Carleson theorems and multilinear operators:
Open problems

Shaoming Guo

Question 1 (Thiele). Let \(u : \mathbb{R} \to \mathbb{R} \) be a measurable function. Define the maximal operator along the planar vector field \((1, u)\) by

\[
M_u f(x, y) := \sup_{\epsilon > 0} \left| \frac{1}{2\epsilon} \int_{-\epsilon}^{\epsilon} f(x - t, y - u(x)t) dt \right|.
\]

(0.1)

Does \(M_u \) satisfy any \(L^p \) bound for certain \(p < \infty \)?

Question 2 (Christ). On \(\mathbb{R}^d \), let \(E \subset \mathbb{R}^d \) with \(|E| = 1 \). Given \(q > 2 \), describe the set \(E \) that maximises the quantity \(\| \mathbf{1}_E \|_q \).

Certain partial progress has been made.

Theorem 0.1 (Christ [3]).

1. For any \(q > 2 \), the extremizing set exists.

2. For any dimension \(d \), for any sufficiently large \(q \) which is also sufficiently close to \(2N \), a set \(E \) is a extremizer iff \(E \) is an ellipsoid.

3. If \(d = 1 \), then for any \(q \) close to \(2N \), a set \(E \) is a extremizer iff \(E \) is an ellipsoid.

4. If \(d = 2 \), then for any \(q \) close to \(4 \), a set \(E \) is a extremizer iff \(E \) is an ellipsoid.

Question 3 (Christ). Let \(B \) be the unit ball in \(\mathbb{R}^3 \). Let \(N \) be a positive integer. Let \(\{V_j : 1 \leq j \leq N\} \) be \(N \) different light cones in \(\mathbb{R}^3 \). Prove that

\[
\left| \int_B e^{i\lambda x} \prod_{j=1}^N f_j(x \cdot v_j) dx \right| \lesssim \lambda^{-\epsilon} \prod_{j=1}^N \|f_j\|_\infty,
\]

(0.2)

for certain positive \(\epsilon \), where \(v_j \in V_j \). If possible, find the optimal \(\epsilon \).
So far (0.2) has only been proved for $N \leq 5$, see [4].

Question 4 (Bennett). *Suppose we are in \mathbb{R}^4. Let $\epsilon > 0$. Suppose that T_1, T_2 and T_3 are three transversal families of δ-tubes (short sides δ and long side 1) such that for each $j \in \{1, 2, 3\}$, $\{e(T_j) : T_j \in T_j\}$ forms a δ-separated subset of S^3. If $q \geq \frac{4}{3}$ and $\frac{4}{p} + \frac{3}{q} \leq 3$, then there exists a constant $C_\epsilon > 0$ such that

$$
\left\| \prod_{j=1}^{3} \left(\sum_{T_j \in T_j} \chi_{T_j} \right) \right\|_{L^{3/q}(\mathbb{R}^4)} \leq C_\epsilon \prod_{j=1}^{3} \delta^{\frac{4}{q} - \frac{3}{p} - \epsilon} (\#T_j)^{1/p}.
$$

(0.3)

Here $e(T) \in S^3$ denotes the direction of the long side of a tube T.

Question 5 (Di Plinio). *Let $N \in \mathbb{N}$. Given a collection of N directions $\{v_j \in S^1 : 1 \leq j \leq N\}$. Does it hold true that

$$
\left\| \sup_{j \in \{1, 2, \ldots, N\}} |H_{v_j}f| \right\|_{L^{2, \infty}(\mathbb{R}^2)} \lesssim \sqrt{\log N} \|f\|_2?
$$

(0.4)

Here $H_{v_j}f$ denotes the Hilbert transform along the given direction v_j, namely

$$
H_{v_j}f(x) := \int_{\mathbb{R}} f(x - tv_j) \frac{dt}{t}.
$$

The maximal variant of the estimate (0.4) has been proved by Katz [8]. Moreover, (0.4) has also been verified for sets of two “extreme” structures: the lacunary set and the Vargas set. One typical example of the Vargas set is the set of uniformly distributed directions. See Demeter [5], Demeter and Di Plinio [6].

Question 6 (Street). *Prove

$$
\left| \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} f(x)g(y)h(x + y) \frac{1}{\text{det}(x, y)} \, dx \, dy \right| \lesssim \|f\|_p \|g\|_q \|h\|_r,
$$

(0.6)

for certain p, q and r.

This question has a quite satisfactory answer. See Gressman et al. [7].
Question 7 (Krause). On the plane \mathbb{R}^2, let $R : S^1 \to S^1$ be the rotation by $\pi/3$. Prove

$$
\left\| \sup_{t \in \mathbb{R}^+} \left| \int_{S^1} f(x - tw)g(x - tR(w))d\sigma(w) \right| \right\|_r \lesssim \|f\|_p \|g\|_q, \quad (0.7)
$$

for certain p, q and r.

