at the
American Institute of Mathematics, San Jose, California
organized by
Sebastian Goette, Kiyoshi Igusa, and John Klein
In the last fifteen or so years, certain invariants for fiber bundles have been constructed in three different ways: analytically, homotopy theoretically and Morse theoretically. Depending on how the theory is presented, the invariants take value in either the cohomology of the base space, or in some version of higher algebraic K-theory. We group these invariants under the collective name, higher torsion.
This workshop will focus on the various kinds of the higher torsion. At the current time it is not yet known whether the different approaches lead to the same invariant; this is probably the most fundamental question in the subject. Therefore, we hope to bring together geometrically minded analysts and topologists with the hope of developing a common language.
More precisely, the workshop will focus on
The workshop schedule.
A report on the workshop activities.
Papers arising from the workshop: