Mapping theorems for numerical range

Thomas Ransford

Université Laval, Québec

Workshop on Crouzeix’s conjecture
AIM, San Jose, Aug 2017
Notation

- H is a complex Hilbert space.
- T is a bounded linear operator on H.
- $\sigma(T)$ is the *spectrum* of T, namely
 \[\sigma(T) := \{ \lambda \in \mathbb{C} : (\lambda I - T) \text{ is not invertible} \} . \]
- $W(T)$ is the *numerical range* of T, namely
 \[W(T) := \{ \langle Tx, x \rangle : x \in H, \|x\| = 1 \} . \]
- $w(T)$ is the *numerical radius* of T, namely
 \[w(T) := \sup \{ |\lambda| : \lambda \in W(T) \} . \]
Some basic facts about numerical range

- $W(T)$ is bounded and $\|T\|/2 \leq w(T) \leq \|T\|$.
- $W(T)$ is convex (Toeplitz–Hausdorff theorem).
- $W(T)$ is compact if $\text{dim } H < \infty$.
- λ an eigenvalue of $T \Rightarrow \lambda \in W(T)$.
- $\text{conv}(\sigma(T)) \subset \overline{W(T)}$, with equality if T is normal (Berberian)

Example 1

If $T = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$, then $\sigma(T) = \{0\}$ and $W(T) = \overline{D}$.

Example 2

If T is the backward shift on ℓ^2, then $\sigma(T) = \overline{D}$ and $W(T) = D$.
Spectral mapping theorem

If \(f \) is holomorphic on a neighborhood of \(\sigma(T) \), then

\[
\sigma(f(T)) = f(\sigma(T)).
\]

Problem

What is the analogue for \(W(T) \)?

- \(W(f(T)) = f(W(T)) \) if \(f(z) = az + b \).
- \(W(f(T)) \subseteq \text{conv}(f(W(T))) \) if \(T \) is normal.
Two examples

Example 1

Let $T := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ (normal) and $f(z) := z - z^2$. Then:

- $f(W(T)) = f([0, 1]) = [0, \frac{1}{4}]$,
- $W(f(T)) = \{0\}$ (because $f(T) = T - T^2 = 0$).

Conclusion: $W(f(T)) \not\supset f(W(T))$ in this case.

Example 2

Let $T := \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ and $f(z) := \frac{z + 1/2}{1 + z/2}$. Then:

- $f(W(T)) = f(\mathbb{D}) = \mathbb{D}$,
- $W(f(T)) = \overline{D}(\frac{1}{2}, \frac{3}{4})$ (because $f(T) = \frac{1}{2}I + \frac{3}{4}T$).

Conclusion: $W(f(T)) \not\subset f(W(T))$ in this case.
The power inequality

Theorem

\[w(T^n) \leq w(T)^n \quad (n \geq 1). \]

Reformulation as a mapping theorem:

\[W(T) \subset \overline{D} \implies W(T^n) \subset \overline{D}. \]

- Conjectured by Halmos (early 60’s?)
- Bernau–Smithies (’63): case \(n = 2^k \).
- Lax–Wendroff (’64) \(w(T^n) \leq Kw(T)^n \) where \(K = K(\dim H) \).
- Berger (’65): general result.
- Pearcy (’66): elementary proof.
Theorem (Berger–Stampfli, '67)

Assume that $f(\overline{D}) \subset \overline{D}$ and $f(0) = 0$. Then

$$W(T) \subset \overline{D} \Rightarrow W(f(T)) \subset \overline{D}. \quad (\star)$$

- Generalizes the power inequality.
- Example 2 shows the condition $f(0) = 0$ cannot be dropped. More on this later.
The convex kernel of compact $E \subseteq \mathbb{C}$ is the set of $z \in E$ such that E is star-shaped with respect to z. It is a compact convex set.

Theorem (Kato, ’65)

Let f be a rational function such that $f(\infty) = \infty$. Let F be a compact convex subset of \mathbb{C}, let $E := f^{-1}(F)$, and let C be the convex kernel of E. Then

$$W(T) \subseteq C \implies W(f(T)) \subseteq F.$$

- Also generalizes the power inequality.
- Can be partially ‘unified’ with the Berger–Stampfli theorem (Putinar–Sandberg, ’05).
Let $\mathbb{H} := \{z \in \mathbb{C} : \text{Re} \, z > 0\}$.

Theorem (Kato, ’65)

If $f(\mathbb{H}) \subset C$, where C is a closed convex set, then

$$W(T) \subset \mathbb{H} \Rightarrow W(f(T)) \subset C.$$

If $f(\mathbb{D}) \subset \mathbb{H}$, then

$$W(T) \subset \mathbb{D} \Rightarrow W(f(T)) \subset \mathbb{H} - \text{Re} \, f(0).$$

Example:

Let $T := \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ and $f(z) := t \left(\frac{1+z}{1-z} \right)$, where $t > 0$.

