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Workshop Summary

Workshop Focus
Fluid dynamics refers to an interdisciplinary effort aimed at understanding the complex

behavior of fluids, particularly the phenomenon of turbulence. Developing a rigorous theory
consistent with experiments, computational simulations, and the observed phenomenology
of turbulence has remained a significant challenge in the mathematical fluids community
since the foundational works of Kolmogorov, Onsager, and Taylor in the 1930s-1950s. Even
a precise definition of turbulence remains elusive.

However, it is anticipated that the emergence of turbulent flows is associated with the
dominant role of small-scale dynamics in fluid flows. This association may be related to
singularities near a boundary of a domain, putative flow instabilities, turbulent layers, self-
similar blow-up profiles, and other singularities. Remarkably, some turbulent phenomena
are observable through aspects of the well-posedness theory of partial differential equations
(PDEs) arising in fluid mechanics.

Recent developments have shed light on the chaotic behavior observed in turbulent
flows, the role of criticality in ill-posedness results, singularity formation in finite time of
classical solutions, and the relationship between irregularity, instability, and non-uniqueness
of solutions. Many exciting results have been published in the field of mathematical fluid
dynamics in recent years, with contributions from invited participants and organizers of this
workshop.

The primary goal of the workshop was to bring together leading experts in the mathe-
matical theory of hydrodynamics models and stimulate extensive discussions on recent devel-
opments and possible future research directions. The main focus of mathematical activities
in the workshop was the investigation of small-scale dynamics in fluid flows and their role in
emerging singularities and turbulent flows. The objective was to develop a rigorous theory
consistent with computational simulations and the observed phenomenology of turbulence.
Main topics of interest included ill-posedness and singularity formation in fluids, hydrody-
namical instabilities and turbulent mixing, mathematical analysis of fluid boundary layers,
and inviscid limits and anomalous dissipation in fluids. The workshop featured talks intro-
ducing the main ideas and problems in each topic, and working groups were formed during
the week to address the problems outlined below. We anticipate that the workshop will lead
to several new and interesting research directions, fostering continued communication.

Problem Studied in Working Groups

Enhanced and Anomalous Dissipation of the 2D NSE.
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The initial problem (proposed by Tarek Elgindi) discussed in this group was to study
the phenomena of enhanced dissipation and anomalous dissipation of the 2D incompressible
Navier–Stokes equations in a more general setting. The overall idea is to first construct a
low-regularity steady-state solution of the 2D Euler equations, take it as the initial data
for the corresponding Navier–Stokes equations, and then analyze how the energy/enstrophy
dissipation behaves in the zero-viscosity limit. Ideally, if the underlying Euler steady-state
solution is sufficiently irregular, the energy/enstrophy dissipation shall tend to zero much
slower that in the smooth case as viscosity vanishes. As agreed by the whole group, stationary
vortex patch solutions to the Euler equations would be nice candidates for such purpose. This
type of steady-state solutions are easy to construct in a 2D tunnel. Based on a particular
periodic vortex patch solution, the group performed some preliminary analysis and showed
that enhanced dissipation and anomalous dissipation are possible in such scenario. However,
to come up with a conclusive result, it still requires some further analysis and calculations.
The group agreed to leave this problem to future discussions.

In the last two days of the workshop, the focus of the project turned to another related
problem (an open question): Is it possible to construct a stationary vortex patch solution to
the 2D Euler equations in the half-space with a constant background flow? A promising idea
popped up quickly after some insightful discussions. That is, by properly parameterizing the
boundary of the vortex patch, one can reformulate the problem equivalently into a fixed-point
problem involving a nonlinear integral map. It then reduces to proving the existence of a
fixed point of this map. To test this idea, the group performed some numerical computation
on the fixed-point problem and observed that fixed-point iteration converged stably to a
potential solution, which inspired confidence in solving the problem analytically. As an
extension of the workshop, the group is now actively working together on this fixed-point
problem.

Group members: Alexey Cheskidov, Elaine Cozzi, De Huang, In-Jee Jeong, Piotr
Kokocki, Farjana Siddiqua, and Peicong Song.

Non-existence of self-similar solutions of the 3D NSE in L3.

For PDEs which possess a natural scaling, it is natural to look for blow-up solutions
which are self-similar, i.e., scaling invariant. For the 3D Navier-Stokes equations, this was
mentioned by Jean Leray in his pioneering work in the 1930s. In the 1990s, the existence
of non-trivial self-similar blow-up solutions on the whole space was ruled out by Necas,
Ruzicka and Sverak when the similarity profile is in the critical Lebesgue space. This was
later improved by Tsai to exclude blow-up scenarios under weaker decay assumptions. The
proofs delicately rely on a stationary system satisfied by the self-similar profile. Part of
this system, the total head pressure, enjoys a maximum principle which, alongside decay
properties for the standard pressure, implies the energy of the profile is zero. On the half-
space, the result of Necas, Ruzicka and Sverak is known by other methods, but that of Tsai is
not. The problem is that, although the total head pressure appears to still enjoy a maximum
principle, the pressure does not vanish on the boundary, indicating the total head pressure
may be positive. This possibility breaks Tsai’s argument.

