Positivity of L-functions and "Completion of square"

Wei Zhang
Massachusetts Institute of Technology
Bristol, June 4th, 2018
Outline

1. Riemann hypothesis
2. Positivity of L-functions
3. Completion of square
4. Positivity on surfaces
Riemann Hypothesis (RH)

Riemann zeta function

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \cdots \]

\[= \prod_{p, \text{ primes}} \frac{1}{1 - p^{-s}}, \quad s \in \mathbb{C}, \ \text{Re}(s) > 1 \]

Analytic continuation and Functional equation

\[\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1 - s), \quad s \in \mathbb{C} \]

Conjecture

The non-trivial zeros of the Riemann zeta function \(\zeta(s) \) lie on the line

\[\text{Re}(s) = \frac{1}{2}. \]
Riemann Hypothesis (RH)

Riemann zeta function

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \cdots \]

\[= \prod_{p, \text{ primes}} \frac{1}{1 - p^{-s}}, \quad s \in \mathbb{C}, \Re(s) > 1 \]

Analytic continuation and Functional equation

\[\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1 - s), \quad s \in \mathbb{C} \]

Conjecture

The non-trivial zeros of the Riemann zeta function \(\zeta(s) \) lie on the line

\[\Re(s) = \frac{1}{2}. \]
Equivalent statements of RH

Let

$$\pi(X) = \#\{\text{primes numbers } p \leq X\}.$$

Then

$$RH \iff \left| \pi(X) - \int_2^X \frac{dt}{\log t} \right| = O(X^{1/2+\varepsilon}).$$

Let

$$\theta(X) = \sum_{p < X} \log p.$$

Then

$$RH \iff |\theta(X) - X| = O(X^{1/2+\varepsilon}).$$
Equivalent statements of RH

Let

$$\pi(X) = \# \{\text{primes numbers } p \leq X\}.$$

Then

$$RH \iff \left| \pi(X) - \int_2^X \frac{dt}{\log t} \right| = O(X^{1/2+\epsilon}).$$

Let

$$\theta(X) = \sum_{p<X} \log p.$$

Then

$$RH \iff |\theta(X) - X| = O(X^{1/2+\epsilon}).$$
RH for a curve C over a finite field \mathbb{F}_q

Theorem (Weil)

$$|\#C(\mathbb{F}_{q^n}) - (1 + q^n)| \leq 2 g_C \sqrt{q^n}.$$

Remark

To compare with the case for \mathbb{Q}:

$$RH \iff |\theta(X) - X| = O(X^{1/2+\epsilon}).$$
Riemann hypothesis
Positivity of L-functions
Completion of square
Positivity on surfaces

RH for a curve C over a finite field \mathbb{F}_q

Theorem (Weil)

$$|\#C(\mathbb{F}_{q^n}) - (1 + q^n)| \leq 2g_C \sqrt{q^n}.$$

Remark

To compare with the case for \mathbb{Q}:

$$RH \iff |\theta(X) - X| = O(X^{1/2+\epsilon}).$$
Example

To an elliptic curve over \mathbb{Q}

$$E : y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$$

Hasse–Weil associates an L-function

$$L(s, E) = \prod_{p: \text{good}} \frac{1}{1 - a_p p^{-s} + p^{1-2s}}$$

where, for good p

$$a_p = p + 1 - E(\mathbb{F}_p).$$
There are many other L-functions, e.g., those attached automorphic representations on $\text{GL}(N)$.

Conjecture

Nontrivial zeros of all automorphic L-functions lie on the line

\[
\text{Re}(s) = \frac{1}{2}.
\]
1. Riemann hypothesis

2. Positivity of L-functions

3. Completion of square

4. Positivity on surfaces
A corollary to Riemann Hypothesis

Suppose that an L-function has the following properties

- $L(s)$ is an entire function.
- $L(s) \in \mathbb{R}$ if s is real.
- $L(s) > 0$ as $s \in \mathbb{R}$ and $s \to \infty$.

