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Abstract

In this article we will examine various properties of ite@tfunctions. Iff(x) is a function, then the iterates gfare:

f(), f(f (@), F(f(f (), - - -

1 Introduction

| first became fascinated by iterated functions when | hademsfic calculator for the first time and repeatedly presed
“cosine” button.

The calculator was in “radians” mode, so the angles wereggrgéed in radians rather than degredsit | found that no
matter what number | started with, after enough button pess the “cosine” button, the numbers seemed to approach
.739085133215.

What | was doing, of course, was iterating the cosine fumctibmy starting number was, then pressing the cosine button
repeatedly was generating the following sequence of nusber

cos(l) = 540302305868

cos(cos(1)) = .857553215846
cos(cos(cos(1))) = .654289790498
cos(cos(cos(cos(1)))) = .793480358742
cos(cos(cos(cos(cos(1))))) = .701368773623

As | continued pressing the cosine button, the numericalltekept oscillating to values above and below, but eack tim
closer to, the final limiting value of approximate§39085133215.

Of course there’s nothing special about the cosine fungiop function can be iterated, but not all iterated functibave
the same nice convergence properties that the cosine dartedis. In this paper, we'll look at various forms of iteratio

2 A SimplePractical Example

Suppose you put some money (saglollars) in a bank at a fixed interest rate. For example, sspiee bank offers simple
interest atl0% per year. At the end of one year, you will have your origimalollars plus(.10)« dollars of interest, or
z + (.10)x = (1.10)z dollars. In other words, if you begin with any amount of mgnaye year later you will have that
amount multiplied byl.10.

10ne radian is equal to abo&iT.2957795131 degrees. If you've never seen it, this seems like a strangaavmeasure angles but it makes very good
sense. In a unit circle (a circle with radiu$, the circumference 8w, and if we measure in terms of that length instead of in terfr&66 degrees, we
find that27 radians is360 degrees, from which the conversion above can be derived.



Suppose you'd like to know how much money you have dfter 10 years. If you consider the increase in value over one
year to be a function named then we will have:

f(z) = (1.10)x.

The functionf will take any input value and tell you the resulting outpulinsif that input value is left in the bank for one
year. Thus if you start witlx dollars, then after one year, you will hayéx) dollars. At the beginning of the second year
you havef (x) dollars, so at the end of the second year, you'll hAyg€(z)) dollars. Similar reasoning yield& f(f(z)))
dollars after the third yeay;(f(f(f(«)))) dollars at the end of the fourth year, and so on.

It would be nice to have an easier notation for function tiera especially if we iteraté00 or 1000 times. Some people
use an exponent, like this:

FES @) = (),

but there’s a chance that this could be confused with regxiaonentiation (and it could, especially with functiorkelihe
cosine function, mentioned above). So we will use the falhgnotation with parentheses around the iteration number;

FUSE @) = 1 (@).
As with standard exponentiation, we’ll find it is sometimegful to define:
fOz) = .
Returning to our example wheféx) represents the amount of money in your account a year aftestingz dollars, then

the amount you'll have aftel0) years would bef 1% (z).

It is fairly easy to derive exactly the form ¢gf™) (z) for this example. Since each year, the amount of money isipliati
by 1.10, we can see that:
£ (@) = (1.10)"z,

and this even works for the case whare- 0.

Although this example is so simple that it is easy to give aetbform forf (™) (z), we will use that example to show how
iteration can be analyzed graphically. First, imagine ttegpp of f(x) = (1.10)z versuse.
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In the graph above, two lines are plotted that pass througlotlgin. The upper line corresponds to the functipa=
f(z) = (1.10)x and the lower one, to the functign= = which forms a45° angle with ther andy axes. Now suppose we
begin with an investment df100. To find out how much money we have after one year, findltiteon thez-axis and go

up to the linef (z). The height of that line (which will b&10) represents how much we’ll have after one year. But now we
would like to put thatl 10 back into the functiory, so we need to find10 on thez-axis and look above that.

But what this amounts to is copying thevalue (the height of the line from theaxis to the linef (x) to thez-axis. Here is
where the lingy = x suddenly becomes useful: If we begin at the p¢li0, 110) and move horizontally to the ling= z,
we will be situated exactly over the valu&0 on thez-axis (since on the ling = z, they-coordinate is the same as the
z-coordinate). Since we're already exactly ovéf), we can just go up from there to the lirff¢x) to find the value of our
investment after two year$121.

To find the value after three years, we can do the same thieghefght of the poinf110, 121) needs to be copied to the
x-axis, so move right from that point {d 21, 121), putting us ovei 21 on thexz-axis, and from there, we go up #t{121)
to find the amount after three yeafd:33.10.

The same process can be used for each year, and the final béititet zig-zagging line at the upper-rightmost point
represents the value of the origirfdl00 investment after six years: abdkit77.16.

