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Variance of the k-fold divisor function in arithmetic
progressions for individual modulus

by

DaviD T. NGUYEN (San Jose, CA and Kingston, Ont.)

Abstract. In this paper, we confirm a smoothed version of a recent conjecture on the
variance of the k-fold divisor function in arithmetic progressions to individual composite
moduli, in a restricted range. In contrast to a previous result of Rodgers and Soundararajan
(2018), we do not require averaging over the moduli. Our proof adapts a technique of
S. Lester (2016) who treated the variance of the k-fold divisor function in the short intervals
setting in the same range, and is based on a smoothed Voronoi summation formula but
twisted by multiplicative characters. The use of Dirichlet characters allows us to extend to
a wider range than the previous result of Kowalski and Ricotta (2014) who used additive
characters. Smoothing also permits us to treat all k¥ unconditionally. This result is closely
related to moments of Dirichlet L-functions.
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2 D. T. Nguyen
1. Introduction

1.1. Background of the problem. Barban—Davenport—Halberstam-
type inequalities involve bounding from above quantities of the shape

(1.1) YooY A X dya),

d<D a(modd)

with A(f; X, d,a) a certain error term depending on the function f, param-
eters X, d, and a coprime to d. These types of inequalities originate from
the works of Barban [I, 2], Davenport—Halberstam [13], and they yield a
wider range for D in terms of X as compared to Bombieri—Vinogradov-type
inequalities which bound expressions roughly of the form

2 L e |A(f; X, d, a)].
Non-trivial bounds for have many applications in number theory — we
give two recent instances below.

1. A version of the Barban—Davenport—Halberstam-type inequality, with
the function f replaced by related convolutions over primes, together with
other novel ideas, were skillfully used by Zhang [24, Lemma 10| in his spec-
tacular proof that there are bounded gaps between primes.

2. In their work in 2017, Heath-Brown and Li [16] proved a version of the
Barban—Davenport—Halberstam inequality in their Corollary 2 as an ingre-
dient to show that the sparse sequence a® + p?, where a is a natural number
and p is a prime, contains infinitely many primes.

In this paper, we study the asymptotic of a quantity related to . Let
n,k > 1 be integers. Let 74 (n) denote the k-fold divisor function

Tk(n) = Z 17
ni-np=n

where the sum runs over ordered k-tuples (ni,...,ny) of positive integers
for which nq - - - ng = n, so that its Dirichlet generating function is

=3 " > 1),
n=1

Explicitly, if n = p{* - - p®" is the prime factorization of n, then

ri(n) = <’”koil1—1><k2011—1>

(see Lemma . There is a precise prediction on the asymptotic of the vari-
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ance

d ) 2
> > Tk(n)_SO(d)IZ r(n)

a=1 | 1<n<X

(a,d)=1 n=q (mod d) (n,d)=1
(cf. (1.1)) as d, X — oo at a certain rate, which is the main object of study
in this paper. We state this conjecture (in our notation) below.

CoNJECTURE A (Keating-Rodgers—Roditty-Gershon-Rudnick—Sounda-
rarajan). Fiz k > 2. For X,d — oo such that log X/logd — ¢ € (0,k), we
have

(1.2)
a 1 2 .
Z Z Ti(n) — o(d) Z Te(n)| ~ ar(d)ye(c)X (logd)* ',
a=1 1<n<X ® 1<n<X
(a,d)=1 n=q (mod d) (n,d)=1

where ap(d) is the arithmetic constant

(1.3) ar(d) = lim (s — 1)k Z
1

s%l‘*‘
(

and yi(c) is a piecewise polynomial of degree k? — 1 defined by

1
14 R . Alw)2 dF
where d.(x) = 0(x — ¢) is a Dirac delta function centered at ¢, A(w) =

[Iic;(wi — wj) is a Vandermonde determinant, and G is the Barnes G-
function, so that in particular G(k + 1) = (k— 1)!(k — 2)!--- 1L

This conjecture originates from the work of Keating, Rodgers, Roditty-
Gershon, and Rudnick in 2018 [I8, Conjecture 3.3] for prime moduli, with
general form for composite moduli put forward by Rodgers and Soundarara-
jan in [22, Conjecture 1] later that year. We give two reasons why this con-
jecture is relevant.

