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Abstract

In this article we will examine various properties of iterated functions. Iff(x) is a function, then the iterates off are:
f(x), f(f(x)), f(f(f(x))), . . ..

1 Introduction

I first became fascinated by iterated functions when I had a scientific calculator for the first time and repeatedly pressedthe
“cosine” button.

The calculator was in “radians” mode, so the angles were interpreted in radians rather than degrees1, but I found that no
matter what number I started with, after enough button presses of the “cosine” button, the numbers seemed to approach
.739085133215.

What I was doing, of course, was iterating the cosine function. If my starting number was1, then pressing the cosine button
repeatedly was generating the following sequence of numbers:

cos(1) = .540302305868

cos(cos(1)) = .857553215846

cos(cos(cos(1))) = .654289790498

cos(cos(cos(cos(1)))) = .793480358742

cos(cos(cos(cos(cos(1))))) = .701368773623

As I continued pressing the cosine button, the numerical results kept oscillating to values above and below, but each time
closer to, the final limiting value of approximately.739085133215.

Of course there’s nothing special about the cosine function; any function can be iterated, but not all iterated functions have
the same nice convergence properties that the cosine function has. In this paper, we’ll look at various forms of iteration.

2 A Simple Practical Example

Suppose you put some money (sayx dollars) in a bank at a fixed interest rate. For example, suppose the bank offers simple
interest at10% per year. At the end of one year, you will have your originalx dollars plus(.10)x dollars of interest, or
x + (.10)x = (1.10)x dollars. In other words, if you begin with any amount of money, one year later you will have that
amount multiplied by1.10.

1One radian is equal to about57.2957795131 degrees. If you’ve never seen it, this seems like a strange way to measure angles but it makes very good
sense. In a unit circle (a circle with radius1), the circumference is2π, and if we measure in terms of that length instead of in terms of 360 degrees, we
find that2π radians is360 degrees, from which the conversion above can be derived.
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Suppose you’d like to know how much money you have after5 or 10 years. If you consider the increase in value over one
year to be a function namedf , then we will have:

f(x) = (1.10)x.

The functionf will take any input value and tell you the resulting output value if that input value is left in the bank for one
year. Thus if you start withx dollars, then after one year, you will havef(x) dollars. At the beginning of the second year
you havef(x) dollars, so at the end of the second year, you’ll havef(f(x)) dollars. Similar reasoning yieldsf(f(f(x)))
dollars after the third year,f(f(f(f(x)))) dollars at the end of the fourth year, and so on.

It would be nice to have an easier notation for function iteration, especially if we iterate100 or 1000 times. Some people
use an exponent, like this:

f(f(f(f(x)))) = f4(x),

but there’s a chance that this could be confused with regularexponentiation (and it could, especially with functions like the
cosine function, mentioned above). So we will use the following notation with parentheses around the iteration number:

f(f(f(f(x)))) = f (4)(x).

As with standard exponentiation, we’ll find it is sometimes useful to define:

f (0)(x) = x.

Returning to our example wheref(x) represents the amount of money in your account a year after investingx dollars, then
the amount you’ll have after10 years would bef (10)(x).

It is fairly easy to derive exactly the form off (n)(x) for this example. Since each year, the amount of money is multiplied
by 1.10, we can see that:

f (n)(x) = (1.10)nx,

and this even works for the case wheren = 0.

Although this example is so simple that it is easy to give a closed form forf (n)(x), we will use that example to show how
iteration can be analyzed graphically. First, imagine the graph off(x) = (1.10)x versusx.
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In the graph above, two lines are plotted that pass through the origin. The upper line corresponds to the functiony =
f(x) = (1.10)x and the lower one, to the functiony = x which forms a45◦ angle with thex andy axes. Now suppose we
begin with an investment of$100. To find out how much money we have after one year, find the100 on thex-axis and go
up to the linef(x). The height of that line (which will be110) represents how much we’ll have after one year. But now we
would like to put that110 back into the functionf , so we need to find110 on thex-axis and look above that.

But what this amounts to is copying they-value (the height of the line from thex-axis to the linef(x) to thex-axis. Here is
where the liney = x suddenly becomes useful: If we begin at the point(100, 110) and move horizontally to the liney = x,
we will be situated exactly over the value110 on thex-axis (since on the liney = x, they-coordinate is the same as the
x-coordinate). Since we’re already exactly over110, we can just go up from there to the linef(x) to find the value of our
investment after two years:$121.

To find the value after three years, we can do the same thing: the height of the point(110, 121) needs to be copied to the
x-axis, so move right from that point to(121, 121), putting us over121 on thex-axis, and from there, we go up tof(121)
to find the amount after three years:$133.10.

The same process can be used for each year, and the final heightof the zig-zagging line at the upper-rightmost point
represents the value of the original$100 investment after six years: about$177.16.

