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Introduction
Riemann-Hilbert problems (RHPs) and Toeplitz matrices play an important role in

various areas of mathematics and applications to integrable probability, random matrix
theory (RMT) and mathematical physics. Some of the most important examples include
the 2D Ising model, quantum spin chain models, dimer models, and various results on the
asymptotic behavior of large matrices, the study of random matrix models, the method of
nonlinear steepest descent, and the study of integrable nonlinear PDEs. Another closely
connected area includes special functions, such as Painlevé, which are important because
they provide explicitly solvable models for a vast array of phenomena in mathematics and
physics.

The workshop brought together leading experts and early-career researchers working
in various areas connected to applications and theory of Riemann-Hilbert problems and
concrete operators. Most of the work focused on the following problems, which are discussed
in more detail below:

• Dimer models and Wiener-Hopf factorizations
• Planar orthogonal polynomials
• Riemann-Hilbert problems with jump matrices of size larger than two
• Double-scaling limits of Toeplitz determinants
• Berger-Coburn conjecture and Hilbert matrix operators

Dimer models and Wiener-Hopf factorizations
A certain Wiener–Hopf factorization problem appears naturally in the study of dimer

models as the size of the underlying graph tends to infinity. In many cases, obtaining a
Wiener-Hopf factorization of a matrix-valued function, denoted by ϕ, allows us to analyze
this asymptotic behavior. The specific form of ϕ depends on the particular dimer model
considered. A common setting involves a product form for ϕ, ϕ(z) =

∏N
i=1 ϕi(z), where ϕi

are explicit rational functions. These functions are typically such that the determinant of ϕi

takes the form (a− z±1)±1, for some a ∈ R. While the Wiener-Hopf factorization can often
be obtained explicitly for small values of N , the challenge lies in understanding its behavior
as N approaches infinity.
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For cases where ϕi+k = ϕi for a fixed positive integer k and all i, the problem has been
addressed by Berggren-Duits, Borodin-Duits, and Berggren-Borodin. The group focused on
extending this analysis to a broader class of matrices ϕ beyond those previously considered.
Specifically, we investigated matrices that arise naturally when dealing with a so-called
qVolume-measure with doubly periodic edge weights, more precisely,

ϕi(z) =

(
1 aiq

i

biq
i 1

)
(1)

where ai+2 = ai and bi+2 = bi for all i, and q = e
1
N .

The group explored various methods for obtaining the Wiener-Hopf factorization for
small values of N . We also discussed the possibility of an approximate solution using the
fact that qi ∼ et for t ∈ [0, 1] as i varies from 1 to N . While the discussions were fruitful,
the problem remains challenging. Further research is needed to develop a robust approach
to this specific case of Wiener-Hopf factorization.

Planar orthogonal polynomials
This working group started from questions and open problems proposed by H. Heden-

malm and K. McLaughlin during their talks at the AIM workshop “Riemann-Hilbert prob-
lems, Toeplitz matrices, and applications”.

One of the goals is trying to match the ansatz proposed by Hedenmalm [Hedenmalm24]
for analyzing planar Orthogonal Polynomials (OPs) with the ∂̄-problem representation: in
particular, we are trying to re-interpret the quantities appearing in Hedenmalm’s ansatz in
terms of the g-function, which drives the calculations in the ∂̄-side.

Particular attention has been posed on the Hermite case as a “warm-up” model that
can give insight and intuition on further generalization for other OPs: we are interested in
understanding the intrinsic relation between the mother body (where the OPs zeros accu-
mulate), the 2-dimensional droplet, the g-function, the 2D-potential Q, and the connection
with 1-dimensional Hermite OPs. Within this setting, the matching will require a careful
steepest descent analysis that involves the g-function and the Schwartz function describing
the boundary of the droplet.