Firstly, Conjecture [4] is closely related to the problem of moments of
Dirichlet L-functions [6] and correlations of divisor sums |8, 9} [10, 1T} 12]. For
instance, let g denote the geometric factor in the leading term asymptotic
of the 2kth moment of the Riemann zeta function on the critical line:

C(; +it>

T

(1.5) |

0

2 (log T)**

dt ~ apgiT 2] (T — o0),
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b H(1 ) ;)W <1 ) @2 +>

p p p

where

The asymptotic (1.5)) is currently only known, in the case when k is a natural
number, for £ = 1 and 2. Then, the piecewise polynomial v(c) in the asymp-
totic (|1.2) is related to the constant g in (1.5) by the conjectural relation
k
(1.6) '\ w(e)de=gr  (k>1).
0
The connection ([1.6) thus provides an alternative route towards (1.5) via
(1.2) for £ > 3. Explicit expressions for v;(c) for 1 < k < 6 are given in
[3, Tables I and II]. For example, when k = 3,

L8 ifo<e<l,

1€
) (-2 + 24¢" — 252¢5 + 151265 — 4830c*
1s(e) = +8568¢3 — 8484¢2 + 4392 — 927)  ifl1<c<2
H(3—¢)8 if 2<¢<3,
and a simple integration yields
3
9! S'yg(c) de = 42,
0
which is equal to the conjectural value

_ (k*)!
122 kR (B4 1)k (2k+1)
when k = 3. The plot of the function 9!y3(c) is shown in Figure

9k

60

40

20

1.0 2.0 3.0

Fig. 1. Plot of the piecewise polynomial 9!v3(c) versus ¢
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Secondly, Conjecture [A]suggests that, on average, the k-fold divisor func-
tion has a “level of distribution” up to 1 — € in arithmetic progressions for
any k > 2, that is,

(1.7)
Aty X, d,a) : Z Tr(n) 1 Z (n) < Xt ((a,d) = 1)
ky Ay Wy = k — — T , —
1<n<X (d) 1<n<X o(d)

n=a (mod d) (n,d)=1

holds for all d << X'~¢. Indeed, if (1.2)) holds for all ¢ € (0, k), then we have
roughly
d|A(7; X, d, a)* = X1,

so that |A(my; X, d, a)| is roughly of size, with d = X/¢,

)(1—’_6 c—1 1
= X 2c +Z .
d
Thus, the bound (|1.7)) holds if the above
X%t <« X% €
or
L3
c 2
and this happens when
d< X7

Known levels of distribution for 74 are summarized in Table 1 in [21l p. 33].
We next briefly survey what is known about Conjecture [A]

In [22], Rodgers and Soundararajan confirmed an averaged version of
Conjecture[A]in a restricted range of ¢, and over smooth cutoffs. Harper and
Soundararajan in [I5] obtained a lower bound of the right order of magnitude
for the average of the variance (1.2)). Nguyen [2I, Theorem 3|, by using the
large sieve inequality, obtained a matching upper bound of the same order
of magnitude for this variance when averaged over the moduli d.

More is known about the variance (1.2) when the modulus d is prime.
For instance, when k > 3 and d is prime, Kowalski and Ricotta in 2014
computed, as one of many results of [I9] Theorem C, p. 1235] a smoothed
version of the variance , for

(1.8) ce<k—;%> (k> 3).

Their proof uses a deep equidistribution result on products of hyper-Klooster-
man sums and is based on a Voronol summation formula for GL(N) twisted
by additive characters. This theme of using additive characters to study
moments of arithmetic sequences in progressions has also been pursued by
de la Bretéche and Fiorilli [4].
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In [18], a conjecture analogous to the variance of divisor sums in arith-
metic progressions was also made for divisor sums in short intervals. Lester
[20] in 2016 succeeded in evaluating this variance in the short intervals set-
ting, for ¢ € (k — 1, k), unconditionally for & = 3 and conditionally on the
Lindel6f hypothesis for all £ > 3. His proof combines two previous methods
of Selberg and Jutila, and is based in part on a summation formula for coef-
ficients of L-functions developed in [14] by Friedlander and Iwaniec in 2005.
We now state our main result.

1.2. Statements of results. Let g(n) be an arithmetic function, and
w(y) a smooth weight function compactly supported on the positive real
numbers. For (a,d) = 1, define

Mg Xeda)i= 3 g ) - X atmu( ).

n=a(d) (n,d)=1
In this paper, we confirm a smoothed version of the variance asymptotic
(1.2]) of 7 (n) in arithmetic progressions to any composite modulus d, for ¢ €
(k—1, k) for any fixed k > 3. Our procedure follows, with some modifications,
that of Lester [20].