We have

$$\text{GRH} \implies L(1/2) \geq 0,$$

or more generally, the first non-zero coefficient (i.e., the leading term) in the Taylor expansion is positive.
A corollary to Riemann Hypothesis

Suppose that an L-function has the following properties

- $L(s)$ is an entire function.
- $L(s) \in \mathbb{R}$ if s is real.
- $L(s) > 0$ as $s \in \mathbb{R}$ and $s \to \infty$.

We have

$$GRH \implies L(1/2) \geq 0,$$

or more generally, the first non-zero coefficient (i.e., the leading term) in the Taylor expansion is positive.
Riemann hypothesis
Positivity of L-functions
Completion of square
Positivity on surfaces

Superpositivity: non-leading terms

Lemma (Stark–Zagier (1980), Yun–Zhang)
Let π be a **self-dual** cuspidal automorphic representation of GL_n. Normalize its functional equation such that

$$L(s, \pi) = \pm L(1 - s, \pi).$$

Then

$$\text{GRH} \iff L^{(r)}(1/2, \pi) \geq 0, \text{ for all } r \geq 0.$$

Here

$$L(s, \pi) = \sum_{r=0}^{\infty} L^{(r)}(1/2, \pi) \frac{(s - 1/2)^r}{r!}.$$
The idea of proof

Hadamard product expansion (and the functional equation and the self-duality)

\[L(s + 1/2) = c \cdot s^r \prod_{\rho} \left(1 - \frac{s^2}{\rho^2}\right), \]

- the product runs over all the zeros \(\frac{1}{2} \pm \rho \) of \(L(s) \) such that \(\rho \neq 0 \),
- \(r = \text{ord}_{s=1/2}L(s) \), and \(c > 0 \) is the leading Taylor coefficient.

Now note that

\[GRH \iff \text{Re}(\rho) = 0. \]
Super-postivity of L-functions

- Super-postivity does not imply GRH. But it implies the non-existence of Landau–Siegel zero.

- Known for Riemann zeta function (Polya, 1927). Sarnak introduced a notion of “positive definite" for L-functions. If an L-function is positive definite then it is “super-positive". Not known if there are infinitely many positive definite L-functions.

- Goldfeld–Huang: there are infinitely many “super-positive" automorphic L-functions for GL(2).
Super-postivity does not imply GRH. But it implies the non-existence of Landau–Siegel zero.

Known for Riemann zeta function (Polya, 1927). Sarnak introduced a notion of “positive definite" for L-functions. If an L-function is positive definite then it is “super-positive". Not known if there are infinitely many positive definite L-functions.

Goldfeld–Huang: there are infinitely many “super-positive" automorphic L-functions for GL(2).
Super-postivity of L-functions

- Super-postivity does not imply GRH. But it implies the non-existence of Landau–Siegel zero.
- Known for Riemann zeta function (Polya, 1927). Sarnak introduced a notion of “positive definite” for L-functions. If an L-function is positive definite then it is “super-positive”. Not known if there are infinitely many positive definite L-functions.
- Goldfeld–Huang: there are infinitely many “super-positive" automorphic L-functions for $GL(2)$.
1. Riemann hypothesis

2. Positivity of L-functions

3. Completion of square

4. Positivity on surfaces
The super-positivity suggests us
to express $L^{(r)}(1/2, \pi)$ in terms of some “squared quantity”.

We explain two such examples

- (Gross–Zagier, Yuan–Zhang–Zhang) The first derivative

$$L'(1/2, \pi) \geq 0$$

if π appears in the cohomology of Shimura curve over a (totally real) number field F.

- (Yun–Zhang) “Higher Gross–Zagier formula” over function fields.
The super-positivity suggests us to express $L^{(r)}(1/2, \pi)$ in terms of some “squared quantity”.

We explain two such examples

- (Gross–Zagier, Yuan–Zhang–Zhang) The first derivative $L'(1/2, \pi) \geq 0$

 if π appears in the cohomology of Shimura curve over a (totally real) number field F.