3 General Iteration

A little thought shows us that there is nothing special aboutthef(x) we used in the previous section in a graphical interpre-
tation. We can see what happens with the cosine function mentioned in the introduction, by using exactly the same sort of
graph, except thatf(x) = cos(x) and we will begin our iteration withx = 1:
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Although the picture looks different (instead of a zig-zagging line, we’ve got a spiral), exactly the same thing is goingon.
We begin with an input value ofx = 1, we go up to the liney = cos(x) to find the result of one press of the cosine
button. The height of that point has to be used as an input, so we move horizontally from it to the liney = x, at which
point we’re above a pointx which is equal to they-coordinate of the point(1, cos(1)). Move vertically from there to the
line y = cos(x), then horizontally toy = x, and repeat as many times as desired. It should be clear from the illustration
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that as more and more iterations are performed, the spiral will converge to the point where the liney = x meets the curve
y = cos(x), and that point will have a value of approximately(.739085133215, .739085133215).

The major difference between the two examples is that it should be clear that in the case of bank interest, the zig-zag line
will keep going to the right and up forever, the spiraling line for the cosine function will converge more and more closelyto
a limiting point. What we would like to do is examine the geometry of the curvesf(x) that either causes them to converge
(like the cosine curve) or to diverge (like the bank interestfunction). We’d also like to know if there are other possibilities
(other than convergence or divergence). We will examine graphically a number of examples in the next section.

4 Graphical Examples
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Every example on the previous page shows what happens for a particular function ofx, assuming two different starting
points. All of the functions on that page are linear (straight lines) and they illustrate the convergence (or divergence)
properties. All the examples have the liney = f(x) crossing the liney = x at (.5, .5). Basically, the only difference
between the different functionsf is the slope of that line. We call the point of intersection ofy = f(x) andy = x a “fixed
point”, since if the input happened to have exactly that value, the output would be the same, or fixed.

In the example on the upper left we have basically the same sort of situation we had with the bank account balance except
that in the bank balance case, the two lines met at(0, 0). In this case, if we start a bit above the intersection, or fixed
point, the values diverge, getting larger and larger. If we begin below the intersection, the values diverge, but to smaller and
smaller values. The slope off(x) in this example is1.2.

On the upper right, the slope off(x) is 0.8, and now the iterations converge to the fixed point from both directions.

The example on the middle left is similar, but the slope is less: only0.4. The convergence is the same, from above or below,
but notice how much faster it converges to the fixed point.

The next three examples show what happens whenf(x) has a negative slope. The example on the middle right, the slope
is negative, but not too steep (in fact, it is−0.8). Convergence occurs from any starting point, but instead of zig-zagging to
the fixed point, it spirals in.

The example on the bottom left shows a very special case wherethe slope off(x) is exactly−1. In this case, from any
starting point there is neither convergence nor divergence; the output values fall into “orbits” of two values.

Finally, in the example on the lower right, the slope is negative and steeper than−1.0, and any input, except for the fixed
point itself, will diverge in a spiral pattern, as shown.

The examples on the previous page pretty much cover all the possibilities for linear functionsf(x). If the slope, in absolute
value, is less than1, iterations converge to the fixed point. If the slope’s absolute value is greater than1, it diverges, and
if the slope’s value is equal to1 or −1, there is a fixed orbit of one or two points. (Note that the function with slope1 is
y = f(x) = x which is identical to the liney = x, so every point is a fixed point whose orbit contains exactly that point.)

It will turn out that if the functionf is not a straight line, the resulting situation is usually not too different. Compare the
example of the cosine function with the similar example on the middle right. In both cases the slopes of the (curve, line) are
negative, but between−1 and0.

In the next section we will examine more complex situations where the iteration results are not quite so simple.
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5 More Graphical Examples
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Here are four more examples. The graph in the upper left showsthat there may be more than one fixed point.

The other three illustrate limit cycles. In the examples in the upper right and lower left, different starting points converge
not to a point, but to a cycle. On the upper right, the cycles first step inside the limiting cycle and then spiral out. In the
lower right, one cycles in while the other cycles out.

Finally, the example in the lower right shows that there may be many limiting cycles, and the particular cycle into which a
starting point falls depends on the position of the startingpoint.
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The figure above shows another interesting example. The curvef(x) is actually tangent to the linex = y, and initial values
less than the point of tangency converge to that point, whileinitial values larger than it diverge.

You may find it interesting to try to construct examples with combinations of fixed points, cycles and sequences that diverge.

6 A Simple Practical Example

Suppose you want to approximate the square root of a number, for example
√

3. The following strategy works:

Make a guess, sayx. If x is the correct answer, thenx2 = 3, and another way of saying that is:x = 3/x. If x is not the
exact square root, then ifx is too small,3/x will be too large and vice-versa. Thus the two numbersx and3/x will lie on
both sides of the true square root, and thus their average hasto be closer to the true square root than either one of them.

