QUESTIONS PROPOSED AT THE A.I.M. WORKSHOP

SARANG SANE

ABSTRACT. An AIM workshop on "Projective modules and \mathbb{A}^1 -homotopy theory" was organized at the American Institute of Mathematics from the 5th to the 9th of May. Participants were asked to propose questions that they were interested in and felt are important to furthering the subject. Below is a list of these questions and some related discussions.

QUESTION 1

Question (Hailong Dao). Let X be the punctured spectrum on a local ring (R, \mathfrak{m}) . What is the obstruction theory for splitting of vector bundles over such a scheme?

More specifically, let $X = \text{Spec}(R) \setminus \{\mathfrak{m}\}$ for (R, \mathfrak{m}) local of dimension d. What is the obstruction to splitting of rank d-1 vector bundles on X?

Related Question (Satya Mandal). Let X be a scheme and \mathcal{E} be a vector bundle. What is the obstruction to obtaining a surjection $\mathcal{E} \twoheadrightarrow \mathcal{O}_X$?

Related Question (Aravind Asok). In the affine case, one has a fair idea of the obstruction theory for projective modules. What is the obstruction theory for general classes of modules?

Related Question (Hailong Dao). Is there an Euler class group for reflexive modules over a regular local ring (R, \mathfrak{m}) ?

Related Question. What is the role of \mathbb{A}^1 -homotopy theory in the non-affine case?

Remark (Paul Balmer). Maybe one can use the Jounalou trick of affine replacement of non-affine varieties.

Remark (Aravind Asok). Let $\nu_r(X)$ denote the set of rank r vector bundles over a scheme X. There exists a non-affine variety Y and a map $f : \mathbb{A}^n \to Y$ which is an \mathbb{A}^1 -weak equivalence but $\nu_r(Y)$ is large. Thus, for non-affine schemes, ν_r is not an \mathbb{A}^1 -homotopy invariant.

Related Question (Aravind Asok). Let V be a finite dimensional k-vector space. Let H be the codimension 1 hypersurface in $\mathbb{P}(V) \times \mathbb{P}(V^*)$ given by the incidence relation. Then

$$\mathbb{P}(V) \times \mathbb{P}(V^*) \smallsetminus H \xrightarrow{P_1} \mathbb{P}(V)$$

is an $\mathbb{A}^1\text{-}weak$ equivalence. Is p_1^* surjective on isomorphism classes of vector bundles?

Related Question (Kirsten Wickelgren). What is the role of Nišnevich / étale topology with realization to equivariant topological vector bundles in manifolds?

Date: May 24, 2014.

SARANG SANE

QUESTION 2

Question (by popular demand). What is the connection between Euler class groups and Chow-Witt groups?

Remark (Jean Fasel). Given a variety X over \mathbb{C} , there is a cycle class map

$$CH^r(X) \xrightarrow{c^r} H^{2r}(X(\mathbb{C}), \mathbb{Z}).$$

and given a variety X over \mathbb{R} , there is a cycle class map

$$CH^r(X) \xrightarrow{c^r} H^r(X(\mathbb{R}), \frac{\mathbb{Z}}{2\mathbb{Z}}).$$

Both these maps are compatible with products.

Question (Jean Fasel). Let X be a variety over \mathbb{R} . Is there a map \tilde{c}^r making the following diagram commute :

which is also compatible with products?

QUESTION 3

Question (Christian Haesemeyer). What are "motivic local systems"? Can one define motivic Atiyah classes?

QUESTION 4

Question (Kronecker-proposed by Satya Mandal). Are curves in \mathbb{A}^n_k set theoretic complete intersection ideals?

QUESTION 5

Question (Satya Mandal). Let $I \subseteq k[X_1, X_2, ..., X_n] = R$ be an ideal. Then is I

$$\mu(I) = \mu(\frac{I}{I^2})?$$

Remark (Satya Mandal). This is known when $\mu(\frac{I}{I^2}) \ge \dim(\frac{R}{I}) + 2$.

Related Question (S.M.Bhatwadekar). More specifically, let α be a surjective k-algebra homomorphism $\mathbb{C}[X_1, X_2, \ldots, X_5] \xrightarrow{\alpha} \mathbb{C}[Y_1, Y_2]$ and let $I = ker(\alpha)$. We know $\mu(\frac{I}{I^2}) = 3$. Is $\mu(I) = 3$?

Remark (Aravind Asok). One can use \mathbb{A}^1 -homotopy to compute $\mu(P)$ for a projective module P. This is by considering if the map $X \to BGL_r$ lifts to some suitable Grassmannian.

Related Question (Jean Fasel). Let X = Spec(R) be smooth and $Y \subseteq X$ be a smooth embedding. Is there a cohomological obstruction (computable á la Chow groups) to Y being a complete intersection?

