
LIST OF OPEN PROBLEMS

AIM WORKSHOP: MATHEMATICAL ASPECTS OF PHYSICS WITH

NON-SELF-ADJOINT OPERATORS

*Open problems suggested during the meeting

1. Yaniv Almog

1.1. Completeness of eigenfunctions for Schrödinger operators with complex potentials. For
α > 0 consider Aα := −d2/dx2 + i|x|α in R (or R+ with Dirichlet boundary condition at 0). If α > 2/3,
then it is known that the eigenfunctions form a complete system.
Open problem: Is the same true for 0 < α ≤ 2/3?

1.2. Magnetic Schrödinger operator. Consider

A := − ∂2

∂x2
−
(
∂

∂y
− ix2

2

)2

+ icy, D(A) := H1
0 (R2

+) ∩ {u : Au ∈ L2(R2
+)}

where R2
+ = {(x, y) ∈ R2 : y > 0}.

Open problem: Is σ(A) 6= ∅?
It is known that σ(A) 6= ∅ if |c| << 1 or |c| >> 1.

2. Lyonell Boulton

2.1. Schauder bases of periodic functions and multipliers. Let en(x) :=
√

2 sin(nπx). Then {en}
is a Schauder basis of Lp(0, 1) for all p > 1. Let f ∈ C(R,C) satisfy f(x + 2) = f(x), f(−x) = −f(x),
f(1/2 + x) = f(1/2 − x) and define fn(x) := f(nx). Let A : Lp(0, 1) → Lp(0, 1) be the linear extension of
the map Aen = fn. Then {fn} is a Schauder basis of Lp(0, 1) if and only if A : Lp(0, 1) −→ Lp(0, 1) is a
bounded operator with a bounded inverse. Let {ck} be the Fourier coefficients of f . Then A can be written
as A =

∑
k ckMk where Mk are the linear extensions of the map Mken = ekn.

Open problem: Find necessary and sufficient conditions on {ck} for 0 /∈ σ(A) whenever p 6= 2.

3. Amin Boumenir

3.1. Non-self-adjoint inverse problems. We are interested in identifying a non-self-adjoint operator
associated with an evolution equation (parabolic or hyperbolic) through “observations” of the solution as
time evolves. Thus for example in a certain Hilbert space we have

u′(t) = Au(t) and u(0) = f (1)

where, for simplicity, we assume that
A = L+B

with L is a given (known) self-adjoint operator with “nice properties” while B is an unknown non-self-adjoint
perturbation. For example Ay(x) = y′′(x) − q(x)y(x) or Au = ∆u − q(x)u with Im q(x) 6= 0. We assume
that we can observe the solution through a functional 〈·, g〉 say

ω(t) = 〈u(t), g〉.
For example if u(x, t) is the solution of a heat equation, where x ∈ Ω ⊂ Rn, and p ∈ ∂Ω, then ω(t) = u(p, t)
(temperature) or ω(t) = ∂nu (p, t) (heat transfer) are usual observations/readings of the solution on the
boundary. Thus we want to recover A or at least its spectrum σA = {λn} ⊂ C from the observation mapping

u(0)→ ω(t).
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To do so, although we do NOT know A, we assume that it has a discrete spectrum {λn} ⊂ C, and in
general Imλn → 0 as n→∞, while Reλn → −∞. If we denote its eigenfunctions by ϕn,0 and its associated
eigenfunctions (roots) by ϕn,ν for ν = 1, ...,mn − 1, where mn is the multiplicity of the eigenvalue λn, then
we can write a formal solution to the evolution equation

u (t) =
∑
n≥1

eλnt
mn−1∑
ν=0

cnν (f) pnν(t)ϕnν (2)

where the Fourier coefficients are cnν (f) = 〈f, ψnν〉 and {ψnν} is the biorthogonal system to {ϕn,ν} . Here
pnν are polynomials generated by the multiplicity of the eigenvalue λn. The observation then is given by