One working group began to examine this problem. The group found several reasons for
optimism. First, the group analyzed a toy 1D version of the elliptic inequality and found that
non-trivial solutions must be singular at the origin, violating the finite boundary condition
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requirement for the total head pressure. Second, in the original proof of Necas, Ruzicka and
Sverak, there is room for a sign varying term, so long as it can be compared to a fraction of
the energy of the similarity profile. Third, the main issue lies in the boundary values for the
pressure which may be non-zero. Until recently, the boundary conditions for the pressure
were not well understood. Recent work of Maekawa, Miura and Prange has resolved this,
providing new tools compared to those available to researchers previously working on this
problem. These observations provide a foundation for further research on this topic by the
group members.

Group members: Zachary Bradshaw, Hussain Ibdah, Stan Palasek, Hao Jia, and Woj-
ciech Ozański.

Norm inflation for 2D Euler, for u ∈ Hs, s ∈ (0, 1).

During discussions it was noted that the main difficulty is the very low required regu-
larity of the velocity field, which contrasts with the known conservation laws for both the L2

and H1 norm of the velocity. A priori, it is not clear what mechanism could be investigated
for growth of the solution. For example, one can consider a similar scenario as in the more
regular cases (such as in the recent result on the instantaneous gap loss of Sobolev regularity
for s ∈ (1, 2)). Although this could be a promising candidate, some important improvements
to the method would be necessary to obtain sufficient control of the local-in-time behaviour
of the solution. One possible approach could combine techniques from prior work on SQG,
where the Hs bounds are obtained directly, rather than by making use of the particle trajec-
tories. However, in analogy to the approximation used in the SQG case, this would require,
roughly speaking, an infinite order of approximation.

Group members: Diego Cordoba, Slim Ibrahim, Luis Martinez-Zoroa, Nader Mas-
moudi, and Wojciech Ozański.

Rate of Growth of Line Segments under 2D Euler flow.

The group worked on constructing a 2D Euler flow such that there exists a line segment
of unit length at time zero, and the length would grow exponentially in time for all time
carried by the flow, while still remaining in a bounded domain. Essentially we want the line
segment to twist and fold upon itself repetitively.

During the workshop, we came up with the idea of using point vortices (and its associ-
ated smooth approximations) for the Euler flow. We use computer programs to sanity check
whether numerically it would be exponentially growing. One vortex would have exactly
linear growth, and two vortices also have approximately linear growth, to our expectations.
The case of three interacting vortices with equal strength seemed to generate exponential
growth of the line segment if the initial line crosses the trajectory of the vortices, and such
exponential growth appears very robustly with respect to initial configuration of the location
of vortices and line segment. We are working on understanding it and justifying it rigorously.

Group members: Slim Ibrahim, Yixuan Wang, Helena Nussenzveig Lopes, and Tarek
Elgindi.

Boundary layers and the vanishing viscosity limit with injection and suction.
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The group studied the creation of boundary layers and the validity of the vanishing
viscosity limit with injection and suction boundary conditions. In general, the validity of the
vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations converge
to solutions of the Euler equations if the viscosity vanishes, is unknown. It is know, however,
that injection and suction can stabilize the layer, but a rigorous analysis has only been
perormed in specialized settings, namely, channels with injection and suction normal to the
wall or when the flow is linearized around a constant shear. The group started out studying
the case of flows in an annulus, to see whether the concavity and convexity of the boundary
plays a role. It then reverted to the case of a channel, in fact, localized to a half-plane
with non-trivial suction. They investigated whether the vanishing viscosity limit can be
proven using the recent techniques of Vasseur and Yang to estimate the rate of separation
in the boundary layer, when the normal suction is stronger than the tangential shear at the
boundary. They realized that these techniques are not sufficient to establish the vanishing
viscosity limit, and may require the use of a corrector, but allow to estimate the rate of
energy dissipation as viscosity vanishes and the rate of separation in the boundary layer as
a function of time. As a byproduct they obtain a local bound on the vorticity production at
the boundary. This work is ongoing.

Group members: Anna Mazzucato, Alexis Vasseur, Jincheng Yang, Vincent Martinez,
and Aseel Farhat.