COROLLARY 1 (Main result). Fiz k > 3. Let w(y) be a smooth function
with support in [1,2] such that

(1.9) Vw(y)?dy = 1.

Then, uniformly in c for all

(1.10) ce (k—1,k),

we have the asymptotic

(1.11) > Au(mi X, d.a)* ~ ar(d)m(c) X (log ),
=

as d — oo, where ay(d) is given as in (1.3),

(1.12) X =d°

and

(1.13) ve(e) = M(k—c)k“ (k—1<c<k).

REMARK 1. By [I8, Theorem 1.5, p. 173, and Lemma 4.1, p. 180] and
the results in [I8, Section 4.4.3, p. 194], the complicated expression for v;(c)

given in (1.4]) agrees with the expression (1.13) when k —1 < ¢ < k.

REMARK 2. Because of the normalization (1.9)) of the weight w(y), the
right side of (1.11]) does not depend on w; see Lemma [7| below.



Variance of the k-fold divisor function 7

The leading order main term of (1.11]) is extracted from the full main
term ([1.16) below, given as a contour integral with a power-saving error
term. All other lower order main terms of the smoothed variance (|1.11) can,

in principle, be deduced from ([1.16)).

THEOREM 1 (Full main term with power-saving error term). Fiz param-
eters

(1.14) k>3, 6>0,
and
(1.15) celk—1+4+6k—94].
Ford>1, put

X =d°.

Let w(y) be a smooth function with support in [1,2] such that §w(y)? dy = 1.
Then we have the asymptotic equality as d — oco:

(1.16) 3 1Au(m X, d, @) = XMy o(d) + Oc g (X Hed752),
1<a<d
(a,d)=1

for some € > 0, where My, .(d) is equal to

m)¥ o & (n)? *
i () X e » Ml

d:qr 2 n=1 X1 modq
=6 7 (=t (

with Q given in (5.3), M(|fr.x,|?] denoting the Mellin transform of | fr.x, (+)|?,
and fry, (-) a complicated inverse Mellin transform of the Gamma factors
and w(y), given explicitly in , The * on the summation over x1 (mod q)
restricts to summing over primitive characters x1 modulo q. The implied
constant in the error term of is effective, dependent on €,9,k, but
uniform in ¢ for all ¢ in the range (|1.15)).

REMARK 3. Because of the € in the error term of , our method of
proof fails to handle the endpoint ¢ = k& — 1, corresponding to § = 0. More
specifically, this restriction comes from trivially bounding the off-diagonal
terms; see the bound . Thus, when ¢ < k — 1, the off-diagonal terms
start contributing to the main term and can no longer be ignored.

REMARK 4. It may be possible, by using the asymptotic large sieve of
Conrey—Iwaniec—Soundararajan [7] together with the functional equation, to
handle the off-diagonal terms and extend the range for ¢ to a slightly wider
range

(1.17) ce k—1+5—%,k—5 (5 >0),
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for the smoothed averaged variance

(1.18) ZW(%) Y [Au(m X, da))?
d

1<a<d
(a,d)=1

with
D= xVe,
This average (1.18)) over d could be quite short, in contrast to the typical

Barban—Davenport—Halberstam-type results (cf. (1.1])). We hope to return
to this question in a future article.

REMARK 5. It remains an interesting challenge to remove the smooth

weight w(n/X) in (1.16)).

We believe that the asymptotic for the smoothed variance should
hold for all ¢ € (0, k), with the expression for the piecewise polynomial v (c)
given in . The asymptotic for 0 < ¢ < 1 was essentially established
in [22] Lemma 2, p. 13]. This, together with Corollary [1| above, therefore
suggests the following conjecture over smooth cutoffs for the variance of 7 (n)
in APs:

CONJECTURE 1. Let w(y) be a smooth function supported in [1,2] with

Vw(y)?dy =1,
and

M[w](o + Zt) <y (1—F1’t’)€

uniformly for all |o| < A for any fized positive A > 0, for all positive inte-
gers £, where M[w] denotes the Mellin transform of w defined in Section .
Then, for X,d — oo such that lﬁ)ggij — c € (0,k), we have

ST Au(ms X, da)? ~ a(d)y(e)X (log ),
1<a<d
(a,d)=1

where the arithmetic constant ap(d) and the piecewise polynomial ~yi(c) are

given in (1.3) and (1.4)), respectively.

We will prove Theorem [I| first, then derive Corollary [I] from this.