ω(t) =
∑
n≥1

eλnt
mn−1∑
ν=0

cnν (f) pnν(t)〈ϕnν , g〉. (3)

In the best case, when all cnν (f) 6= 0 and 〈ϕnν , g〉 6= 0 then it is possible to evaluate/extract all the λn from
the observation (2).
Open problems: i) How do you choose the initial condition f , so we can observe all eλnt, that is all cnν (f) 6= 0?
We need to know something about the biorthogonal system {ψnν}.

ii) How do you choose the observation g so all 〈ϕnν , g〉 6= 0? We need to know something about the root
functions {ϕn,ν}.

iii) How smooth is the sum (2), so we can choose g? We need some information on the type of convergence
in (2) so (3) holds.

iv) How do we extract the λn and their multiplicity from a given signal given by (3) in finite time? When
λn are complex values and the sum contains polynomials in t, it is much harder than the real case.

v) Find the best f and g that allow the identification of A by using the smallest number of observations.
Evolution equations are often found in control theory, and for that purpose, we need finite number of
observations done in finite time.

4. Marina Chugunova

4.1. Computations of the instability index for a non-self-adjoint operators. The stability of steady
states is a basic question about the dynamics of any partial differential equation that models the evolution
of a physical system.

In order to numerically evaluate the instability index of a given differential operator A, its computation
should be reduced to a problem of linear algebra. Particularly for problems with periodic boundary condi-
tions, it seems natural to restrict the operator A to a finite-dimensional space of trigonometric polynomials.
Open problem: Under what conditions the instability index (the total number of unstable eigenvalues) can
be computed from the resulting finite dimensional matrix?

One difficulty is that the entries of the infinite matrix corresponding to the differential operator A grow
with the row and column index, so that any truncation is not a small perturbation.

If A is a self-adjoint semi-bounded differential operator of even order, then the instability index can be
estimated by variational methods, or computed directly from the zeros of the corresponding Evans function.

Understanding the spectrum of a non-self-adjoint operator is a much harder problem. It is not at all
obvious how to restrict the computation of its instability index to a finite-dimensional subspace, or how
to even estimate its dimension. Furthermore, the numerical calculation of eigenvalues can be extremely
ill-conditioned even in finite dimensions.

5. Michael Demuth

5.1. Spectral radius and operator norm. Let A be a bounded linear operator on a Banach space X. Its
spectral radius is defined by

spr(A) := max{|z| : z ∈ σ(A)}.
Gelfand proved the classical formula

spr(A) = lim
n→∞

‖An‖ 1
n .
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Obviously, 0 ≤ spr(A) ≤ ‖A‖. The question arises: What is the gap between ‖A‖ and spr(A)? Introduce
the denotation

gap(A) := ‖A‖ − spr(A).

Open problems: i) For which class of operators holds

gap(A) > 0 or gap(A) = 0,

respectively.
ii) What is the smallest m ∈ (0, 1], such that

spr(A) ≤ m‖A‖

or

gap(A) ≥ (1−m)‖A‖ ?

Example 1. Let X = `1(N) and A be the weighted shift-operator defined according to the canonical
standard basis by the infinite matrix 

0
b1 0

b2 0
b1 0

b2 0
. . .

. . .


where b1, b2 > 0 and b1b2 = 1. In this case ‖A‖ = max{b1, b2} and σ(A) = {z ∈ C : |z| ≤ 1} and therefore
spr(A) = 1. Thus

• gap(A) = 0: If b1 = b2 = 1 then ‖A‖ = spr(A).
• gap(A) > 0: If b1 6= b2 then ‖A‖ > spr(A).

This kind of estimates are useful in the following situation. Let K be a compact perturbation of A. Study
the discrete spectrum of B := A + K. We are able to analyze the moments and the number of eigenvalues
of B outside a ball of radius ‖A‖. It is more interesting and also natural to enlarge this region up to the
complement of a ball with radius spr(A).