If x is not the exact square root, then the valuex1 = (x+3/x)/2 is closer to the square root thanx was. We can then usex1

as a new guess at the square root and repeat the procedure above as many times as desired to obtain more and more accurate
approximations. The following illustrates this method to find

√
3, starting with an initial guessx0 = 1, and approximated

to 20 decimal places. The final line displays the actual result, again accurate to 20 decimal places:

x0 = 1.00000000000000000000

x1 = (x0 + 3/x0)/2 = 2.00000000000000000000

x2 = (x1 + 3/x1)/2 = 1.75000000000000000000

x3 = (x2 + 3/x2)/2 = 1.73214285714285714286

x4 = (x3 + 3/x3)/2 = 1.73205081001472754050

x5 = (x4 + 3/x4)/2 = 1.73205080756887729525√
3 = 1.73205080756887729352

The fifth approximation is accurate to 17 decimal places. As you can see, this method converges rather rapidly to the desired
result. In fact, although we will not prove it here, each iteration approximately doubles the number of decimal places of
accuracy.

Obviously, what we are doing is iterating the functionf(x) = (x + 3/x)/2 and approaching the fixed point which will be
the square root of3. Also, obviously, there is nothing special about3. If we wanted to approximate the square root ofn,
wheren is fixed, we simply need to iterate the functionf(x) = (x + n/x)/2.
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On the following page is a graphical illustration of the convergence of the iterates off(x) as described above, beginning
with an initial guess ofx = 1. After the first few steps, due to the flatness of the curve, youcan see that the convergence is
very rapid.
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An interesting strategy that can be performed on almost any iterated function is this: we can double the speed of the
convergence using a different function. In the example above, we approximated

√
3 by iteratingf(x) = (x2 + 3)/(2x).

Suppose we iteratef(f(x))? That should go twice as fast. In this case,

f(f(x)) =

(

x
2+3
2x

)2

+ 3

2
(

x
2+3
2x

) .

A little algebra yields:

f(f(x)) =
x4 + 18x2 + 9

4(x3 + 3x)
.

Iterations of that function are shown below, and it’s obvious that the new function is a lot flatter, so convergence will bea
lot faster.

Obviously, there is no reason we couldn’t do the algebra for three, four or more iterations in the same way. The disadvantage,
of course, is that the functions that we evaluate are more complicated, so the calculation time for each step may increase
more rapidly than the time gained.

Here are three iterations to 30 decimal places of the function f(f(x)) calculated above, beginning with a (bad) initial guess
of 4:

f(4) = 1.81907894736842105263157894737

f(f(4)) = 1.73205205714701213020972696708

f(f(f(4))) = 1.73205080756887729352744640016√
3 = 1.73205080756887729352744634151
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7 A Simple Impractical Example

The following is not a particularly good way to do it, but it does use a simple iterated function to converge to the value of
π. Unfortunatly, to do the calculations requires that we be able to calculate the sine function to many decimal places which
is at least equally difficult as computingπ using standard methods.

But here’s the function to iterate:p(x) = x +sin(x). It’s a good exercise to plot the function and see why a fixed point is at
x = π. In any case, here are the results of repeatedly applying that function fromx0 = 1 (accurate to 50 decimal places):

x0 = 1.0000000000000000000000000000000000000000000000000

x1 = 1.8414709848078965066525023216302989996225630607984

x2 = 2.8050617093497299136094750235092172055890412289217

x3 = 3.1352763328997160003524035699574829475623914958979

x4 = 3.1415926115906531496011613183596168589038475058108

x5 = 3.1415926535897932384626310360379289800865645064638

x6 = 3.1415926535897932384626433832795028841971693993751

π = 3.1415926535897932384626433832795028841971693993751

8 Newton’s Method

The method of approximating a square root used in the previous section is just a special case of a general method for finding
the zeroes of functions.
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Newton’s method works as follows. (See the figure above.) Suppose that the curved line represents a function for which you
would like to find the roots. In other words, you want to find where the function crosses thex-axis. First make a guess. In
the figure, this initial guess isx = −0.2. Find the point on the curve corresponding to that guess (which will be (x, f(x)))
and find the tangent line to the curve at that point. That tangent line will intersect thex-axis at some point, and since the
tangent line is a rough approximation of the curve, it will probably intersect near where the curve does. In the example
above, this will be at approximatelyx = −0.84.

We then iterate the process, going from that intersection point to the curve, finding the tangent to the curve at that point, and
following it to where it intersects thex-axis again. In the figure above, the tangent line and the curve are so similar that it’s
almost impossible to see a difference between the curve and the line, so the intersection of that line and thex-axis is almost
exactly the root of the function. But if not, the process can be iterated as many times as desired.

In the example above, we are trying to solvef(x) = x4 − 4x2 + x + 2 = 0. The initial guess isx0 = −0.2, the second
is x1 = −0.839252, and the third isx2 = −0.622312. To show thatx2 is very close to a root, we have:f(−0.622312) =
−0.0214204.

To find the equation of the tangent line requires a bit of calculus, but assume for a moment that we can do that. In fact, for
well-behaved functions, the numberf ′(x) represents the slope of the functionf(x) at the point(x, f(x)).

If a line passes through the point(x0, y0) and has slopem at that point, the equation for that line is:

y − y0 = m(x − x0).

This is usually called the “point-slope” equation of a line.

In our case, the initial guess will bex0, y0 will be f(x0) andm = f ′(x0). (Remember thatf ′(x0) is the slope of the
function at(x0, f(x0)).) The equation for the tangent line will thus be:

y − f(x0) = f ′(x0)(x − x0).