Finally, we are exploring the possibility of the existence of a map (that we call the
T operator) between 1-dimensional (possibly on a curve Γ) and 2-dimensional OPs. In
the Hermite case, the T operator maps Hermite polynomials into themselves (up to scaling
constants). The questions are then 1) how does the T operator acts on different sets of OPs,
2) under what conditions the map is well defined and bijective, and 3) can the T operator
be viewed as machine to generate (potentially new) OP systems.

Riemann-Hilbert problems with jump matrices of size larger than two
Riemann-Hilbert problems with jump matrices of size k = 2 are quite well understood

and widely used in applications to random matrix theory and mathematical physics. The
goal here was to discuss the problems with k > 2 and consider their applications. Such
problems naturally arise in the context of random matrices with external source, which are
ensembles of n× n Hermitian matrices equipped with the distribution

1

Zn

exp {−nTr (V (M)− AM)} dM, (2)
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where V is a polynomial and A is an n × n Hermitian matrix. Part of the activity in the
group was to review some of the existing results—see [M-FS] and the references therein.
As an example, a Riemann-Hilbert problem with a 4× 4 jump matrix appears when in the
ensemble (2) the Hermitian matrix A has three distinct eigenvalues a1, a2, and a3 respectively
with multiplicities n1, n2, and n3 such that n1 + n2 + n3 = n which all grow with n.
Participants discussed the prospects of answering the questions raised in [BK07] via analyzing
the associated 4× 4 Riemann-Hilbert problem. It is obvious that the larger size RHPs can
be obtained in a similar way, but one needs to prioritize the analysis of the case k = 4.

Other areas where problems with k > 2 appear include phase diagram and topological
expansion for the free energy for the quartic model with external source (see [BGM24])
and interpreting random matrix models with external source as special cases of two-matrix
models. Besides the matrix models with external source, other large size Riemann- Hilbert
problems appear in the study of radial toda equation of relatively small periodicity. Further,
while not discussed during the workshop, the 4× 4 problems also appear in connection with
Toeplitz plus Hankel matrices.

Double-scaling limits of Toeplitz determinants
Double-scaling limits of Toeplitz determinants Dn(ft) as n → ∞ and t → tc (where

the symbol depends on an additional parameter t) have received considerable attention in
recent years because of various applications in random matrix theory and mathematical
physics, in particular in the study of unitary invariant ensembles with certain potentials and
the extreme values and averages of the characteristic polynomials of the circular unitary
ensemble (such as Fyodorov-Keating conjectures [FK,FHK]), which are further related to
the statistical properties of the Riemann zeta function. To complement recent results, which
have all used the Riemann-Hilbert analysis, our discussions focused on operator-theoretic
techniques and in particular on the use of insight gained in the recent PhD thesis [Pugh],
which may lays the groundwork for further developments.

To be more specific, the discussion of the group focused on Toeplitz determinantsDn(a)
where the symbol is a piecewise continuous function a = at1,...,tR , representatable as

at1,...,tR(e
ix) = b(eix)

R∏
r=1

uβr,tr(e
ix), uβ,t(z) := (−z/t)β.

The case where the sizes βr and the locations tr of the jump discontinuites are fixed is
described by the Fisher-Hartwig asymptotics [DIK1,DIK2]. But the case where the tr’s are
not fixed but vary with n (while the βr’s are still fixed), has not yet been systematically
been studied (see however [CK,CF]). In view of the dependence of t1, . . . , tR on n a whole
variety of scenarios is possible, which may lead to different types of asymptotic behavior.
The group focused on two of them as a starting point.

(1) Assume that, as n → ∞ we have tr → t0 (i.e., the location of the jumps approaches
a single (fixed) point t0). Under what conditions does the ratio

Dn(at1,...,tR)

Dn(at0,...,t0)

converge to a constant? (The asymptotics of the denominator is described by classical Fisher-
Hartwig.) Based on insight gained from corresponding stability analysis [Pugh], a case where
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progress seems possible is when the (multiple) scaling limits

n(tr/t0 − 1) → ixr

with xr ∈ R fixed hold. In other words, when the tr’s approach the t0 with some “moderate”
speed, tr ≈ t0e

ixr/n. The details need to be worked out and may require some effort.

