left(\xi_{2}\right) d \xi_{1} d \xi_{2}\right| \tag{0.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|C_{2}\left(f_{1}, f_{2}\right)\right\|_{2} \lesssim\left\|f_{1}\right\|_{4}\left\|f_{2}\right\|_{4} \tag{0.16}
\end{equation*}
$$

Question 12 (Guo). To prove that there exists a universal constant $C>0$ such that $\forall \epsilon \in(0,1 / 2)$, it holds that

$$
\begin{equation*}
\left\|\sup _{\lambda \in \mathbb{R}} \int_{\mathbb{R}} f(x-t) e^{i \lambda|t|^{\epsilon}} \frac{d t}{t}\right\|_{2} \leq C\|f\|_{2} \tag{0.17}
\end{equation*}
$$

Question 13 (Carbery). On \mathbb{R}^{n}, it is a big open problem whether

$$
\begin{equation*}
\left\|\sup _{R}\left|\int_{|\xi| \leq R} \hat{f}(\xi) e^{2 \pi i x \xi} d \xi\right|\right\|_{2} \lesssim\|f\|_{2} \tag{0.18}
\end{equation*}
$$

How about

$$
\begin{equation*}
\left\|\sup _{R}\left|f *\left(\frac{e^{i|x|}}{|x|^{\frac{n+1}{2}}} \cdot \chi_{\{|x| \leq R\}}\right)\right|\right\|_{2} \lesssim\|f\|_{2} ? \tag{0.19}
\end{equation*}
$$

For detailed discussions, see Carbery et al. [2].

Question 14 (Iliopoulou). In \mathbb{R}^{n}, let $\mathcal{T}_{i}, i \in\{1,2, \ldots, n\}$ be a collection of tubes with width one and infinity length. We know that
$\int\left[\left(\sum_{T_{1} \in \mathcal{T}_{1}} \chi_{T_{1}}\right) \ldots\left(\sum_{T_{n} \in \mathcal{T}_{n}} \chi_{T_{n}}\right) w\left(T_{1}\right) \wedge \ldots \wedge w\left(T_{n}\right)\right]^{\frac{1}{n-1}} \leq C_{n} \prod_{i=1}^{n}\left(\# \mathcal{T}_{i}\right)^{\frac{1}{n-1}}$,
where $w\left(T_{i}\right)$ is the unit vector parallel to the long side of the tube T_{i}. Could we prove (0.20) with $C_{n}=1$?

References

[1] M. Bateman: Single annulus L^{p} estimates for Hilbert transforms along vector fields, Rev. Mat. Iberoam. 29 (2013), no. 3, 1021-1069.
[2] A. Carbery, D. Gorges, G. Marietta and C. Thiele: Convergence almost Everywhere of Certain Partial Sums of Fourier Integrals. Bull. London Math. Soc. 35 (2003), no. 2, 225-228.
[3] M. Christ: Preprint.
[4] M. Christ, X. Li, T. Tao and C. Thiele: On multilinear oscillatory integrals, nonsingular and singular. Duke Math. J. 130 (2005), no. 2, 321-351.
[5] C. Demeter: Singular integrals along N directions in \mathbb{R}^{2}. Proc. Amer. Math. Soc. 138 (2010), no. 12, 4433-4442.
[6] C. Demeter and F. Di Plinio: Logarithmic L^{p} Bounds for Maximal Directional Singular Integrals in the Plane. J. Geom. Anal. 24 (2014), no. 1, 375-416.
[7] P. Gressman, D. He, V. Kovac, B. Street, C. Thiele and P.-L. Yung: On a trilinear singular integral form with determinantal kernel. To appear in Proc. AMS.
[8] N. Katz: Maximal operators over arbitrary sets of directions. Duke Math. J. 97 (1999), no. 1, 67-79.
[9] B. Krause and M. Lacey: A discrete quadratic Carleson theorem on l^{2} with a restricted spectrum. ArXiv preprint.
[10] M. Lacey and X. Li: On a conjecture of E. M. Stein on the Hilbert transform on vector fields. Mem. Amer. Math. Soc. 205 (2010), no. 965, viii+72 pp. ISBN: 978-0-8218-4540-0
[11] X. Li and C. Muscalu: Generalizations of the Carleson-Hunt theorem. I. The classical singularity case. Amer. J. Math. 129 (2007), no. 4, 9831018.