Theorem

Let E be an elliptic curve over \mathbb{Q}. There is a point $P \in E(\mathbb{Q})$ such that

$$L'(1, E) = c \cdot \langle P, P \rangle,$$

where the RHS is the Néron–Tate height pairing

$$\langle \cdot, \cdot \rangle : E(\mathbb{Q}) \times E(\mathbb{Q}) \to \mathbb{R}$$

and c is a positive number.

The point P in the above formula is the so-called Heegner point. The Néron–Tate height pairing is known to be positive definite. Hence

$$L'(1, E) \geq 0.$$
Let E be an elliptic curve over \mathbb{Q}. There is a point $P \in E(\mathbb{Q})$ such that

$$L'(1, E) = c \cdot \langle P, P \rangle,$$

where the RHS is the Néron–Tate height pairing

$$\langle \cdot, \cdot \rangle : E(\mathbb{Q}) \times E(\mathbb{Q}) \to \mathbb{R}$$

and c is a positive number.

The point P in the above formula is the so-called Heegner point. The Néron–Tate height pairing is known to be positive definite. Hence

$$L'(1, E) \geq 0.$$
The modular curve $X_0(N)$ is moduli space classifying elliptic curves with auxiliary structure:

$$
\begin{align*}
X_0(N) & \to E \\
\downarrow & \downarrow \\
\text{Spec } \mathbb{Q} & \to \text{Spec } \mathbb{Q}
\end{align*}
$$

The Heegner points are represented by those special elliptic curves with complex multiplication.
Drinfeld Shtukas

Now fix \(k = \mathbb{F}_q \), and \(X/k \) a smooth geometrically connected curve. We consider the moduli stack of Drinfeld Shtukas of rank \(n \). For a \(k \)-scheme \(S \), we have

\[
\text{Sht}_{\text{GL}_n, X}^r(S) = \begin{cases}
\text{vector bundles } \mathcal{E} \text{ of rank } n \text{ on } X \times S \\
\text{with minimal modification } \mathcal{E} \to (\text{id} \times \text{Frob}_S)^* \mathcal{E} \\
\text{at } r\text{-marked points } x_i: S \to X, 1 \leq i \leq r
\end{cases}
\]

We have

\[
\text{Sht}_{\text{GL}_n, X}^r \downarrow \\
X^r = X \times \text{Spec} k \cdots \times \text{Spec} k \underbrace{X}_{\text{r times}}
\]
Theorem (Yun–Zhang)

Fix \(r \in \mathbb{Z}_{\geq 0} \). Let \(E \) be a semistable elliptic curve over \(k(X) \). Then there is an algebraic cycle (the Heegner–Drinfeld cycle) on \(\text{Sht}^r_{\text{PGL}_2, X} \) such that the \(E \)-isotypic component of the cycle class \(Z_{r,E} \) satisfies

\[
L^{(r)}(1, E) = c \cdot \left(Z_{r,E}, Z_{r,E} \right),
\]

where \((\cdot, \cdot) \) is the intersection pairing.

The Heegner–Drinfeld cycle is defined analogous to Heegner point on modular curves, by imposing “complex multiplication": those vector bundles coming from a double covering of the curve \(X \).
Theorem (Yun–Zhang)

Fix \(r \in \mathbb{Z}_{\geq 0} \). Let \(E \) be a semistable elliptic curve over \(k(X) \). Then there is an algebraic cycle (the Heegner–Drinfeld cycle) on \(\text{Sht}^r_{\text{PGL}_2, X} \) such that the \(E \)-isotypic component of the cycle class \(Z_{r, E} \) satisfies

\[
L^{(r)}(1, E) = c \cdot \left(Z_{r,E}, Z_{r,E} \right),
\]

where \((\cdot, \cdot) \) is the intersection pairing.