(2) Another interesting case is when the symbol is a product of two functions, both of
the kind as described in (1), but with different t0’s. Say, we have symbols

at1,...,tR with tr → t0, 1 ≤ r ≤ R

and
at̃1,...,t̃S with t̃s → t̃0, 1 ≤ s ≤ S,

t0 ̸= t̃0. Then it seems plausible that “classical” localization results could be proved, i.e.,
the limit

Dn(at1,...,tRat̃1,...,t̃S)

Dn(at1,...,tR)Dn(at̃1,...,t̃S)

converges to a constant. A proof of such a result would still be non-trivial since it will rely
on (double/multiple) scaling limit versions of stability of sequences of Toeplitz matrices in
the spirit of [Pugh].

In the above discussion, the sizes βr are supposed to be sufficiently small, i.e., we are
not attempting to deal with a generalized FH-asymptotics.

Berger-Coburn conjecture and Hilbert matrix operators
Berger and Coburn [berger1994heat] show that for a Toeplitz operator Tg : F → F

acting on the Segal–Bargmann space F of all entire functions that are square-integrable with
respect to the Gaussian measure one has the estimates

C(t) ∥Tg∥ ≥
∥∥g̃(t)∥∥∞ , 1 > t >

1

4

C(t)
∥∥g̃(t)∥∥∞ ≥ ∥Tg∥ , 0 < t <

1

4
,

where

g̃(t)(a) =

∫
Cn

g(w) exp
{
−|w − a|2/4t

}
dv(w)(4πt)−n.

This leads to a natural conjecture (now known as the Berger-Coburn conjecture) that Tg is
bounded if and only if g̃(1/4) is bounded.

The focus of our work group was twofold. We first exploited the (unitary) Bargmann
transform B : L2(R) → F , and wrote down an integral representation for the map B∗FB :
L2(R) → L2(R). Clearly F is bounded if and only B∗FB is bounded. So we tried to see
how one could algebraically (or otherwise) manipulate the integral expression B∗FB so that
g̃(t)(a) appears.

Our second approach was to find a norm attaining sequence of vectors for the Toeplitz
operator Tg. Since the Segal–Bargmann space is a reproducing kernel Hilbert space in which
the reproducing kernels ka(z) satisfy

⟨Tgka, ka⟩ = g̃(1/2)(a)

it seemed plausible that if xn =
∑

xn
i k

n
ai

is a norm attaining sequence for Tg, then one may

be able to express ∥Tgxn∥ in terms of g̃(1/4).
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Since the original proofs of C(t) ∥Tg∥ ≥
∥∥g̃(t)∥∥∞ , for 1 > t > 1

4
and C(t)

∥∥g̃(t)∥∥∞ ≥
∥Tg∥ , for 0 < t < 1

4
use trace norm duality results, our hope was if one could examine and

reproduce these results using constructive methods, this would shed light on the Berger-
Coburn Conjecture.

In addition to the Berger-Coburn conjecture, we also discussed the Hilbert matrix
operators Hλ, which in the simplest form can be understood as the matrices

Hλ =

(
1

j + k + λ

)
j,k≥0

acting on ℓ2, where λ ̸= 0,−1,−2, . . .. In particular, we reviewed some of the previous
proofs of Magnus and Hill of the results on the spectral properties of H1, which are quite
complicated and involved, and provided in [M-RV] a more streamlined and simple proofs
of their results using the properties of the Mehler-Fock transform. We also considered the
Hilbert matrix as an operator acting on the Bergman spaces A2

λ when −1 < λ < 0 and
tried to compute its norm. We largely reviewed the relevant previous work on this difficult,
long-standing problem, and made plans for further work that arose from our discussions on
generalized Mehler-Fock transforms.
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