During the workshop, this has been shown to be equivalent to

$$
\left\| \sup_{t \in \mathbb{R}^+} \left| \int_{S^1} f(x - tw)g(x + tw)d\sigma(w) \right| \right\|_r \lesssim \|f\|_p \|g\|_q. \quad (0.8)
$$

Question 8 (Anderson, Pierce). Generalise Stein and Wainger’s polynomial Carleson’s theorem to the discrete setting, namely to prove

$$
\left\| \sup_{\lambda \in \Lambda} \left| \sum_{m \in \mathbb{Z}} f(n - m) e^{i\lambda m^2} \right| \right\|_2 \lesssim \|f\|_2. \quad (0.9)
$$

Let $\Lambda \subset [0, 1]$. Define

$$
\sup_{\lambda \in \Lambda} \left| \sum_{m \in \mathbb{Z}} f(n - m) e^{i\lambda m^2} \right|. \quad (0.10)
$$

A sufficient condition has been given on the set Λ, to guarantee the l^2 boundedness of (0.10). See Krause and Lacey [9].

Question 9 (Li). Let $d \geq 3$. For $p \geq 2(d + 1)$, prove

$$
\left\| \sum_{n=1}^{N} a_n e^{2\pi i n d t} e^{2\pi i n - x} \right\|_{L^p(T^d)} \lesssim N^{1 - \frac{d+1}{p} + \frac{1}{2}} \left(\sum_{n=1}^{N} |a_n|^2 \right)^{1/2}. \quad (0.11)
$$

This is related to Waring’s problem.

Question 10 (Bez). Let S_1, S_2 and S_3 be transversal patches of the unit sphere S^3 in \mathbb{R}^4. Let σ_1, σ_2 and σ_3 be the surface measure separately. Determine the full range of exponents $p, q > 0$ such that the multi-linear singular convolution estimate

$$
\|g_1 \sigma_1 * g_2 \sigma_2 * g_3 \sigma_3\|_q \lesssim \prod_{j=1}^{3} \|g_j\|_p \quad (0.12)
$$

holds.
Question 11 (Muscalu). Let $K : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function such that

$$\left| \partial^\alpha \hat{K}(\xi) \right| \lesssim \frac{1}{|\xi|^{|\alpha|}}, \forall \xi \in \mathbb{R}^2 \setminus \{0\},$$

(0.13)

for sufficiently many multi-indices α. Generalise Stein and Wainger’s polynomial Carleson’s theorem to the multi-linear setting. For example, to prove

$$\| \sup_{\lambda \in \mathbb{R}} \left| \int_{\mathbb{R}^2} f(x-t)g(x-s)K(t,s)e^{i\lambda s^2 t^2} dt ds \right|_2 \lesssim \|f\|_4 \|g\|_4.$$

(0.14)

The multi-parameter Carleson’s theorem has been proved by Li and Muscalu [11]: Let K be given as in (0.13). Define

$$C_2(f,g)(x) := \sup_{N_1,N_2} \left| \int_{\mathbb{R}^2} \hat{K}(\xi_1 - N_1, \xi_2, N_2) \hat{f_1}(\xi_1) \hat{f_2}(\xi_2) d\xi_1 d\xi_2 \right|,$$

(0.15)

then

$$\|C_2(f_1, f_2)\|_2 \lesssim \|f_1\|_4 \|f_2\|_4.$$

(0.16)

Question 12 (Guo). To prove that there exists a universal constant $C > 0$ such that $\forall \epsilon \in (0, 1/2)$, it holds that

$$\| \sup_{\lambda \in \mathbb{R}} \int_{\mathbb{R}} f(x-t)e^{i\lambda |t|} \frac{dt}{t} \|_2 \leq C \|f\|_2.$$

(0.17)

Question 13 (Carbery). On \mathbb{R}^n, it is a big open problem whether

$$\left\| \sup_{R} \left| \int_{|\xi| \leq R} \hat{f}(\xi) e^{2\pi i x \xi} d\xi \right| \right\|_2 \lesssim \|f\|_2.$$

(0.18)

How about

$$\left\| \sup_{R} \left| f * \left(\frac{e^{i|x|}}{|x|^{n+1}} \cdot \chi_{\{|x| \leq R\}} \right) \right| \right\|_2 \lesssim \|f\|_2?$$

(0.19)

For detailed discussions, see Carbery et al. [2].
Question 14 (Iliopoulos). In \mathbb{R}^n, let $T_i, i \in \{1, 2, ..., n\}$ be a collection of tubes with width one and infinity length. We know that

$$\int \left[\left(\sum_{T_1 \in T_1} \chi_{T_1} \right) \ldots \left(\sum_{T_n \in T_n} \chi_{T_n} \right) w(T_1) \wedge \ldots \wedge w(T_n) \right]^{\frac{1}{n-1}} \leq C_n \prod_{i=1}^{n} (\# T_i)^{\frac{1}{n-1}},$$

where $w(T_i)$ is the unit vector parallel to the long side of the tube T_i. Could we prove (0.20) with $C_n = 1$?

References

5