3 General Iteration

A little thought shows us that there is nothing special altoeff (2:) we used in the previous section in a graphical interpre-
tation. We can see what happens with the cosine functionioret in the introduction, by using exactly the same sort of
graph, except that(x) = cos(x) and we will begin our iteration withy = 1:
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Although the picture looks different (instead of a zig-zewggline, we've got a spiral), exactly the same thing is godmg
We begin with an input value of = 1, we go up to the line; = cos(z) to find the result of one press of the cosine
button. The height of that point has to be used as an input,esmave horizontally from it to the ling = z, at which
point we're above a point which is equal to thei-coordinate of the poinfl, cos(1)). Move vertically from there to the
line y = cos(z), then horizontally tay = «, and repeat as many times as desired. It should be clear Frefustration



that as more and more iterations are performed, the spillatoviverge to the point where the line= 2 meets the curve
y = cos(z), and that point will have a value of approximatély39085133215,.739085133215).

The major difference between the two examples is that it lshioe clear that in the case of bank interest, the zig-zag line
will keep going to the right and up forever, the spiralinggliior the cosine function will converge more and more closely

a limiting point. What we would like to do is examine the gedmef the curvesf(z) that either causes them to converge
(like the cosine curve) or to diverge (like the bank intefasiction). We'd also like to know if there are other posstlab
(other than convergence or divergence). We will examinplgjcally a number of examples in the next section.

4 Graphical Examples
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Every example on the previous page shows what happens fatiauter function ofz, assuming two different starting
points. All of the functions on that page are linear (strailifies) and they illustrate the convergence (or diverggnce
properties. All the examples have the lipe= f(z) crossing the lingy = « at (.5,.5). Basically, the only difference
between the different functionsis the slope of that line. We call the point of intersectionyof f(x) andy = x a “fixed
point”, since if the input happened to have exactly that@athe output would be the same, or fixed.

In the example on the upper left we have basically the sam@&situation we had with the bank account balance except
that in the bank balance case, the two lines meg0at). In this case, if we start a bit above the intersection, ordfixe
point, the values diverge, getting larger and larger. If wgib below the intersection, the values diverge, but to lemand
smaller values. The slope ¢fz) in this example id.2.

On the upper right, the slope gfx) is 0.8, and now the iterations converge to the fixed point from bathotions.

The example on the middle left is similar, but the slope is:lesly0.4. The convergence is the same, from above or below,
but notice how much faster it converges to the fixed point.

The next three examples show what happens when has a negative slope. The example on the middle right, theeslo
is negative, but not too steep (in fact, it-i€).8). Convergence occurs from any starting point, but instéatiyezagging to
the fixed point, it spirals in.

The example on the bottom left shows a very special case wherslope off (z) is exactly—1. In this case, from any
starting point there is neither convergence nor divergghesoutput values fall into “orbits” of two values.

Finally, in the example on the lower right, the slope is negatind steeper than1.0, and any input, except for the fixed
point itself, will diverge in a spiral pattern, as shown.

The examples on the previous page pretty much cover all tegilgibities for linear functiong(z). If the slope, in absolute
value, is less tham, iterations converge to the fixed point. If the slope’s abtolalue is greater than it diverges, and
if the slope’s value is equal tb or —1, there is a fixed orbit of one or two points. (Note that the fiorcwith slopel is
y = f(x) = x which is identical to the lingg = x, so every point is a fixed point whose orbit contains exati# point.)

It will turn out that if the functionf is not a straight line, the resulting situation is usually tom different. Compare the
example of the cosine function with the similar example anrtfiddle right. In both cases the slopes of the (curve, ling) a
negative, but between1 ando0.

In the next section we will examine more complex situatiohexe the iteration results are not quite so simple.



5 More Graphical Examples
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Here are four more examples. The graph in the upper left stiatshere may be more than one fixed point.

The other three illustrate limit cycles. In the exampledhia tipper right and lower left, different starting points verge
not to a point, but to a cycle. On the upper right, the cycles fitep inside the limiting cycle and then spiral out. In the
lower right, one cycles in while the other cycles out.

Finally, the example in the lower right shows that there mayrany limiting cycles, and the particular cycle into which a
starting point falls depends on the position of the startiaint.
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The figure above shows another interesting example. Thediin) is actually tangent to the line = y, and initial values
less than the point of tangency converge to that point, whitil values larger than it diverge.

You may find it interesting to try to construct examples witimbinations of fixed points, cycles and sequences thatghver

6 A SimplePractical Example

Suppose you want to approximate the square root of a nunaverxdmpley/3. The following strategy works:

Make a guess, say. If z is the correct answer, therf = 3, and another way of saying that is:= 3/z. If z is not the
exact square root, then:fis too small,3/x will be too large and vice-versa. Thus the two numbeend3/z will lie on
both sides of the true square root, and thus their average liescloser to the true square root than either one of them.