This may look confusing, but there are only two variables above, x andy. All the others:x0, f(x0) andf ′(x0) are just
numbers.

We want to find where this line crosses thex-axis, so sety = 0 and solve forx. We obtain:

x = x0 −
f(x0)

f ′(x0)
,

and this equation is used to obtain successive approximations using Newton’s method.

But as before, all we are doing to find better and better approximations for the root of a function is to iterate a particular
function. The solutionx in the equation above serves as the next guess for the root off(x) = 0.
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Let us show the graphical interpretation of the iterations performed to use Newton’s method to find the cube root of a
number; say, the cube root of 2.

In this case, we would like to solve the equationf(x) = x3 − 2 = 0. If you don’t know any calculus, take it on faith that
the slope function (called the “derivative” in calculus) isf ′(x) = 3x2.

If we start with any guessx0, the next guess will be given by:

x0 −
f(x0)

f ′(x0)
= x0 −

x3
0 − 2

3x2
0

=
2x3

0 + 2

3x2
0

.

The figure at the top of the next page represents the iterationof the function above (beginning with a particularly terrible
first guess ofx0 = .5) that approaches the cube root of 2, which is approximately1.25992105.
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8.1 Domains of Attraction

When you use Newton’s method to approximate the roots of a polynomial which has more than one root, the particular root
to which the method converges depends on your choice of starting point. Generally, if you pick a first guess that is quite
close to a root, Newton’s method will converge to that root, but an interesting question is this: “Exactly which points onthe
line, if used as the initial guess, will converge to each root?”

Some points may not converge at all. For example, if your initial guess happened to lie exactly under a local maximum or
minimum of the curve, the approximating tangent line would be parallel to thex-axis, and the iteration process would fail,
since that line never intersects thex-axis. And there are other points where the process might fail. Suppose your initial
guess produced a tangent line that intersected thex axis exactly under a local maximum or minimum. Or if the same thing
happened after two iterations, et cetera?

And what happens if you pick a guess near where the function has a local maximum or minimum? The tangent line could
intersect far from that initial guess, and in fact, into a region that converged to a root far away from the initial guess.

For any particular root, let us define the “domain of attraction” to be the set of initial guesses on thex-axis that will eventually
converge to that root. As an illustration of some domains of attraction, consider the equationf(x) = x(x + 1)(x − 2) = 0
which obviously has the three rootsx = −1, x = 0 andx = 2. We can still apply Newton’s method to initial guesses, and
most of them will converge to one of these three roots. In the figure below, points on thex-axis have been colored blue, red
or green, depending on whether they would converge to the roots−1, 0 or 1, respectively.
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Notice that near the roots, the points are colored solidly, but as we move away from the roots to the regions near where the
relative maxima an minima occur, the tangent lines will throw the next guess into regions that converge to non-nearby roots.
An example of that is illustrated above. With a particular initial guess that is a bit less than1.0, successive applications
of Newton’s method are illustrated by the red line which shows that although the initial guess is a bit closer to the root at
zero, the first approximation takes it to a position closer tothe root at−1, and then out beyond2, after which it converges
rapidly to the root at2. The image is not infinitely detailed, and in fact, the actualshape of these domains of attraction can
be quite complex. In fact, in Section 13 we will see some incredibly complex domains of attraction when Newton’s method
is extended to search for roots in the complex number plane.

8.2 Dependence on starting point

Here is a series of plots illustrating the use of Newton’s method on the functionsin(x), using starting values of4.87,
4.88, 4.89, 4.90, 5.00 and5.20, in that order. Notice how small changes in the input values can produce wildly-different
convergence patterns. In every case below, six steps in the approximation are taken. Some converge so rapidly that only the
first three steps or so are visible. Some are quite a bit slower.
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9 Continued Fractions and Similar

Sometimes you see mathematical objects like these:

x =

√

1 +

√

1 +

√

1 +
√

1 + · · ·

x = 1 +
1

1 + 1
1+ 1

1+···

What do they mean? The usual interpretation is that each expression can be terminated after one, two, three, four, . . . steps,
and the terminated forms can be evaluated. If the evaluations tend to a limit, then the infinite expression is interpretedto be
that limiting value.

For example, in the first case above, we could evaluate:
√

1 = 1.000000000
√

1 +
√

1 = 1.414213562
√

1 +

√

1 +
√

1 = 1.553773974
√

1 +

√

1 +

√

1 +
√

1 = 1.598053182

· · · = · · ·

The second case (which is called a “continued fraction”) canbe evaluated similarly.

Both, however, can be evaluated using function iteration aswell. In the first case, if we have the valuex0 for a certain level
of iteration, the next level can be obtained by calculatingf(x0), wheref(x) =

√
1 + x. For the continued fraction, the

corresponding value off(x) would bef(x) = 1/(1+x). Below are the graphical iterations. On the left is the nested square
root and on the right, the continued fraction. Both begin with an initial approximation of 1:
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Notice that there is another way to evaluate these expressions, assuming that the limits exist. In the first case, if we let:

x =

√

1 +

√

1 +

√

1 +
√

1 + · · ·,

then a copy ofx appears inside the expression forx and we have:

x =
√

1 + x.