Below is the organization of the paper. The key ideas of the proofs are
outlined in Section [2] Section [3]lists notations, parameters, and conventions
used in this paper, which largely follow those in [21]. Preparatory lemmas
are collected in Section [d] and the proofs are given in Sections [f] and [6]
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2. Outline of the proofs. We briefly explain here the wider range
for ¢ in our result as compared to , and how we handle the off-
diagonal and error terms. For ease of exposition, suppose x is a primitive
Dirichlet character modulo a prime p = d. By orthogonality of Dirichlet
characters, the variance

> Au(mi X, d,a)?
1<a<d
(a,d)=1

is transformed to sums of the primitive character sum
(2.1) > 7r(n)x(n)
n<X
of length X (see Lemma. By Perron’s formula (or Mellin inversion, in the
case with smooth weights), the sum ([2.1)) is related to the quantity
(2.2) X5LF(s,x)

appearing in the integrand of such a formula. By a change of variables s —
1 — s and applying the functional equation to L(1 — s, x) with x primitive,
the quantity (2.2) becomes

X1oyR (s, x) LR (s, %),
which is roughly, by standard estimates of the gamma factors,

sy Rns—(1/2 _ X\ s _
X' (ph) (/EW&XM=<Y> VeLk(s,%),

where
XY = pF.

Thus, by Perron’s formula again, the quantity Y*LF(s, %) on the right side
of the above is related to the dual sum

S m(m)x(n)

n<Y
of length Y. The upshot is, while X = p° is long when ¢ € (k — 1, k),
P k
Y = — = —c¢
b% p <p

is short for ¢ in this range. This implies that, if we had n = m (mod p) and
n,m <Y, which is less than p, then n and m must be equal and there are
no contributions from the off-diagonal terms n # m.

Moreover, since the modulus is prime, all primitive characters modulo p
are non-principal, and we have, by orthogonality of all characters,

S v =1 L = 1
SO(p)x(%;m)x()x() e 1+0(p).
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Hence, roughly speaking, the saving p~! in the error term of the above allows
us to take ¢ to be as small as k — 1, where the —1 corresponds to the —1
in the exponent of p. Moreover, direct use of summation formulas from [14]
applied to the variance yields an error term that is larger than the main
term—this is because the absolute value squared in (1.2]) requires better than
square-root cancellation in the error term E in order for |E|? < X!'~¢. We
circumvent this by introducing smooth weights in , and combine this
with the methods of Friedlander and Iwaniec from [I4] in order to get better
control on the error terms. These two ingredients lead to the full asymptotic
equality, with a power-saving error term, for this smoothed version of the
variance of 7i(n) in arithmetic progressions unconditionally for all £ > 3, in
a restricted range.

Since the proofs are quite lengthy and technical in details, we shall divide
the proofs into smaller steps and outline in this section the key ideas of each
step.

Outline of the proof of Theorem The main idea in the proof of
is to develop a smoothed version of Voronoi summation twisted by
multiplicative characters for the character sum . We break the proof of
Theorem [1| into four steps.

[Step 1: Applying the functional equation and reduction in g We first
rewrite the variance ((1.16|) as a sum over primitive characters and apply the
functional equation to L(1 — s, x). We show that contributions from charac-
ters x with modulus ¢ < @ are negligible, for a suitably chosen parameter Q).

[Step 2: Reduction to the dual sum|l Assume ¢ > (). We introduce parame-
ter N and show that contributions from terms with n > N in
Z(n,r)zl Tr(n)x1(n)/n® are acceptable by pushing the line of integration far
to the right.

[Step 3. Off-diagonal analysis Assume ¢ > @ and n < N. We estimate
the off-diagonal contributions trivially by using Lemma [I] and show they do
not exceed the main term. It is here that the lower bound for the range of ¢

(1.15) in Theorem [I}is used in a crucial way.

[Step 4: Diagonal analysis, Assume ¢ > @ and n < N. We apply Mellin
inversion to the finite sum over n < N and extract the contribution from
the diagonal terms as a contour integral.

Outline of the proof of Corollary We extract the leading order
term in the full main term from Theorem [1] and we need to show that the
other main terms are indeed of lower order than the leading main term.
A certain arithmetic function arises, which is then evaluated to match the
arithmetic factor ax(d). Below are the steps in the proof of Corollary
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[Step a: Full main term as a residue plus an error term| We write the
contour integral from (|1.16]) as a residue plus an error term. This is fairly
straightforward.