If  is not the exact square root, then the valye= (x +3/x)/2 is closer to the square root thawas. We can then usg

as a new guess at the square root and repeat the proceduessastroany times as desired to obtain more and more accurate
approximations. The following illustrates this method tedfi/3, starting with an initial guess, = 1, and approximated

to 20 decimal places. The final line displays the actual teaghin accurate to 20 decimal places:

2o = 1.00000000000000000000
21 = (z0 + 3/x0)/2 = 2.00000000000000000000
w9 = (x1 4+ 3/21)/2 = 1.75000000000000000000
w3 = (12 +3/22)/2 = 1.73214285714285714286
x4 = (23 +3/x3)/2 = 1.73205081001472754050
w5 = (x4 +3/24)/2 = 1.73205080756887729525

V3 = 1.73205080756887729352

The fifth approximation is accurate to 17 decimal places. @sgan see, this method converges rather rapidly to thesdesir
result. In fact, although we will not prove it here, eachaten approximately doubles the number of decimal places of
accuracy.

Obviously, what we are doing is iterating the functipfx) = (x + 3/z)/2 and approaching the fixed point which will be
the square root of. Also, obviously, there is nothing special ab8utlf we wanted to approximate the square roonof
wheren is fixed, we simply need to iterate the functiftr) = (x +n/x)/2.



On the following page is a graphical illustration of the cergence of the iterates ¢f(x) as described above, beginning
with an initial guess of: = 1. After the first few steps, due to the flatness of the curve,garusee that the convergence is
very rapid.
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An interesting strategy that can be performed on almost smated function is this: we can double the speed of the
convergence using a different function. In the example ebae approximated/’3 by iterating f(z) = (22 + 3)/(2x).
Suppose we iteratg( f(xz))? That should go twice as fast. In this case,

2
z243
(—21) +3

f(f(x) = :
(52)
A little algebra yields:
zt + 1822 +9
f(f(z) = AP 1 30)

Iterations of that function are shown below, and it's ob@dliat the new function is a lot flatter, so convergence wilhbe
lot faster.

Obviously, there is no reason we couldn’t do the algebraiied, four or more iterations in the same way. The disadganta
of course, is that the functions that we evaluate are moreptioated, so the calculation time for each step may increase
more rapidly than the time gained.

Here are three iterations to 30 decimal places of the fungtig'(z)) calculated above, beginning with a (bad) initial guess
of 4:

F(4) = 1.81907894736842105263157894737
F(f(4)) = 1.73205205714701213020972696708
FF(F(4) = 1.73205080756887729352744640016
V3 = 1.73205080756887729352744634151



7 A Simplelmpractical Example

The following is not a particularly good way to do it, but itekuse a simple iterated function to converge to the value of
7. Unfortunatly, to do the calculations requires that we ble &ocalculate the sine function to many decimal places whic
is at least equally difficult as computingusing standard methods.

But here’s the function to iterate(x) = = + sin(x). It's a good exercise to plot the function and see why a fixedtp® at
x = 7. In any case, here are the results of repeatedly applyinduhetion fromag = 1 (accurate to 50 decimal places):

o = 1.0000000000000000000000000000000000000000000000000
1 = 1.8414709848078965066525023216302989996225630607984
T2 = 2.8050617093497299136094750235092172055890412289217

r3 = 3.1352763328997160003524035699574829475623914958979

rqs = 3.1415926115906531496011613183596168589038475058108
r5 = 3.1415926535897932384626310360379289800865645064638
6 = 3.1415926535897932384626433832795028841971693993751

m = 3.1415926535897932384626433832795028841971693993751

8 Newton’'sMethod

The method of approximating a square root used in the presedtion is just a special case of a general method for finding
the zeroes of functions.



2.0

Newton’s method works as follows. (See the figure above.p8s@that the curved line represents a function for which you
would like to find the roots. In other words, you want to find wdéhe function crosses theaxis. First make a guess. In
the figure, this initial guess is = —0.2. Find the point on the curve corresponding to that guessofwhill be (z, f(x)))

and find the tangent line to the curve at that point. That tanijge will intersect thex-axis at some point, and since the
tangent line is a rough approximation of the curve, it wilbpably intersect near where the curve does. In the example
above, this will be at approximately= —0.84.

We then iterate the process, going from that intersectiam pmthe curve, finding the tangent to the curve at that paind
following it to where it intersects the-axis again. In the figure above, the tangent line and theecam® so similar that it's
almost impossible to see a difference between the curvehariihe, so the intersection of that line and thexis is almost
exactly the root of the function. But if not, the process carntérated as many times as desired.

In the example above, we are trying to solffer) = z* — 422 + 2 + 2 = 0. The initial guess iy = —0.2, the second
is x1 = —0.839252, and the third isc; = —0.622312. To show thate, is very close to a root, we have¢(—0.622312) =
—0.0214204.

To find the equation of the tangent line requires a bit of dakbut assume for a moment that we can do that. In fact, for
well-behaved functions, the numbgi(z) represents the slope of the functiffr) at the point(z, f(x)).

If a line passes through the poifty, o) and has slope: at that point, the equation for that line is:

Y —yo = m(x — o).
This is usually called the “point-slope” equation of a line.