6. Mark Embree

6.1. Davies’ conjecture about approximate diagonalization. Consider a non-normal matrix A ∈
Cn×n. Define

s(A, ε) := inf
∆,V

V −1(A+∆)V diagonal

‖V ‖ ‖V −1‖ε+ ‖∆‖.

Open problem: Prove Davies’ conjecture (2007): There exists a constant Cn > 0, independent of A ∈ Cn×n,
such that s(A, ε) ≤ Cn

√
ε.

It is known that the conjecture holds for Jordan blocks (then Cn = 2 suffices) and for 3× 3 matrices with
‖A‖ ≤ 1 (then Cn = 4 suffices).

6.2. Crouzeix’ conjecture about the norm of matrix functions. Let A be a bounded linear operator.
It is known that ‖Ak‖ ≤ 2 maxz∈W (A) |zk|; W (A) denotes the numerical range of A.
Open problem: Prove Crouzeix’ conjecture: There exists a constant C ≥ 2 such that for all analytic functions
f : W (A)→ C holds ‖f(A)‖ ≤ C maxz∈W (A) |f(z)|.

Crouzeix conjectured further that C ≤ 11.08.
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7. Rupert L. Frank

7.1. Laptev-Safronov conjecture. Consider a Schrödinger operator −∆ + V in Rd with a complex po-
tential V .
Open problems: i) What is the largest p such that all non-real eigenvalues lie in a disk around 0 of radius

D(
∫
Rd |V |p dx)(p−d/2)−1

(the constant D > 0 shall not depend on V )?
ii) What happens to embedded eigenvalues of self-adjoint Schrödinger operators under non-self-adjoint

perturbations?
Both problems are related to the Laptev-Safronov conjecture which states that for every d ∈ N and

0 < γ ≤ d/2 there exists a constant Dγ,d > 0 such that for every potential V every non-real eigenvalue λ
satisfies

|λ|γ ≤ Dγ,d

∫
Rd

|V |γ+ d
2 dx;

here γ = p− d/2 with p from problem i). The Laptev-Safronov conjecture is known to be true in dimension
d = 1 if γ = 1/2 and in dimension d ≥ 2 if 0 < γ ≤ 1/2.

8. Marcel Hansmann

8.1. Tensor trick for perturbed operators. Let A be a bounded self-adjoint operator in a Hilbert space
and let K be a perturbation which is of trace class. Assume that for any ε > 0 there exists a constant
C(ε) > 0 such that ∑

λ∈σd(A+K)

dist(λ, σ(A))1+ε ≤ C(ε)‖K‖1+ε
1+ε.

Open problem: Does it follow that there exists C > 0 such that∑
λ∈σd(A+K)

dist(λ, σ(A)) ≤ C‖K‖1?

9. Michael Hitrik

9.1. Upper bounds on the norm of the resolvent. It is well known that the spectrum of a non-self-
adjoint operator does not control its resolvent and that the latter may become very large far from the
spectrum. Some general upper bounds on resolvents are provided by the abstract operator theory, and
restricting the attention to the setting of semiclassical operators on Rn, let us give a rough statement of
such bounds. Assume that P = pw(x, hDx) is the semiclassical Weyl quantization on Rn of a nice symbol p
with Re p ≥ 0, say. Then the norm of the resolvent of P is bounded from above by a quantity of the form
O(1) exp (O(1)h−n), provided that z ∈ neigh(0,C) is not too close to the spectrum of P . On the other hand,
the available lower bounds on the resolvent of P , in the interior of the range of the symbol, coming from
the pseudospectral considerations, are typically of the form C−1

N h−N , N ∈ N, or (1/C)e1/(Ch), provided
that p enjoys some analyticity properties, [DSZ04]. There appears to be therefore a substantial gap between
the available upper and lower bounds on the resolvent, especially when n ≥ 2, which, to the best of my
knowledge, has so far only been bridged in the very special case of elliptic quadratic differential operators,
see [HSV13].
Open problem: Is the upper bound sharp (especially for dimension n ≥ 2)?