Squaring both sides, we obtainx2 = 1 + x, which has as a root the golden ratio:

x =
1 +

√
5

2
= 1.61803398874989484820458683437

Similarly, if x is set equal to the continued fraction, we can derive:

x = 1/(1 + x),

Which becomesx2 + x = 1, and has the solution:

x =

√
5 − 1

2
= .61803398874989484820458683437,

one less than the golden ratio.

10 Optimal Stopping

Thanks to Kent Morrison, from whom I stole this idea.

Suppose you want to score as high as possible, on average, when you play the following game. The game goes forn rounds,
and you know the value ofn before you start. On each round, a random number uniformly distributed between0 and1 is
selected. After you see the number, you can decide to end the game with that number as your score, or you can play another
round. If play up to thenth round, then you get whatever number you get on that last round. What is your optimal strategy?

The topic is called “optimal stopping” because you get to decide when to stop playing.
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As with most games, it’s usually a good idea to analyze simplecases first, and the simplest of all is the “game” whenn = 1.
It’s not really a game, since once the number is selected, andsince there are no more rounds, you will be stuck with that
number. Since the numbers are uniformly distributed between 0 and1, your average score, whenn = 1, is 1/2.

Let us give a name to the expected value of your score for a gamewith up ton rounds asEn. From the previous paragraph,
E1 = 1/2.

What about ifn = 2? What isE2? On the first round a number is chosen, and based on that number, you can decide to use
it as your score, or to discard it and play one more round. If your initial score is less than1/2, it’s clear that you should play
again, since on average playing the final round will yield, onaverage, a score of1/2. But if your initial score is larger than
1/2, if you discard it, you’ll do worse, on average.

So the optimal strategy forn = 2 is this: Look at the first score. If it’s larger than1/2, stop with it. If not, discard it, and
play the final round. What is your expected score in this game?Half the time you will stop immediately, and since you
know your score is above1/2 it will be uniformly picked between1/2 and1, or in other words, will average3/4. The other
half of the time you will be reduced to playing the game withn = 1, which you already solved, and your expected score
then will be1/2. So half the time you’ll average3/4 and half the time you’ll average1/2, yielding an expected value for
n = 2 of:

E2 =
1

2
· 3

4
+

1

2
· 1

2
=

5

8
.

What isE3? After the first round, you have a score. If you discard that score, you will be playing the game with only2
rounds left and you know that your expected score will be5/8. Thus it seems obvious that if the first-round score is larger
than5/8 you should stick with that, and otherwise, go ahead and play then = 2 game since, on average, you’ll get a score
of 5/8. Thus5/8 of the time you’ll play the game withn = 2 and3/8 of the time you stop, with an average score midway
between5/8 and1, or 13/16. Expected score will be:

E3 =
3

8
· 13

16
+

5

8
· 5

8
=

89

128
.

The same sort of analysis makes sense at every stage. In the game with up ton rounds, look at the first round score, and
if it’s better than what you’d expect to get in a game withn − 1 rounds, stick with it; otherwise, play the game withn − 1
rounds.

Suppose we have laboriously worked outE1, E2, E3, . . .En−1 and we wish to calculateEn. If the first score is larger than
En−1, stick with it, but otherwise, play the game withn − 1 rounds. What will the average score be? Well,1 − En−1 of
the time you’ll get an average score mid-way betweenEn−1 and1. The otherEn−1 of the time, you’ll get an average score
of En−1.

The number mid-way betweenEn−1 and1 is (1 +En−1)/2, so the expected value of your score in the game withn rounds
is:

En = (1 − En−1) ·
(1 + En−1

2

)

+ En−1 · En−1 =
1 + E2

n−1

2
.

Notice that the form does not really depend onn. To get the expected score for a game with one more round, the result is
just (1 + E2)/2, whereE is the expected score for the next smaller game. We can check our work with the numbers we
calculated forE1, E2 andE3. We know thatE1 = 1/2, so

E2 =
1 + (1/2)2

2
=

5

8
, and E3 =

1 + (5/8)2

2
=

89

128
,

so we seem to have the right formula.
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Notice that to obtain the next expected value, we simply takethe previous one and plug it into the functionf(x) =
(1 + x2)/2, so basically we just iterate to find successive expected values for successive games with largern. Here are
the first few values:

E1 =
1

2
= 0.50000

E2 =
5

8
= 0.62500

E3 =
89

128
≈ 0.695313

E4 =
24305

32768
≈ .74173

E5 =
1664474849

2147483648
≈ .775082

E6 =
7382162541380960705

9223372036854775808
≈ .800376

As before, we can look at the graphical display of the iteration, and it’s easy to see from that that the average scores increase
gradually up to a limiting value of1:
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11 Biology: Heterozygote Advantage

Some knowledge of probability is required to understand this section. A little biology wouldn’t hurt, either.