In our case, the initial guess will be, yo will be f(z¢) andm = f'(x¢). (Remember thaf’(z) is the slope of the
function at(zo, f(z¢)).) The equation for the tangent line will thus be:

y— f(xo) = fl(iCo)(ff — o).

This may look confusing, but there are only two variablesvabe andy. All the others:zg, f(zo) and f'(xq) are just
numbers.

We want to find where this line crosses thaxis, so seyy = 0 and solve forz. We obtain:

f(zo)

rT=x9— 7=

f(z0)’
and this equation is used to obtain successive approxinstising Newton’s method.

But as before, all we are doing to find better and better apprations for the root of a function is to iterate a particular
function. The solution: in the equation above serves as the next guess for the rgdrpt= 0.

10



Let us show the graphical interpretation of the iteratioesfgrmed to use Newton’s method to find the cube root of a
number; say, the cube root of 2.

In this case, we would like to solve the equatiffx) = 2 — 2 = 0. If you don’t know any calculus, take it on faith that
the slope function (called the “derivative” in calculus)fi§z) = 3z2.

If we start with any guess, the next guess will be given by:

f(zo) -2 2z3+2

ro - 1/ (o) - 3r2  3x?

The figure at the top of the next page represents the iterafitime function above (beginning with a particularly teleib
first guess ofry = .5) that approaches the cube root of 2, which is approximét€§992105.
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8.1 Domains of Attraction

When you use Newton’s method to approximate the roots of ynpahial which has more than one root, the particular root
to which the method converges depends on your choice ofrgjgrbint. Generally, if you pick a first guess that is quite
close to a root, Newton’s method will converge to that roat,dn interesting question is this: “Exactly which pointstba
line, if used as the initial guess, will converge to eachPbot

Some points may not converge at all. For example, if yourahiiuess happened to lie exactly under a local maximum or
minimum of the curve, the approximating tangent line woutdplarallel to thec-axis, and the iteration process would fail,
since that line never intersects theaxis. And there are other points where the process might $aippose your initial
guess produced a tangent line that intersected tiras exactly under a local maximum or minimum. Or if the sahieg
happened after two iterations, et cetera?

And what happens if you pick a guess near where the functierahacal maximum or minimum? The tangent line could
intersect far from that initial guess, and in fact, into aioeghat converged to a root far away from the initial guess.

For any particular root, let us define the “domain of atti@ttto be the set of initial guesses on thaxis that will eventually
converge to that root. As an illustration of some domaingéetion, consider the equatigifz) = z(z + 1)(x — 2) =0
which obviously has the three roats= —1,z = 0 andx = 2. We can still apply Newton’s method to initial guesses, and
most of them will converge to one of these three roots. In tneré below, points on the-axis have been colored blue, red
or green, depending on whether they would converge to this ro 0 or 1, respectively.

11
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Notice that near the roots, the points are colored solidlyas we move away from the roots to the regions near where the
relative maxima an minima occur, the tangent lines will tihtbe next guess into regions that converge to non-nearttg.roo
An example of that is illustrated above. With a particuldti@th guess that is a bit less thdn0, successive applications

of Newton’s method are illustrated by the red line which shdlat although the initial guess is a bit closer to the root at
zero, the first approximation takes it to a position closeghwroot at—1, and then out beyon®, after which it converges
rapidly to the root a. The image is not infinitely detailed, and in fact, the actrape of these domains of attraction can
be quite complex. In fact, in Section 13 we will see some iditrlg complex domains of attraction when Newton's method
is extended to search for roots in the complex number plane.

8.2 Dependence on starting point

Here is a series of plots illustrating the use of Newton’shrodton the functiorsin(z), using starting values of.87,
4.88, 4.89, 4.90, 5.00 and5.20, in that order. Notice how small changes in the input valwes groduce wildly-different
convergence patterns. In every case below, six steps irptir@dmation are taken. Some converge so rapidly that dray t
first three steps or so are visible. Some are quite a bit slower

12
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9 Continued Fractionsand Similar

Sometimes you see mathematical objects like these:

8
I

\/1+\/1+\/1+\/T
1

1+
I+

8
\

What do they mean? The usual interpretation is that eaclession can be terminated after one, two, three, four, psste
and the terminated forms can be evaluated. If the evaluatend to a limit, then the infinite expression is interprdtede
that limiting value.

For example, in the first case above, we could evaluate:
= 1.000000000
= 1.414213562

&
S SlS
Il

1+ 1.553773974

\/1+ 1+4/1+

The second case (which is called a “continued fraction”)lmaevaluated similarly.

a
\

1.598053182

Both, however, can be evaluated using function iterationelk In the first case, if we have the valug for a certain level
of iteration, the next level can be obtained by calculatfiigy), wheref(z) = /1 + x. For the continued fraction, the
corresponding value of(x) would bef(z) = 1/(1+x). Below are the graphical iterations. On the left is the riestpiare
root and on the right, the continued fraction. Both begirhvain initial approximation of 1:
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Notice that there is another way to evaluate these expressagsuming that the limits exist. In the first case, if we let

x:\/1+\/1+\/1+m,

then a copy of: appears inside the expression foand we have:

=1+
Squaring both sides, we obtail = 1 + z, which has as a root the golden ratio:

= ! +2\/5 = 1.61803398874989484820458683437

T

Similarly, if x is set equal to the continued fraction, we can derive:
r=1/(1+a),
Which becomes? + = = 1, and has the solution:

V5 —1
2

xr =

= .61803398874989484820458683437,

one less than the golden ratio.