10. David Krejčiř́ık

10.1. Semiclassical pseudomodes of Schrödinger operators with discontinuous potentials. For
smooth potentials there exists a quite general theory on the construction of semiclassical pseudomodes, see
[DSZ04].
Open problem: Can the technique be adapted to discontinuous potentials?

In my joint paper with Henry [HK15] we have a non-trivial pseudospectrum in a toy model (complex
Heaviside-type potential). However, our technique is restricted to the particular situation and the non-
trivial pseudospectrum is rather generated by the behavior of the potential at infinity.
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11. Michael Levitin

11.1. Complex eigenvalues of indefinite pencil. For 0 < c < 2 define the 2n× 2n matrices

A :=



c 1

1 c 1

1 c
. . .

. . .
. . . 1

1 c

 , B :=



1
. . .

1
−1

. . .

−1


where the numbers of 1 and −1 in B coincide (equal to n). The eigenvalues of the pencil λ 7→ A − λB are
the eigenvalues of B−1A = BA. The spectrum is symmetric with respect to both R and iR. The non-real
eigenvalues are contained in the union of the two closed disks {λ ∈ C : |λ ± c| ≤ 2} whereas numerical
examples suggest that they lie in their intersection.
Open problem: Prove that |λ− c| ≤ 2 and |λ+ c| ≤ 2 holds for all λ ∈ σ(BA)\R.

11.2. Indefinite Sturm-Liouville. Recently, we have proved some conjectures related to the generalized

eigenvalue problem (− d2

dx2 + c
1+|x| )ψ = λsgn(x)ψ.

Open problem: Replace the potential term by a more general function.

12. Marco Marletta

12.1. Zeros and poles of Nevanlinna functions. Let m1,m2, . . . be an infinite sequence of meromorphic
functions with Im mj(λ) > 0 if Im λ > 0 and Im mj(λ) < 0 if Im λ < 0 (Nevanlinna functions). Suppose
that there exists a non-empty interval I ⊆ R such that for every non-empty subinterval J ⊆ I holds

lim
j→∞

#{pole of mj in J} =∞.

Let g be a function which is analytic in a complex neighborhood of I.
Open problems: i) Show that for every open complex neighborhood U of J ,

lim
j→∞

#{zero of (mj − g) in U} =∞.

ii) Show that there exists a constant C > 0, independent of j, such that for every open complex neighborhood
U of J , ∣∣#{zero of (mj − g) in U} −#{pole of mj in U}

∣∣ ≤ C.
The result is known to hold if µ(J) := limj→∞ j−1 #{pole of mj in J} exists.

13. Boris Mityagin

13.1. Schauder basis for Schrödinger operators with periodic boundary conditions. Consider the
Schrödinger operator −d2/dx2 + V on (0, π) with periodic boundary conditions, where the potential V is a
trigonometric polynomial, i.e.,

V (x) =

m∑
k=−m

vke
2ikx; vk ∈ C, |k| ≤ m.

Open Problem: For which sets of coefficients {vk}mk=−m do the eigenfunctions form a Schauder basis for

L2(0, π)?
Known Case: Let V (x) := e−2ix + be2ix. Then the answer is “yes” if and only if |b| = 1.
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14. Kwang Shin

14.1. Non-polynomial complex potentials. Consider

H = − d2

dx2
+ xm + a1x

m−1 + · · ·+ am

in L2(R+) with y(0) cos θ + y′(0) sin θ = 0, where aj ∈ C and θ ∈ C. It is known that H has infinitely many
eigenvalues. Moreover, all eigenvalues are real if and only if aj ∈ R for all j and θ ∈ R.
Open Problem: Is there any non-self-adjoint non-polynomial potential case H, either in L2(R) or in L2(R+),
that generates infinitely many real eigenvalues and at most finitely many non-real eigenvalues?

15. Petr Siegl

15.1. Riesz basis for Schrödinger operator with complex potential. Consider the self-adjoint har-
monic oscillator A0 := −d2/dx2 + x2 in L2(R). Define A := A0 + V with a complex-valued potential
V ∈ L∞(R).
Open problem: Is the eigensystem of A a Riesz basis?