The canonical example of this is the presence of the gene thatcauses sickle-cell anemia in humans. Basically, if an individual
has this disease he/she will not live long enough to have children. Normally, genes like this are eliminated from the
population by natural selection, but in human populations in Africa, the gene is maintained in the population at a rate of
about11%. In this section we will see why.

The sickle-cell trait is carried on a single gene, and there are two types:A, the normal type, does not cause anemia. The
sickle-cell gene is calleda. Every individual has two copies of each gene (one from the mother and the other from the
father), so there are three possibilities for the genotype of an individual:AA, Aa, or aa. Suppose that at some point, there
is a proportionp of geneA in the population and a proportionq = 1 − p of the genea.
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We will simply assume that in the next generation that the genes are thoroughly mixed, and therefore, at birth, the three
types of individuals will appear with frequenciesp2 (of typeAA), 2pq (of typeAa) andq2 (of typeaa).

But years later, when it is time for those individuals to breed, all of the ones of typeaa are dead. In other words, genotype
aa is a recessive lethal gene.

It may also be true that the individuals of typesAA andAa have different chances of survival. We don’t know exactly what
these are, but let us just say that individuals of typeAA are(1 + s) times as likely to live as individuals of typeAa. As
childbearing adults then, we will find(1 + s)p2 individuals of typeAA for every2pq individuals of typeAa.

We’d like to count the total number ofa genes in the next generation. They can only come from the2pq proportion having
typeAa, and only half of the genes from those people will bea since the other half are of typeA. Thus there will be a
proportionpq of them. The total number of genes will be2(1 − s)p2 + 2pq.

The proportion ofa genes after breeding will thus be:

q′ =
pq

(1 + s)p2 + 2pq
.

But genes are either of typeA or a, sop = 1 − q and we have:

q′ =
(1 − q)q

(1 + s)(1 − q)2 + 2q(1 − q)
=

q

(1 + s)(1 − q) + 2q
.

To obtain the proportion ofa genes in each successive generation, we simply have to put the value ofq into the equation
above to find the new value,q′ in the next generation. To find the proportion after ten generations, just iterate 10 times. This
is just another iterated function problem!

Let’s look at a few situations. Suppose first that theAA individuals and theAa individuals are equally fit. There is no
disadvantage to having a single copy of thea gene. Thens = 0, and the function we need to iterate looks like this:

q′ = f(q) =
q

1 + q
.

Let’s assume that for some reason there is a huge proportion of a genes, say80%. Here is the graphical iteration in that
case:
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Notice that the fixed point is at zero, so with time, the sickle-cell gene should be eliminated from the population. In other
words, the probability that ana gene will appear drops to zero.
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Now suppose that even having a single copy of thea gene is a disadvantage. Suppose that it is20% more likely that anAA
individual will live to breeding age than anAa individual. This makess = .2, and the corresponding graphical iteration
looks like this:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Not surprisingly, the sickle-cell gene is again driven out of the population, and if you compare the two graphs, you can see
that it will be driven out more rapidly (fewer generations toreduce it the same amount) in this second case. With the same
number of iterations, the gene is about half as frequent if theAA individuals have a20% advantage over theaa individuals.

But in the real world, something else happens. In Africa where there is a lot of malaria, individuals with a single copy of
the sickle-cell gene (individuals of typeAa) actually have an advantage over those of typeAA because they have a better
chance of surviving a case of malaria. We can use the same equation, but simply makes negative. Let’s look at the graph
with s = −.3:
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Now notice thatq tends to a non-zero limit, in this case, a bit more than23%. In other words, the advantage to the individuals
who have a single copy of thea gene is enough that the certain deaths ofaa individuals is not enough to eliminate the gene.
In fact, a value ofs = −.3 is not required; any negative value fors would make this occur, although a smaller advantage of
Aa would translate to a smaller limiting value ofq.

As in every other case we’ve looked at, we could find the exact limiting value by settingq′ = q:

q′ = q =
q

(1 − .3)(1 − q) + 2q
.
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If we solve that forq, we obtain:q = .23077: a bit more than23%, as we noted above.

Individuals with two copies of the same gene (likeaa or AA) are called homozygous, and individuals with one copy of
each type are called heterozygotes. In the case of the sickle-cell gene in a malarial area, there is a heterozygote advantage;
hence, the title of this section.

12 Markov Processes

To understand this section you will need to know something about matrix multiplication and probability.

Imagine a very simple game. You have a board that is nine squares long with a marker beginning on the first square. At
each stage, you roll a single die, and advance the marker by the number of steps shown on the die, if that is possible. The
game is over when you land on the ninth square. You cannot overshoot the last square, so, for example, if you are on square
5 and roll a6 the marker stays in place because you cannot advance six spaces. In other words, in order to finish, you need
to land on the last square exactly. With this game, we can ask questions like, “How likely is it that the game will have ended
after7 rolls of the die?”

Up to now we have been looking at one-dimensional iteration,but now we will look at a multi-dimensional situation. At
every stage of the game, there are exactly 9 possible situations: you can be on square 1, square 2, . . . , square 8. At the
beginning of the game, before the first roll, you will be on square 1 with probability 1. After the game begins, however, all
we can know is the probability of being on various squares.