10 Optimal Stopping

Thanks to Kent Morrison, from whom | stole this idea.

Suppose you want to score as high as possible, on average ywh@lay the following game. The game goesidapunds,

and you know the value of before you start. On each round, a random number unifornslyiduted betweefi and1 is
selected. After you see the number, you can decide to endithe gith that number as your score, or you can play another
round. If play up to thex'" round, then you get whatever number you get on that last roiieht is your optimal strategy?

The topic is called “optimal stopping” because you get tadieevhen to stop playing.

15



As with most games, it's usually a good idea to analyze sirogées first, and the simplest of all is the “game” whea 1.
It's not really a game, since once the number is selectedseme there are no more rounds, you will be stuck with that
number. Since the numbers are uniformly distributed betMdesnd1, your average score, when= 1, is 1/2.

Let us give a name to the expected value of your score for a géatheip ton rounds ass,,. From the previous paragraph,
E, =1)2.

What about ifn. = 2? What isE>? On the first round a number is chosen, and based on that nuyohearan decide to use
it as your score, or to discard it and play one more round. Ufryaitial score is less thah/2, it's clear that you should play
again, since on average playing the final round will yieldawarage, a score @f/2. But if your initial score is larger than
1/2, if you discard it, you’ll do worse, on average.

So the optimal strategy fot = 2 is this: Look at the first score. If it’s larger thdr(2, stop with it. If not, discard it, and
play the final round. What is your expected score in this gaidal the time you will stop immediately, and since you
know your score is abovk/2 it will be uniformly picked between /2 and1, or in other words, will averag&/4. The other
half of the time you will be reduced to playing the game witk= 1, which you already solved, and your expected score
then will be1/2. So half the time you’ll averag&/4 and half the time you'll average/2, yielding an expected value for

n = 2 of:

= +

> w
N —
N =
(0e)

N | =

What is E3? After the first round, you have a score. If you discard thatescyou will be playing the game with onfy
rounds left and you know that your expected score wilbpg. Thus it seems obvious that if the first-round score is larger
than5/8 you should stick with that, and otherwise, go ahead and pley t= 2 game since, on average, you'll get a score
of 5/8. Thus5/8 of the time you'll play the game with = 2 and3/8 of the time you stop, with an average score midway
betweerb/8 and1, or 13/16. Expected score will be:

3 13 5

Ea=2.224Z
55516 8

5 89
8 128

The same sort of analysis makes sense at every stage. Inrttewgiéh up ton rounds, look at the first round score, and
if it's better than what you'd expect to get in a game with- 1 rounds, stick with it; otherwise, play the game with- 1
rounds.

Suppose we have laboriously worked @it F», Fs, ...E,_1 and we wish to calculat®,, . If the first score is larger than
E,, 1, stick with it, but otherwise, play the game with— 1 rounds. What will the average score be? Wel; E,,_; of
the time you'll get an average score mid-way betwékn; and1. The otherE,, _; of the time, you'll get an average score
of E,_1.

The number mid-way betwedn, ;, andl is (1 + F,,_1)/2, so the expected value of your score in the game witbunds

IS:
1 + Enfl

2

1+E2_

En:(l_Enfl)'( D)

) + Enfl ' Enfl =
Notice that the form does not really dependranTo get the expected score for a game with one more roundethstiis
just (1 + E?)/2, whereE is the expected score for the next smaller game. We can cheokark with the numbers we
calculated forE;, E> andE5. We know thatE; = 1/2, so

14 (1/2)?
EQZ#:E,aDdEgz

14 (5/8)* _ 89
2 128’

so we seem to have the right formula.
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Notice that to obtain the next expected value, we simply thleeprevious one and plug it into the functigifz) =
(1 + 22)/2, so basically we just iterate to find successive expectasesaior successive games with largerHere are

the first few values:

Eq
Es
Es
Ey
Es

Es

= 0.50000

= 0.62500

oo Xl Trro| =
©

128

24305
— =~ .741
32768 s

1664474849

— _ ~. 2
2147483648 77508
7382162541380960705

9223372036854775808

~ (0.695313

~ .800376

As before, we can look at the graphical display of the itergtand it's easy to see from that that the average scoresiser

gradually up to a limiting value of:

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6

11 Biology: Heterozygote Advantage

0.8

1.C

Some knowledge of probability is required to understansiskction. A little biology wouldn't hurt, either.

The canonical example of this is the presence of the genedhiats sickle-cell anemia in humans. Basically, if an iddial
has this disease he/she will not live long enough to havediail Normally, genes like this are eliminated from the

population by natural selection, but in human populationafrica, the gene is maintained in the population at a rate of

about11%. In this section we will see why.