It is known that the answer is ‘yes’ if V ∈ Lp(R) for some 1 ≤ p <∞.

16. David A. Smith

16.1. Spectral representation of two-point differential operators. Augmented eigenfunctions are a
class of spectral functionals which have been shown to be useful in expressing solutions of initial-boundary
value problems [FS15, PSss, Smi14]. This is particularly important in the case where the spatial differential
operator is degenerate irregular in the sense of Locker [Loc08], as no other effective solution representation
is known. They also provide a spectral theorem where the inverse of the operator is diagonalized.
Open problems: i) Are there other applications for augmented eigenfunctions?

ii) Can a spectral theory be developed using augmented eigenfunctions?
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*Other Open Problems

17. Lyonell Boulton

17.1. Numerical approximation of rigorous enclosures for the spectrum of J-self-adjoint opera-
tors. The aim of this theme is to device strategies for computing rigorous (hopefully sharp) bounds/enclosures
for the spectrum of J-self-adjoint operators by means of projected space methods. The theory of computa-
tion for spectra of self-adjoint operators is classical and well developed. J-self-adjoint operators share many
properties with their self-adjoint counterpart. I am interested in discussing to what extent general strategies
for numerically estimating spectra of J-self-adjoint operators can be devised.
Open problems: i) Computation of rigorous rough enclosures for J-self-adjoint operators, taking into account
the structure of the conjugation J into the projection scheme.

ii) Computation of sharp (numerically relevant) enclosures in specific or generic cases.
iii) Impact in the study of evolution problems for J-self-adjoint operators.

18. Tanya J. Christiansen

18.1. Isoresonant potentials. Consider the Schrödinger operator −∆ + V on Rd, where the potential
V ∈ L∞0 (Rd). If V ∈ C∞c (Rd;R), then if V is non-trivial the Schrödinger operator has infinitely many
resonances. However, if d ≥ 2 there are non-trivial complex-valued potentials V ∈ C∞c (Rd) for which the
corresponding Schrödinger operator has no resonances. More generally, one can explicitly construct families
of isoresonant, compactly supported complex-valued potentials in dimensions at least 2.
Open problems: Is there some other data related in some way to spectral or pseudo spectral properties of
the operators that distinguish elements (potentials) in these sets? There are related families of isospectral
Schrödinger operators in other settings– on the unit circle, for example. One can ask the same question
there.

19. Michael Demuth

19.1. Estimates for the resolvent near the spectrum. Let A be a linear operator on a Banach space.
Let K be a compact perturbation of A. The approximation numbers of K are defined by

αN (K) := inf{‖K − F‖ , rank(F ) < N}.

We consider only compact operators K with limN→∞ αN (K) = 0.

The objective is to estimate the numbers of eigenvalues of the perturbed operator B := A + K in cer-
tain regions of the complex plane.

Let Ωt = {λ ∈ C , |λ| > t}. Denote spr(A) := max{|λ| , λ ∈ σ(A)} and assume spr(A) < t < s. De-
note by nB(s) the number of eigenvalues of B in Ωs. In [DHHK15] we obtained

nB(s) ≤ (2e)
p
2

log s
t

supλ∈Ωt
‖(λ−A)−1‖p(

1− αN+1(K) supλ∈Ωt
‖(λ−A)−1‖

)p N∑
j=1

(αN+1(K) + αj(K))
p
. (4)

Here N has to be so large that

αN+1(K) sup
λ∈Ωt

‖(λ−A)−1‖ < 1.

The optimal result depends on the behavior of ‖(λ−A)−1‖ near the spectrum of A, i.e. on Ωs. This is typical
for many spectral considerations. It is also related to the pseudospectrum of A. For instance if |λ| > ‖A‖
then

‖(λ−A)−1‖ ≤ 1

|λ| − ‖A‖
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and therefore (4) becomes

nB(s) ≤ (2e)
p
2

log s
t (t− (‖A‖+ αN+1(K)))

p

N∑
j=1

(αN+1(K) + αj(K))
p
.