For example, after one roll there is a1/6 chance of being on squares 2, 3, 4, 5, 6, and 7, and no chance of being on squares
1 or 8, et cetera.

We can, however, easily write down the probability of movingfrom squarei to squarej on a roll. For example, the chance
of moving from square 1 to square 4 is1/6. The probability of moving from square 4 to itself is4/6 = 2/3, since only
rolls of 1 or 2 will advance the marker. Rolls of 3, 4, 5 or 6 require impossible moves, beyond the end of the board. We can
arrange all those probabilities in a matrix that looks like this:

M =
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The number in rowi and columnj is the probability of moving from squarei to squarej in a single roll. We have put a1
in row 8, column 8, since if the game is over, it stays over.

As we stated earlier, all we can know is the probability of getting to various squares after a certain number of rolls. At any
stage there is a probability of being on square 1, 2, 3, . . . , 9.We will write these in a row vector, and that vector, initially (at
time zero), looks like this:

P0 = (1, 0, 0, 0, 0, 0, 0, 0, 0).

In other words, we are certain to be on square 1.

The nice thing about the matrix formulation is that given a distribution of probabilitiesP of being on the 9 squares, if we
multiply P by M (using matrix multiplication), the result will be a newP ′ that shows the odds of being on each square
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after a roll of the die. To calculate the probabilities of being on the various squares after 10 rolls, just iterate the matrix
multiplication 10 times.

To show how this works, let us call the probability distributions after one rollP1, after two rollsP2, and so on. Here are the
numeric results:

p1 = (0, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0, 0)

p2 = (0, 0, 0.027778, 0.083333, 0.138889, 0.194444, 0.25, 0.166667, 0.138889)

p3 = (0, 0, 0, 0.0185185, 0.0648148, 0.138889, 0.240741, 0.25463, 0.282407)

p4 = (0, 0, 0, 0.003086, 0.0246914, 0.0833333, 0.197531, 0.289352, 0.402006)

p5 = (0, 0, 0, 0.000514, 0.0087449, 0.0462963, 0.150206, 0.292567, 0.501672)

p6 = (0, 0, 0, 0.000086, 0.0030007, 0.0246914, 0.109396, 0.278099, 0.584727)

p7 = (0, 0, 0, 0.000014, 0.0010145, 0.0128601, 0.077560, 0.254612, 0.653939)

If we look at the last entry inp7, we can conclude that after 7 rolls, there is a slightly better than65% chance that the game
will be over.

Note that this game is incredibly simple, but much more complicated situations can be modeled this way. For example,
imagine a game where some of the squares are marked, “Go to jail”, or “Go forward 4 steps”. All that would be affected
would be the numbers in the arrayM . For a board with 100 positions, the array would be100×100, but the idea is basically
the same.

Suppose you are designing a board game for very young children. You would like to make sure that the game is over in
fewer than, say, 50 moves, so you could simply make an array corresponding to a proposed board, iterate as above, and
make sure that the game is very likely to be over in 50 moves.

13 Final Beautiful Examples

13.1 Newton’s Method for Complex Roots

In Section 8 we learned how Newton’s method can be used to find the roots of functions as long as we are able to calculate
the slopes of the functions at any point on the curve. In this final section, we are going to do the same thing, but instead of
restricting ourselves to the real numbers, we are going to seek roots in the complex plane.

We will use Newton’s method to find the roots ofx3 = 1 – in other words, we will find the cube root of1. On the surface
this seems silly, because isn’t the cube root of1 equal to1? Well, it is, but it turns out that1 has three different cube roots.
Here’s why:

x3 − 1 = (x − 1)(x2 + x + 1).

If we set that equal to zero, we get a root if eitherx− 1 = 0 or if x2 + x + 1 = 0. The first equation yields the obvious root
x = 1, but the second can be solved using the quadratic formula to obtain two additional roots:

x =
−1 +

√
3i

2
and x =

−1 −
√

3i

2
,

wherei is the imaginary
√
−1. If you haven’t seen this before, it’s a good exercise to cubeboth of those results above to

verify that the result in both cases is1.
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If you plot the three roots, they lie on an equilateral triangle centered at the origin.

Since we will be working with complex numbers, we will changethe variable names to be in terms ofz instead ofx. This
is not required, but it is the usual convention, and it constantly reminds us that the variables are not necessarily restricted to
be real numbers.

As we derived in Section 8, ifz0 is an initial guess for the cube root, the next approximation, z1, can be obtained as follows:

z1 =
2z3

0 + 1

3z2
0

.

(Actually, this is not exactly the same, since we are trying to find the cube root of1 instead of2 as we did in the previous
section, but the only difference is that the constant2 in that section is replaced by a1 here.)