The sickle-cell trait is carried on a single gene, and theeehao types:A, the normal type, does not cause anemia. The

sickle-cell gene is called. Every individual has two copies of each gene (one from théharcand the other from the
father), so there are three possibilities for the genotyfamondividual: AA, Aa, or aa. Suppose that at some point, there
is a proportiorp of geneA in the population and a proportign= 1 — p of the geneu.
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We will simply assume that in the next generation that theegeare thoroughly mixed, and therefore, at birth, the three
types of individuals will appear with frequencig’ (of type AA), 2pq (of type Aa) andg? (of typeaa).

But years later, when it is time for those individuals to lates| of the ones of typea are dead. In other words, genotype
aa is a recessive lethal gene.

It may also be true that the individuals of typésl and Aa have different chances of survival. We don’t know exactlyatvh
these are, but let us just say that individuals of typé are (1 + s) times as likely to live as individuals of typéa. As
childbearing adults then, we will find + s)p? individuals of typeA A for every2pq individuals of typeAa.

We'd like to count the total number afgenes in the next generation. They can only come fron2piggroportion having
type Aa, and only half of the genes from those people willdsince the other half are of typgé. Thus there will be a
proportionpg of them. The total number of genes will Bél — s)p? + 2pq.

The proportion of: genes after breeding will thus be:

q/ _ bq
(14 8)p? +2pq

But genes are either of typé or a, sop = 1 — g and we have:

/= (1-4q)q _ q
(I+s)1-¢q?*+2¢1-q) (1+s)(1—-q) +2¢

To obtain the proportion o genes in each successive generation, we simply have to @uathe ofq into the equation
above to find the new valug’, in the next generation. To find the proportion after ten gatiens, just iterate 10 times. This
is just another iterated function problem!

Let's look at a few situations. Suppose first that thd individuals and theda individuals are equally fit. There is no
disadvantage to having a single copy of thgene. Thers = 0, and the function we need to iterate looks like this:

¢ =@ =1

Let’'s assume that for some reason there is a huge propoftieorgenes, sap0%. Here is the graphical iteration in that
case:
1.0~

0.8

0.6

0.4f -

0.2

ook o
0.0 0.2 0.4 0.6 0.8 1.c

Notice that the fixed point is at zero, so with time, the siet#dl gene should be eliminated from the population. In othe
words, the probability that asm gene will appear drops to zero.
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Now suppose that even having a single copy ofdlyene is a disadvantage. Suppose thatd0i% more likely that anA A
individual will live to breeding age than asq individual. This makes = .2, and the corresponding graphical iteration
looks like this:

1.0~

0.8

0.6

0.41

0.2

ook o oy
0.0 0.2 0.4 0.6 0.8 1.c

Not surprisingly, the sickle-cell gene is again driven outh@ population, and if you compare the two graphs, you cen se
that it will be driven out more rapidly (fewer generationgéaluce it the same amount) in this second case. With the same
number of iterations, the gene is about half as frequeneifitH individuals have 20% advantage over the: individuals.

But in the real world, something else happens. In Africa whéere is a lot of malaria, individuals with a single copy of
the sickle-cell gene (individuals of typ&a) actually have an advantage over those of tyjpe because they have a better
chance of surviving a case of malaria. We can use the saméi@yuaut simply makes negative. Let’s look at the graph
with s = —.3:

1.0~

0.8

0.41 _—

0.2

oo o . ooy
0.0 0.2 0.4 0.6 0.8 1.c

Now notice thag tends to a non-zero limit, in this case, a bit more tha%. In other words, the advantage to the individuals
who have a single copy of thegene is enough that the certain deathgwoindividuals is not enough to eliminate the gene.
In fact, a value ok = —.3 is not required; any negative value fowould make this occur, although a smaller advantage of
Aa would translate to a smaller limiting value @f

As in every other case we've looked at, we could find the exwanitihg value by setting/ = ¢:

r q
T 0309 +2¢
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If we solve that forg, we obtain:g = .23077: a bit more thar23%, as we noted above.

Individuals with two copies of the same gene (like or AA) are called homozygous, and individuals with one copy of
each type are called heterozygotes. In the case of the sieklgene in a malarial area, there is a heterozygote adgant
hence, the title of this section.

12 Markov Processes

To understand this section you will need to know somethirguaimatrix multiplication and probability.

Imagine a very simple game. You have a board that is nine equang with a marker beginning on the first square. At
each stage, you roll a single die, and advance the markerebyumber of steps shown on the die, if that is possible. The
game is over when you land on the ninth square. You cannosbuet the last square, so, for example, if you are on square
5 and roll a6 the marker stays in place because you cannot advance siesspa®ther words, in order to finish, you need
to land on the last square exactly. With this game, we can asktipns like, “How likely is it that the game will have ended
after7 rolls of the die?”