Open problems: i) Classify the operators for which the resolvent is polynomially bounded if λ→ σ(A)?
ii) Classify the operators for which one can find an M ≥ 1 such that

‖(λ−A)−1‖ ≤ M

dist (λ, σ(A))

for all λ ∈ res(A) or

‖(λ−A)−1‖ ≤ M

|λ| − spr(A)

for |λ| > spr(A). Remark: For instance in Hilbert spaces, the bound in ii) is true for normal operators with
M = 1.

20. Michael Hitrik

20.1. Inverse spectral problems for non-self-adjoint operators, especially in the semiclassical
limit. Given a suitable h-pseudodifferential operator P = pw(x, hDx) on Rn or a compact manifold, we
would like to understand what information about the classical symbol p can be determined from the spectrum
of P , in the semiclassical limit h→ 0. We are especially interested in cases when P is non-self-adjoint, with
the inverse problems for resonances and for damped wave equations being important sources of motivation.
See [DH12], [Hal13], [Pha] for some of the recent works on semiclassical inverse spectral problems in the
non-self-adjoint setting.

20.2. Spectra for non-self-adjoint operators in the presence of symmetries. The proof of the reality
of the exponentially small eigenvalues of the Kramers-Fokker-Planck type operators in [HHS11] depends on
a reflection symmetry for such operators, and there are many natural non-self-adjoint situations where
symmetries play a role, including PT-symmetric operators and operators with supersymmetric structures.
See also [Shi02], [KS02].

21. David Krejčiř́ık

21.1. Large-time behavior of the heat equation: subcriticality versus criticality. This open prob-
lem is a repetition of the open problem raised during previous meetings in Prague (2010) and Barcelona
(2012)

http://www.ujf.cas.cz/ESFxNSA/

http://gemma.ujf.cas.cz/~david/OTAMP2012/OTAMP2012.html

but little progress has been made so far. Please visit the links above for more details and references.
Our conjecture is that the solutions of the heat equation “decay faster” for large times provided that

the generator is “more positive” in the sense of the validity of a Hardy-type inequality. There exist both
semigroup (with Zuazua [KZ10]) and heat-kernel (with Fraas and Pinchover [FKP10]) versions of the con-
jecture and the latter involves non-self-adjoint operators too. The conjecture has been supported by several
particular situations, but there exists no general result yet.

In the self-adjoint case, the conjectures can be stated as follows. Let Ω be an open connected subset
of Rd. Let H0 and H+ be two self-adjoint operators in L2(Ω) such that inf σ(H0) = inf σ(H+) = 0. Assume
that H+ is subcritical, in the sense that there is a smooth positive function ρ : Ω → R such that H+ ≥ ρ
(Hardy inequality). On the other hand, H0 is assumed to be critical, in the sense that inf σ(H0−V ) < 0 for
any non-negative non-trivial V ∈ C∞0 (Ω).

Conjecture 1 (Semigroup version, [KZ10]). There is a positive function (weight) w : Ω→ R such that

lim
t→∞

∥∥e−H+t
∥∥
L2

w(Ω)→L2(Ω)∥∥e−H0 t
∥∥
L2

w(Ω)→L2(Ω)

= 0 .
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Conjecture 2 (Heat-kernel version, [FKP10]). Let H+ and H0 be in addition elliptic differential operators
whose coefficients satisfy some minimal regularity assumptions so that the heat kernels exist. Then

lim
t→∞

e−H+t(x, x′)

e−H0 t(x, x′)
= 0

locally uniformly for (x, x′) ∈ Ω× Ω.

Open problem: Prove the conjectures or find a counterexample.

21.2. The cloaking effect in metamaterials: beyond ellipticity. In mathematical models of metama-
terials characterized by negative electric permittivity and/or negative magnetic permeability, there appear
operators of the type

div sgn grad ,

where sgn(x) = ±1 for x ∈ Ω±, two disjoint subsets of Rd divided by a smooth hypersurface.
Open problem: How to define such an operator as a self-adjoint operator in an L2 setting?