The Heegner–Drinfeld cycle is defined analogous to Heegner point on modular curves, by imposing "complex multiplication": those vector bundles coming from a double covering of the curve \(X \).
Comparison with the number field case

In the number field case, the analogous spaces only exist when $r \leq 1$.

1. When $r = 0$, this is the double-coset space

$$G(F) \backslash (G(\mathbb{A})/K).$$

2. When $r = 1$, the analogous space is Shimura variety

$$X^r = X \times_{\text{Spec}k} \cdots \times_{\text{Spec}k} X$$

r times.
In the function field case, we need not restrict ourselves to the leading coefficient in the Taylor expansion of the L-functions.

Question

In the number field case, should there be any geometric interpretation of the non-leading coefficients, for example, $L^{(r)}(1, E)$ when E is an elliptic curve over \mathbb{Q}?

Recall that the conjecture of Birch and Swinnerton-Dyer gives a geometric interpretation of the leading term

$$L^{(r)}(1, E) = c \cdot \text{Reg}_E \cdot \text{III}_E.$$
In the function field case, we need not restrict ourselves to the leading coefficient in the Taylor expansion of the L-functions.

Question

In the number field case, should there be any geometric interpretation of the non-leading coefficients, for example, $L^{(r)}(1, E)$ when E is an elliptic curve over \mathbb{Q}?

Recall that the conjecture of Birch and Swinnerton-Dyer gives a geometric interpretation of the leading term

$$L^{(r)}(1, E) = c \cdot \text{Reg}_E \cdot \text{III}_E.$$
1. Riemann hypothesis
2. Positivity of L-functions
3. Completion of square
4. Positivity on surfaces
Intersection pairing on an algebraic surface

\(S: \) smooth projective surface over a field \(k \).
\(\text{Div}(S): \) free abelian group of divisors on \(S \).
There is an intersection pairing

\[
\text{Div}(S) \times \text{Div}(S) \to \mathbb{Z}
\]
\[
(C, D) \mapsto C \cdot D
\]
Hodge index theorem for a surface

Theorem

Let S be a surface over a field k. If H is an ample divisor, and $D \cdot H = 0$, then

$$D \cdot D \leq 0.$$

NS$(S) = \text{Div}(S)$ modulo numerical equivalence. Then the index of the intersection matrices of a basis of NS(S) is

$$ (+, -, -, -, \cdots).$$
Theorem

Let S be a surface over a field k.

If H is an ample divisor, and $D \cdot H = 0$, then

$$D \cdot D \leq 0.$$

$\text{NS}(S) = \text{Div}(S)$ modulo numerical equivalence. Then the index of the intersection matrices of a basis of $\text{NS}(S)$ is

$$(+, -, -, - , \cdots).$$
Weil’s proof of RH for curves

Consider a curve X/\mathbb{F}_q, and the surface

$$S = X \times_{\text{Spec} \mathbb{F}_q} X$$

Compute the intersection matrix of 4 divisors

$$pt \times X, \quad X \times pt, \quad \Delta, \quad F$$

F is the graph of the Frobenius

$$\text{Frob}_q : X \rightarrow X.$$
Weil’s proof of RH for curves

Consider a curve X/\mathbb{F}_q, and the surface

$$S = X \times_{\text{Spec} \mathbb{F}_q} X$$

Compute the intersection matrix of 4 divisors

$$pt \times X, \quad X \times pt, \quad \Delta, \quad F$$

F is the graph of the Frobenius

$$\text{Frob}_q : X \to X.$$
Denote $N = X(\overline{\mathbb{F}}_q)$. The intersection matrix

$$T = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & q \\
1 & 1 & 2 - 2g & N \\
1 & q & N & q(2 - 2g)
\end{pmatrix}$$

$$H = pt \times X + X \times pt \quad \text{ample}$$

$$\implies \det(T) = (N - (1 + q))^2 - 4qg^2 \leq 0$$

$$\implies |N - (1 + q)| \leq 2g\sqrt{q}.$$
Denote $N = X(\mathbb{F}_q)$. The intersection matrix