Up to now we have been looking at one-dimensional iteratiom now we will look at a multi-dimensional situation. At
every stage of the game, there are exactly 9 possible sihsatiyou can be on square 1, square 2, ..., square 8. At the
beginning of the game, before the first roll, you will be onaaul with probability 1. After the game begins, however, all
we can know is the probability of being on various squares.

For example, after one roll there i @6 chance of being on squares 2, 3, 4, 5, 6, and 7, and no chane&égfdn squares
1 or 8, et cetera.

We can, however, easily write down the probability of moviram square to squarej on a roll. For example, the chance
of moving from square 1 to square 41ig6. The probability of moving from square 4 to itself4g6 = 2/3, since only
rolls of 1 or 2 will advance the marker. Rolls of 3, 4, 5 or 6 requmpossible moves, beyond the end of the board. We can
arrange all those probabilities in a matrix that looks lifist

= OO O O O O = © O

S

I
SO DD OO OO OO
S OO OO OO oo
S OO OO O ooa-
O O O O OoloFoFo-
O O O Owlrol-oI—oI—o =
O O ON-OI-o|-o o o =
O O WIS =O | =D = o | =
O O|To| o | = | O [ o | = = O

The number in row and columnyj is the probability of moving from squateto squarej in a single roll. We have put &
in row 8, column 8, since if the game is over, it stays over.

As we stated earlier, all we can know is the probability otigetto various squares after a certain number of rolls. At an
stage there is a probability of being on square 1, 2, 3, . .Wéwill write these in a row vector, and that vector, inityafat
time zero), looks like this:

Py =(1,0,0,0,0,0,0,0,0).
In other words, we are certain to be on square 1.

The nice thing about the matrix formulation is that given stribution of probabilities? of being on the 9 squares, if we
multiply P by M (using matrix multiplication), the result will be a nef®/ that shows the odds of being on each square
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after a roll of the die. To calculate the probabilities ofrgeon the various squares after 10 rolls, just iterate theixnat
multiplication 10 times.

To show how this works, let us call the probability distrilouts after one rolPy, after two rollsP,, and so on. Here are the
numeric results:

p = (0,0.166667,0.166667,0.166667,0.166667,0.166667,0.166667, 0, 0)

p2 = (0,0,0.027778,0.083333,0.138889, 0.194444, 0.25,0.166667, 0.138889)
ps = (0,0,0,0.0185185,0.0648148, 0.138889, 0.240741, 0.25463, 0.282407)
ps = (0,0,0,0.003086,0.0246914,0.0833333, 0.197531, 0.289352, 0.402006)
ps = (0,0,0,0.000514,0.0087449,0.0462963, 0.150206, 0.292567, 0.501672)
ps = (0,0,0,0.000086,0.0030007,0.0246914, 0.109396, 0.278099, 0.584727)
pr = (0,0,0,0.000014,0.0010145,0.0128601, 0.077560, 0.254612, 0.653939)

If we look at the last entry ip7, we can conclude that after 7 rolls, there is a slightly betten65% chance that the game
will be over.

Note that this game is incredibly simple, but much more cacaptd situations can be modeled this way. For example,
imagine a game where some of the squares are marked, “Gd"t@jdiGo forward 4 steps”. All that would be affected
would be the numbers in the arrdy. For a board with 100 positions, the array wouldlb8 x 100, but the idea is basically
the same.

Suppose you are designing a board game for very young childfeu would like to make sure that the game is over in
fewer than, say, 50 moves, so you could simply make an arraggmonding to a proposed board, iterate as above, and
make sure that the game is very likely to be over in 50 moves.

13 Final Beautiful Examples

13.1 Newton’s Method for Complex Roots

In Section 8 we learned how Newton’s method can be used toHmdaots of functions as long as we are able to calculate
the slopes of the functions at any point on the curve. In thil §ection, we are going to do the same thing, but instead of
restricting ourselves to the real numbers, we are goingeh s#ots in the complex plane.

We will use Newton’s method to find the roots:of = 1 — in other words, we will find the cube root of On the surface
this seems silly, because isn’t the cube root efjual to1? Well, it is, but it turns out that has three different cube roots.
Here’s why:

2 —1=(x—-1)(2*+z+1).

If we set that equal to zero, we get a root if either 1 = 0 or if 22 + 2 + 1 = 0. The first equation yields the obvious root
x = 1, but the second can be solved using the quadratic formullatirotwo additional roots:

—1++/3i —1—+/3i
r=———#— and x=——,
2 2
wherei is the imaginary/—1. If you haven't seen this before, it's a good exercise to dufith of those results above to
verify that the result in both caseslis
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If you plot the three roots, they lie on an equilateral trienzentered at the origin.

Since we will be working with complex numbers, we will chartbe variable names to be in termszoinstead ofz. This
is not required, but it is the usual convention, and it camstaeminds us that the variables are not necessarilyicestrto
be real numbers.

As we derived in Section 8, i is an initial guess for the cube root, the next approximatigncan be obtained as follows:

228+ 1
zZ1 = 5 -
324

(Actually, this is not exactly the same, since we are trymgjiid the cube root of instead of2 as we did in the previous
section, but the only difference is that the constaint that section is replaced bylahere.)