The other difference, of course, is that we want to allowz0 andz1 to take on complex values instead of just real ones. The
calculations are a bit messy, but straightforward (see Appendix A for details). As an example, consider performing the
iteration above when the initial value is.9 + .4i:

z0 = 0.9 + 0.4i

z1 = 0.830276 + 0.0115917i

z2 = 1.03678− 0.00576866i

z3 = 1.00126− 0.000395117i

z4 = 1.00000,−.0000009935i

It is fairly clear that the sequence above converges to the root z = 1. Let’s try one more, beginning at−1 + i:

z0 = −1.0 + 1.0i

z1 = −0.666667 + 0.833333i

z2 = −0.508692 + 0.8411i

z3 = −0.49933 + 0.866269i

z4 = −0.5 + 0.866025i

It is clear that this one converges toz = (−1 +
√

3i)/2 = −.5 + .866025i.

What makes Newton’s method in the complex plane interestingis that many initial values lead to multiple interesting jumps
around the plane before they converge to one of the roots. In fact, if we look at every point in the plane and color it red if
it converges to1, color it green if it converges to(−1 −

√
3)/2 and blue if it converges to(−1 +

√
3)/2, then the region

around the origin (−1.6 ≤ x, y ≤ 1.6) would be colored as in the following illustration. These are the domains of attraction
in the complex plane for Newton’s method applied to this polynomial. The white dots in the red, green and blue regions
represent the three roots of the equationz3 − 1 = 0.
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Just because it’s another pretty picture, here is another image which corresponds in exactly the same way as the previous
one to the use of Newton’s method to solve the equationz4 − 1 = 0. This time there are four roots:1, −1, i and−i, and
the colors correspond to regions of input values that will eventually converge to those roots.
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Finally, here’s exactly the same thing, but solutions ofz5 − 1 = 0:

13.2 The Mandelbrot Set

Newton’s method iteratively applies a function to attempt to converge on a root, but other sorts of iteration can lead to
different artistic results. One of the most famous is calledthe Mandelbrot set.

The definition of the Mandelbrot set is simple. Consider the function:f(z) = z2 + c, wherez andc are complex numbers.
For any particular fixedc, we consider the iterates:f (0)(0), f (1)(0), f (2)(0), f (3)(0), . . . . In other words, iterated the
functionf beginning with the value0. If the absolute value ofz ever gets larger than2, successive iterates off from then
on increase in size without bound. Another way to say that is that the iterates “diverge to infinity”.

Thus the series of iterates will always diverge if|c| > 2, but for some values ofc this divergence does not occur. An obvious
example isc = 0, in which casef (n)(0) = 0, but there are a lot of others. For example, if we letc = 0.3 + 0.3i, then the
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first few iterations, beginning with zero, yield:

f (0)(0) = 0.00000 + 0.00000i

f (1)(0) = 0.30000 + 0.30000i

f (2)(0) = 0.30000 + 0.48000i

f (3)(0) = 0.15960 + 0.58800i

f (4)(0) = −0.02027 + 0.48769i

f (5)(0) = 0.06257 + 0.28023i

The sequence above wanders around for a long time, but eventually converges to0.143533 + 0.420796i, which you can
check to be a solution forf(z) = z, whenc = 0.3 + 0.3i.

The Mandelbrot set is simply the set of complex numbersc for which the series of iterates off , beginning at zero, do not
diverge. The following is an illustration of the Mandelbrotset in the complex plane, where the members of the set itself
are drawn in black. The somewhat artistic blue outline of theMandelbrot set is an indication of how quickly those points
diverge. The ones that diverge the slowest (and are, in some sense, closest to the boundary of the Mandelbrot set) are painted
in the brightest color.
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A Iterates for Newton’s Method

To iterate the function representing Newton’s method for the solution in the complex plane of the equationz3 − 1 = 0, we
must be able to compute:

z1 =
2z3

0 + 1

3z2
0

,

wherez0 is given.

We writez0 = x + yi, wherex is the real part ofz0 andy is the imaginary part. Then we have:

z1 =
2(x + yi)3 + 1

3(x + yi)2

z1 =
2(x3 + 3x2yi − 3xy2 − 3y3i) + 1

3(x2 + 2xyi − y2)

z1 =
(2x3 − 6xy2 + 1) + (6x2y − 2y3)i

(3x2 − 3y2) + (6xy)i

The fraction above has the form:

z1 =
a + bi

c + di
,

wherea = 2x3 − 6xy2 + 1, b = 6x2y − 2y3, c = 3x2 − 3y2 andd = 6xy. We have:

z1 =
a + bi

c + di
=

(a + bi)(c − di)

(c + di)(c − di)

z1 =
(ac + bd) + (bc − ad)i

(c2 + d2)

z1 =
(ac + bd

c2 + d2

)

+
(bc − ad

c2 + d2

)

i

and the final line shows us how to calculate the real and imaginary parts ofz1 in terms of the real and imaginary parts ofz0.

Let’s illustrate this withz0 = −1 + i which was an example in Section 13. We havex = −1 andy = 1. We then have:

z1 =
(−2 + 6 + 1) + (6 − 2)i

(3 − 3) − 6i
.

Soa = 5, b = 4, c = 0 andd = −6, yielding:

z1 =
−24

36
+

30

36
i = −2

3
+

5

6
i,

which is what we obtained earlier.
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