Remark (Jean Fasel). Let

$$R_{univ} = \frac{k[X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n, Z]}{(\sum_{i=1}^n X_i Y_i - Z(1+Z))}$$
$$X_{univ} = \text{Spec}(R_{univ}) \qquad Y_{univ} = \text{Spec}(\frac{R_{univ}}{(X_1, X_2, \dots, X_n, Z)}).$$

Then the above structure has the universal property that given a k-variety $X = \operatorname{Spec}(R)$ and a subvariety $Y = \operatorname{Spec}(\frac{R}{I})$ with $\mu(\frac{I}{I^2})$, there is a natural map $X \xrightarrow{f} X_{univ}$ which restricts to a map $Y \xrightarrow{f} Y_{univ}$. The universal X_{univ} is a sphere in \mathbb{A}^1 -topology.

$$\widetilde{CH^*}(X_{univ},) \xrightarrow{\sim} GW(k) \oplus GW(k)\alpha$$

where the element α is a form on the subvariety Y_{univ} .

Question (Jean Fasel). With the above notations, given a k-variety X and a local complete intersection subvariety Y, let $f^*(\alpha)$ be the image of α under the induced map

$$\widetilde{CH}^*(X_{univ},) \xrightarrow{f^*} \widetilde{CH}^*(X,\omega_{X/k}).$$

Is $f^*(\alpha) = 0$ sufficient for Y to be a complete intersection?

Question 6

Question (Anastasia Stavrova). Can \mathbb{A}^1 -homotopy be extended over general smooth schemes, e.g. over a dvr? Else explain the issues.

Remark (Aravind Asok). Many basic things fail, a specific example is the stable \mathbb{A}^1 -connectivity theorem.

QUESTION 7

Question (Aravind Asok). Fix an integer d. For certain d, Mohan Kumar constructs projective modules of rank d-2 which are stably free but not free over a smooth affine variety X of dimension d over an algebraically closed field. Is this known for all d? Is there a pattern?

QUESTION 8

Question (Jean Fasel). Let X be a smooth affine k-variety of odd dimension d. Let P be a vector bundle of rank d. Does $c_d(P) \in CH^d(X)$ detect existence of a free summand of rank 1 for P?

QUESTION 9

Question (Kirsten Wickelgren). Is there a Serre spectral sequence for Morel's $\operatorname{H}^{\mathbb{A}^1}(\underline{\ },\mathbb{Z})$?

QUESTION 10

Question (Anand Sawant). When are the above questions well-defined over singular varieties? When have they been considered and what is their status?

SARANG SANE

QUESTION 11

Question (Paul Balmer). Using operations like \otimes, \wedge and taking cones, is there a construction so that one obtains the Koszul complex $K_{\bullet}(s)$ from the complex $\ldots 0 \to P \xrightarrow{s} A \to 0 \ldots$?

Does this generalize to tensor triangulated categories?

Remark (Paul Balmer). Let \mathbb{K} be a tensor triangulated category and let $X \in Ob(\mathbb{K})$. Suppose there is a map $X \xrightarrow{s} \mathbb{1}$. If the above construction works, then one can obtain a class $c(X) \in GW(\mathbb{K})$. This class should then define an obstruction class for X to split a free summand $\mathbb{1}$.

Remark (Madhav Nori). There is such a construction.

QUESTION 12

Question (Anastasia Stavrova). When G is a linear reduced/algebraic group, in a large number of cases, it is known on a case-by-case basis that $\Pi_0^{\mathbb{A}^1}(G)$ is abelian. Is this always true? Can this be obtained in a uniform way when it is true?

Remark (Madhav Nori). This is not always true e.g. $G = SU(2, \mathbb{R})$. In fact, the same reasoning should show that $\Pi_0^{\mathbb{A}^1}(G)$ is not abelian for any anisotropic group G over \mathbb{R} .

QUESTION 13

Question (Madhav Nori). Given positive integers d, r and X a CW complex with dim X = d and classes $c_i \in H^{2i}(X, \mathbb{Z})$ for i = 1, 2, ..., r, such that the image of c_i is 0 in $H^{2i}(X, \frac{\mathbb{Z}}{m\mathbb{Z}})$ for all m, does there exist a complex vector bundle \mathcal{E} with rank $(\mathcal{E}) = r$ and $c_i(\mathcal{E}) = c_i$?

QUESTION 14

Question (Madhav Nori). Let X be a d-dimensional smooth affine variety. Let $\alpha \in F^{d-1}K_0(X)$. Then does there exist a vector bundle \mathcal{E} of rank d-1 such that $[\mathcal{E}] = \alpha$?

E-mail address: sarangsanemath@gmail.com