The other difference, of course, is that we want to allgvandz; to take on complex values instead of just real ones. The
calculations are a bit messy, but straightforward (see AdpeA for details). As an example, consider performing the
iteration above when the initial value.i&+ .4::

zo = 09404

z1 = 0.830276 4+ 0.0115917:
zg = 1.03678 — 0.005768661%
z3 = 1.00126 — 0.000395117%
zg = 1.00000, —.0000009935%

It is fairly clear that the sequence above converges to thiezre- 1. Let’s try one more, beginning at1 + i:

zo = —1.0+1.0¢

z1 = —0.666667 + 0.833333¢
zo = —0.508692 + 0.8411¢
z3 = —0.49933 + 0.866269:
zg = —0.5+0.866025:

Itis clear that this one convergesie= (—1 ++/3i)/2 = —.5 + .866025i.

What makes Newton’s method in the complex plane interegitttgat many initial values lead to multiple interesting josn
around the plane before they converge to one of the rootsacin if we look at every point in the plane and color it red if
it converges td, color it green if it converges t6-1 — /3)/2 and blue if it converges t6—1 + /3)/2, then the region
around the origin€1.6 < x,y < 1.6) would be colored as in the following illustration. These #ire domains of attraction

in the complex plane for Newton’s method applied to this polyial. The white dots in the red, green and blue regions
represent the three roots of the equatién- 1 = 0.

22



Just because it's another pretty picture, here is anothegémvhich corresponds in exactly the same way as the previous
one to the use of Newton’s method to solve the equatifon 1 = 0. This time there are four roots; —1, i and—i, and
the colors correspond to regions of input values that wilirdually converge to those roots.
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Finally, here’s exactly the same thing, but solutionsdf- 1 = 0:

13.2 TheMandédbrot Set

Newton’s method iteratively applies a function to attemptonverge on a root, but other sorts of iteration can lead to
different artistic results. One of the most famous is catlleiMandelbrot set.

The definition of the Mandelbrot set is simple. Consider thecfion: f(z) = 22 + ¢, wherez andc are complex numbers.
For any particular fixed:, we consider the iteratest?) (0), £ (0), f@(0), f®(0), .... In other words, iterated the
function f beginning with the valu@. If the absolute value of ever gets larger tha?, successive iterates gffrom then
on increase in size without bound. Another way to say thdtasthe iterates “diverge to infinity”.

Thus the series of iterates will always divergg|f> 2, but for some values afthis divergence does not occur. An obvious
example isc = 0, in which casef (™) (0) = 0, but there are a lot of others. For example, if wedet 0.3 + 0.34, then the
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first few iterations, beginning with zero, yield:

0

FO®) =
FO0) =
@) =
(3)(0) =
f@0) =
fO0) =

0.00000 + 0.00000:
0.30000 + 0.30000:
0.30000 + 0.48000:
0.15960 + 0.58800z
—0.02027 + 0.48769:
0.06257 + 0.28023:

The sequence above wanders around for a long time, but elgntonverges td.143533 + 0.4207964, which you can
check to be a solution fof(z) = z, whenc = 0.3 4 0.3i.

The Mandelbrot set is simply the set of complex numlediar which the series of iterates ¢f beginning at zero, do not
diverge. The following is an illustration of the Mandelbsst in the complex plane, where the members of the set itself
are drawn in black. The somewhat artistic blue outline ofMandelbrot set is an indication of how quickly those points
diverge. The ones that diverge the slowest (and are, in sensesclosest to the boundary of the Mandelbrot set) aréguhin

in the brightest color.
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A Iteratesfor Newton’s Method

To iterate the function representing Newton’s method ferdblution in the complex plane of the equation- 1 = 0, we
must be able to compute:

228+ 1
21 = 2
324

wherez is given.
We write zo = x + yi, wherez is the real part oty andy is the imaginary part. Then we have:

2(z +yi)® + 1

S TCETIE

2(23 + 322yi — 3xy? — 3y3i) + 1
. 3(x2? 4 2zyi — y?)
I (223 — 62y? + 1) + (622y — 2y3)i

(322 = 3y?) + (6zy)i

The fraction above has the form:
_a+bi

c+di’
wherea = 223 — 62y + 1, b = 622y — 23, ¢ = 322 — 3y? andd = 62y. We have:

21

o a+bi (a4 bi)(c—di)
"Texdi (et di)(c— di)
(ac + bd) 4 (be — ad)i
z
! (2 + d?)
ac+ bd bec — ady .
2 = (Gre)t Gra)
and the final line shows us how to calculate the real and inaagiparts of:; in terms of the real and imaginary parts:gf
Let’s illustrate this withzy = —1 + 7 which was an example in Section 13. We have —1 andy = 1. We then have:
L (—24+6+1)+ (6 —2)i
e (3-3)—6i
Soa =5,b=4,c=0andd = —6, yielding:
—-24 30

which is what we obtained earlier.
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