There exist numerous works on a changed problem in which there is a small complex constant added to
the minus one in the sign function (making the problem non-self-adjoint, but sectorial). The only exception
(apart from the one-dimensional situation, which is elementary) seems to be my recent joint paper with
Behrndt [BK]. Here we solve the original problem for a particular geometry (rectangle) with help of a
refined extension theory. It turns out that the domain of the self-adjoint operator is not a subset of the
Sobolev space H1 and there is an essential spectrum (although the geometry is bounded).

22. Rudi Weikard

22.1. Open problem for complex-valued periodic potentials. If q is a complex-valued periodic poten-
tial with period a consider the differential expression −y′′+qy. For x0 varying in [0, a] introduce the solutions
c(·, x0, λ) and s(·, x0, λ) of −y′′+ qy = λy satisfying the initial conditions c(x0, x0, λ) = s′(x0, x0, λ) = 1 and
c′(x0, x0, λ) = s(x0, x0, λ) = 0.

The periodic and semi-periodic eigenvalues are given as the zeros of the entire function (trM)2− 4 where
M is the monodromy operator associated to q. In fact trM(λ) = c(x0 + a, x0, λ) + s′(x0 + a, x0, λ) which is,
in fact, independent of x0.

The Dirichlet and Neumann eigenvalues with respect to the interval [x0, x0 + a] are given as the zeros of
the entire functions s(x0 + a, x0, ·) and c′(x0 + a, x0, ·), respectively, and depend, in general, on x0.

Let d(λ), p(x0, λ), and r(x0, λ) denote the multiplicities of λ as zeros of (trM)2 − 4, s(x0 + a, x0, ·) and
c′(x0 + a, x0, ·), respectively (these are also the algebraic multiplicities of the corresponding eigenvalues).
Moreover, let pi(λ) = min{p(x0, λ) : x0 ∈ [0, a]} and ri(λ) = min{r(x0, λ) : x0 ∈ [0, a]}.

One has then the following facts (see [GW96]):

(1) pi(λ) = ri(λ).
(2) If d(λ) > 0, p(x0, λ) > 0, and r(x0, λ) > 0, then pi(λ) = ri(λ) > 0.
(3) d(λ)− pi(λ)− ri(λ) ≥ 0.

Note that a (semi-)periodic eigenvalue λ has geometric multiplicity 2 if and only if it is both a Dirichlet
and a Neumann eigenvalue. If λ is a point where two linearly independent Floquet solutions do not exist,
i.e., a (semi-)periodic eigenvalue with geometric multiplicity 1, then d(λ) > 0 and pi(λ) = ri(λ) = 0 so that
d(λ)− pi(λ)− ri(λ) > 0. In the self-adjoint case this is the only way to make d(λ)− pi(λ)− ri(λ) > 0.
Open problem: Now the question arises whether in the non-self-adjoint case it is possible that d(λ)− pi(λ)−
ri(λ) > 0 when λ is a (semi-)periodic eigenvalue of geometric multiplicity 2. Thus, either prove that
d(λ)− pi(λ)− ri(λ) > 0 implies pi(λ) + ri(λ) = 0 or give an example to the contrary.
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[FKP10] M. Fraas, D. Krejčǐŕık, and Y. Pinchover. On some strong ratio limit theorems for heat kernels. Discrete Contin.

Dynam. Systems A, 28:495–509, 2010.
[FS15] A. S. Fokas and D. A. Smith. Evolution PDEs and augmented eigenfunctions. I finite interval. arXiv:1303.2205

http://arxiv.org/abs/1303.2205, 2015.

[GW96] F. Gesztesy and R. Weikard. Picard potentials and Hill’s equation on a torus. Acta Math., 176(1):73–107, 1996.
[Hal13] M. A. Hall. Diophantine tori and non-selfadjoint inverse spectral problems. Math. Res. Lett., 20(2):255–271, 2013.
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