Then $f(\mathbb{D}) = \mathbb{H}$ and $W(f(T)) = D(t, 2t)$.
Drury’s theorem

Theorem (Drury, ’08)

Assume that $f(\overline{D}) \subset \overline{D}$. Then

$$W(T) \subset \overline{D} \Rightarrow W(f(T)) \subset \text{conv}\left(\overline{D} \cup \overline{D}(\alpha, 1 - |\alpha|^2)\right),$$

where $\alpha := f(0)$. In particular,

$$W(T) \subset \overline{D} \Rightarrow W(f(T)) \subset (5/4)\overline{D}.$$
Another example

Let $a > b > 0$ and set $c := \sqrt{a^2 - b^2}$. It is well known that, if

$$ T := \begin{pmatrix} c & 2b \\ 0 & -c \end{pmatrix}, $$

then $\sigma(T) = \{ -c, c \}$, and $W(T)$ is the ellipse

$$ W(T) = \left\{ x + iy : \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\}. $$

Theorem (Crouzeix)

If $f : W(T) \to \overline{\mathbb{D}}$ is a conformal map, then $W(f(T)) \not\subset \overline{\mathbb{D}}$.

- It does not matter which point f sends to 0.
- If $f(0) = 0$, there is a simple proof using Schwarz's lemma.
- Similar phenomenon for a square.
Relation with spectral sets

A compact set $X \subset \mathbb{C}$ is called a K-spectral set for T if $\sigma(T) \subset X$ and if, for all functions f holomorphic on a neighborhood of X,

$$\|f(T)\| \leq K\|f\|_X.$$

Theorem (Crouzeix)

If X is a K-spectral set for T then, for all f holomorphic near X,

$$w(f(T)) \leq \frac{1}{2}(K + K^{-1})\|f\|_X.$$

Applications

- $W(T) \subset \overline{D} \Rightarrow \overline{D}$ is a 2-spectral set for T (Okubo–Ando, '75). Thus if $W(T) \subset \overline{D}$ and $f(\overline{D}) \subset \overline{D}$, then $W(f(T)) \subset (5/4)\overline{D}$.

- $W(T)$ is $(1 + \sqrt{2})$-spectral set for T (Crouzeix–Palencia, '17). Hence, if $f(W(T)) \subset \overline{D}$, then $W(f(T)) \subset \sqrt{2}\overline{D}$.

Thomas Ransford
Mapping theorems for numerical range
A compact $X \subset \mathbb{C}$ is a complete K-spectral set for T if $\sigma(T) \subset X$ and if, for all matrix-valued functions F holomorphic near X,

$$\|F(T)\| \leq K \|F\|_X.$$

Theorem (Arveson, ’72)

X is complete 1-spectral set for T iff T has a normal ∂X-dilation.

Theorem (Paulsen, ’84)

X is a complete K-spectral set for T iff there exists $S \in B(H)$ such that $\|S\|\|S^{-1}\| \leq K$ and X is a complete 1-spectral set for STS^{-1}.

Theorem (Davidson–Paulsen–Woerdeman ’16)

The following are equivalent:

- X is a complete K-spectral set for T.
- X is a complete $\frac{1}{2}(K + K^{-1})$-numerical radius set for T.

Thomas Ransford

Mapping theorems for numerical range
Towards a general mapping theorem?

Notation

Given closed convex subsets C_1 and C_2 of \mathbb{C}, let

$$W(C_1, C_2) := \bigcup \left\{ W(f(T)) : W(T) \subset C_1, \ f(C_1) \subset C_2 \right\}.$$

Here the union is taken over:

- all operators T (on any H) such that $W(T) \subset C_1$, and
- all functions f holomorphic near C_1 such that $f(C_1) \subset C_2$.

Easy facts:

- $W(C_1, C_2) \supset C_2$.
- $W(C_1, C_2) \subset W(C_1, C_2')$ if $C_2 \subset C_2'$.
- $W(C_1, aC_2 + b) = aW(C_1, C_2,) + b$
Examples

Reminder:

\[
W(C_1, C_2) := \bigcup \left\{ W(f(T)) : W(T) \subset C_1, \ f(C_1) \subset C_2 \right\}.
\]

Examples

- \(W(\overline{D}, \overline{D}) = (5/4)\overline{D} \) (Drury, '08).
- \(W(C_1, \overline{D}) \subset \sqrt{2} \overline{D} \) (Crouzeix–Palencia, '17).
- \(W(\overline{H}, C_2) = C_2 \) (Kato, '65).
- \(W(\overline{D}, \overline{H}) = \mathbb{C} \) (Kato, '65).

Together with the ‘easy facts’, the Crouzeix–Palencia result yields

\[
W(C_1, C_2) \subset \bigcap \left\{ \sqrt{2} \overline{D} : \text{closed disks } \overline{D} \supset C_2 \right\}.
\]
Possible questions for discussion

Reminder:

\[W(C_1, C_2) := \bigcup \left\{ W(f(T)) : W(T) \subset C_1, f(C_1) \subset C_2 \right\}. \]

- Is \(W(C_1, C_2) \) the ‘right’ object to consider?
- If so, then can we give a concrete description of it?
- Can we at least show that \(W(C_1, C_2) \) is closed in \(\mathbb{C} \)? Convex?
- What about ‘basepoints’ (as in the Berger–Stampfli theorem)?
- Is there a ‘complete’ version of \(W(C_1, C_2) \)?