$$T = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & q \\
1 & 1 & 2 - 2g & N \\
1 & q & N & q(2 - 2g)
\end{pmatrix}$$

$$H = pt \times X + X \times pt \quad \text{ample}$$

$$\implies \det(T) = (N - (1 + q))^2 - 4qg^2 \leq 0$$

$$\implies |N - (1 + q)| \leq 2g\sqrt{q}.$$
Weil’s proof of RH for curves

Denote $N = X(\overline{\mathbb{F}}_q)$. The intersection matrix

$$T = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & q \\
1 & 1 & 2 - 2g & N \\
1 & q & N & q(2 - 2g)
\end{pmatrix}$$

$$H = pt \times X + X \times pt \text{ ample}$$

$$\implies \det(T) = (N - (1 + q))^2 - 4qg^2 \leq 0$$

$$\implies |N - (1 + q)| \leq 2g\sqrt{q}.$$
An arithmetic surface \overline{X} is the data of a relative curve $\mathcal{X} \rightarrow \text{Spec}\mathbb{Z}$ with a metric on the Riemann surface $X(\mathbb{C})$.

Arakelov defined an intersection pairing on an arithmetic surface.
An arithmetic surface $\overline{\mathcal{X}}$ is the data of a relative curve $\mathcal{X} \to \text{Spec } \mathbb{Z}$ with a metric on the Riemann surface $X(\mathbb{C})$.

\[
\begin{array}{ccc}
\mathcal{X} & \to & \mathcal{X} \\
\downarrow & & \downarrow \\
\text{Spec } \mathbb{Q} & \to & \text{Spec } \mathbb{Z} \\
\downarrow & & \downarrow \\
\text{Spec } \mathbb{Z} & \to & \overline{\text{Spec } \mathbb{Z}}
\end{array}
\]

Arakelov defined an intersection pairing on an arithmetic surface.
Theorem (Faltings, Hriljac)

Let \overline{X} be an arithmetic surface.

If \overline{H} is an ample divisor, and $\overline{D} \cdot \overline{H} = 0$, then

$$\overline{D} \cdot \overline{D} \leq 0.$$

Remark

- This positivity together with Gross–Zagier formula implies $L'(1, E) \geq 0$. (in addition to RH over finite fields)
- Comparison the proof of $L'(1, E) \geq 0$ with the proof of RH for curve over a finite field. The geometric ingredients in them seem to be the best evidence to RH.
Theorem (Faltings, Hriljac)

Let \mathcal{X} be an arithmetic surface.

If \mathcal{H} is an ample divisor, and $\overline{D} \cdot \overline{H} = 0$, then

$$\overline{D} \cdot \overline{D} \leq 0.$$

Remark

- This positivity together with Gross–Zagier formula implies $L'(1, E) \geq 0$. (in addition to RH over finite fields)
- Comparison the proof of $L'(1, E) \geq 0$ with the proof of RH for curve over a finite field. The geometric ingredients in them seem to be the best evidence to RH.
Yuan's proof of Hodge index for arithmetic surfaces

Yuan: an arithmetic line bundle $\mathcal{L} \mapsto$ a convex body in \mathbb{R}^2.

Lemma (Brunn–Minkowski)

Let A, B be two compact subsets of \mathbb{R}^n, and let $A + B$ denote the Minkowski sum

$$A + B = \{a + b : a \in A, b \in B\} \subset \mathbb{R}^n.$$

Then

$$\text{vol}(A + B)^{1/n} \geq \text{vol}(A)^{1/n} + \text{vol}(B)^{1/n}.$$
Surfaces

- The first kind is a surface over a field k, e.g. $C \times C$ for a curve C over k.
- The second kind is arithmetic surface: its base is an arithmetic curve $\text{Spec} \mathbb{Z}$ and its fiber are curves over fields.
- The third kind is unknown: "$\text{Spec} \mathbb{Z} \times_{\text{Spec} F_1} \text{Spec} \mathbb{Z}$"? It should be a fibration with its base an arithmetic curve $\text{Spec} \mathbb{Z}$ and with fibers also being arithmetic curves.
- An "arithmetic surface" seems to be an "arithmetic average" of the first and the third kinds.
Surfaces

- The first kind is a surface over a field k, e.g. $C \times C$ for a curve C over k.
- The second kind is arithmetic surface: its base is an arithmetic curve $\text{Spec} \mathbb{Z}$ and its fiber are curves over fields.
- The third kind is unknown: “$\text{Spec} \mathbb{Z} \times_{\text{Spec} \mathbb{F}_1} \text{Spec} \mathbb{Z}$”? It should be a fibration with its base an arithmetic curve $\text{Spec} \mathbb{Z}$ and with fibers also being arithmetic curves.
- An “arithmetic surface” seems to be an “arithmetic average” of the first and the third kinds.
Surfaces

- The first kind is a surface over a field k, e.g. $C \times C$ for a curve C over k.
- The second kind is arithmetic surface: its base is an arithmetic curve $\text{Spec} \mathbb{Z}$ and its fiber are curves over fields.
- The third kind is unknown: "$\text{Spec} \mathbb{Z} \times_{\text{Spec} \mathbb{F}_1} \text{Spec} \mathbb{Z}$"? It should be a fibration with its base an arithmetic curve $\text{Spec} \mathbb{Z}$ and with fibers also being arithmetic curves.
- An "arithmetic surface" seems to be an "arithmetic average" of the first and the third kinds.
The third example: ABC and Landau–Seigel zeros

Definition

A Landau–Siegel zero is a zero β of $L(s, \chi_d)$ (for the quadratic character χ_d associated to $\mathbb{Q}[^{\sqrt{d}}]$) lying in

$$[1 - c/ \log |d|, 1]$$

for a small $c > 0$.

Theorem (Granville–Stark)

A uniform (over number fields) version of ABC conjecture implies that there are no Siegel zeros for $L(s, \chi_{-d})$ with $-d < 0$.
The third example: ABC and Landau–Seigel zeros

Definition

A Landau–Siegel zero is a zero β of $L(s, \chi_d)$ (for the quadratic character χ_d associated to $\mathbb{Q}[\sqrt{d}]$) lying in

$$[1 - c/\log |d|, 1]$$

for a small $c > 0$.

Theorem (Granville–Stark)

A uniform (over number fields) version of ABC conjecture implies that there are no Siegel zeros for $L(s, \chi_{-d})$ with $-d < 0$.
The key to the theorem of Granville–Stark is Kronecker limit formula for an imaginary quadratic field $K = \mathbb{Q}[\sqrt{-d}]$. This formula relates the Faltings height of an elliptic curve E_d with complex multiplication by O_K to L-function

$$h_{\text{Fal}}(E_d) = -\frac{L'(0, \chi_{-d})}{L(0, \chi_{-d})} - \frac{1}{2} \log |d|.$$

Colmez conjecture generalizes the identity to CM abelian varieties. An averaged version is recently proved by Yuan–S. Zhang and by Andreatta–Goren–Howard–Pera.
The key to the theorem of Granville–Stark is Kronecker limit formula for an imaginary quadratic field $K = \mathbb{Q}[^{-1}\sqrt{d}]$. This formula relates the Faltings height of an elliptic curve E_d with complex multiplication by O_K to L-function

$$h_{\text{Fal}}(E_d) = -\frac{L'(0, \chi_{-d})}{L(0, \chi_{-d})} - \frac{1}{2} \log |d|.$$

Colmez conjecture generalizes the identity to CM abelian varieties. An averaged version is recently proved by Yuan–S. Zhang and by Andreatta–Goren–Howard–Pera.
Thank you!

Positivity of L-functions and “Completion of square"

Wei Zhang

Massachusetts Institute of Technology

Bristol, June 4th, 2018