IStep b: The error term and v(c)l We show that contribution from the
error term in Step a is small. It is here that the condition ¢ > @ is needed.

IStep c: Evaluating the matching arithmetic constant ag(d)l We write
the residue from Step a as a polynomial. We then evaluate the contribution
from the leading term of the residue from Step a and verify that the leading
constants match.

[Step d: Bounding lower order main terms, We show that contributions
from lower order terms are of order of magnitude smaller than the leading
order term.

3. Notations, parameters, and conventions

e i, j,¢: non-negative integers.
® p,p;,p;: prime numbers.
e d,a,n,m,k,q,r s a;F5,Q, T, N: positive integers.
e X: a large real number.
e A(n): the von Mangoldt function.
o 71(n): the k-fold divisor function; 7o(n) = 7(n), the usual divisor function.
e p(n): Euler’s totient function.
e ©*(q): the number of primitive characters modulo g.
e 4(n): the Mébius function.
o s=o0 +it.
e I'(s): the Gamma function.
o+100
® S(O’) means Sa—ioo'
o M]f](s): the Mellin transform of a suitable function f, i.e,
o0
M(fl(s) = | f(a)a*"" da.
0

o M™YF](z): the inverse Mellin transform of a suitable function F(s), i.e,

1
-1 _ —s
(3.1) M F)(@) = | F(s)z™ds (o>1).
(n): a Dirichlet character.
(n): the complex conjugate of x(n).
(x): the Gauss sum of the character Y.
= a (d) means m = a (mod d).

e o o o
N x| =

3
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e a3 means the Dirichlet convolution of the arithmetic functions o and £,
ie.,
(32) (axB)(d) = D a(g)B(r).
d=qr
!/
. Z means a summation over non-principal characters x (mod d).
X (mod d)

*
. E means a summation over primitive characters x (mod d).
X (mod d)

b (mod d) b=1
d
*
® Z means Z .
b (mod d) b=1
(b,d)=1

e c: any sufficiently small, positive constant, not necessarily the same at each
occurrence.

e J: a fixed small positive number.

e A: any sufficiently large, positive constant, not necessarily the same at
each occurrence.

e B: some large positive constant, not always the same.

Table 1. Table of parameters and their first appearance

Parameters First appearance
k>3

§>0 (T.14)
celk—1+8k—4

X =d° (1.12)
Q=dire

N = et

P = (logd)? 6.20

We follow standard notations and write f(X) = O(g(X)) or f(X) <
g(X) to mean that |f(X)| < Cg(X) for some fixed constant C', and f(X) =
o(g(X)) if | f(X)| < ¢(X)g(X) for some function ¢(X) that goes to zero as
X goes to infinity.

We begin the proofs with some preliminary lemmas.

4. Preparatory lemmas
LEMMA 1. For any € > 0, we have

(4.1) Tk (n) Lk N
Proof. See, e.g., [17, (1.81), p. 23]. =
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LEMMA 2. We have

(42) S |Aulm X, dya)? % Z

1<a<d X
(a,d)=1

Zm(n)x(n)w<;>

n

Proof. By the orthogonality relation

1

S X X =

{1 if n = a(modd),
X (mod d)

0 otherwise,

we have
1 I n
A7 X, d,a) = Mx(mzwd)w) ;mm)x(n)w(){).

Thus, the left side of (4.2)) can be written as

49 Y g X W (@) 7l (;)
<Y o @3 ) (;’;)

x2 (mod d)

- Y Zm(nm(n)w(;})

X1,x2 (modd) ™M

<nmpame () ¥ )

1<a<d
(a,d)=1

By the relation
S Xi(@ale) =
1<a<d
(a,d)=1
the right side of (4.3)) is equal to

i X T nntmu( g )t %)

X (mod d) ™™

{so(d) if x1 = x2,

0 otherwise,

which is equal to the right side of (4.2)). m

We next reduce non-principal to primitive characters.

13
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LEMMA 3. We have

(4.4)
X(mZOd’d) ;Tkm)x(n)w( )] dz(;m%dq (g):l " ()Té)’?

Proof. If x (modd) is non-principal, then there is a unique ¢|d with
g > 1, and a unique primitive character x; (mod ¢), such that, with » = d/q,

(4.5) x(n) = x1(n)xo,r(n),

where xo, is the principal character modulo r. Thus, replacing the sum

Z by Z Z and substituting into the left side of

x (mod d) d= qlr x1 (mod q)
gives the rlght side of . "
LEMMA 4. For (mn,q1) = 1, we have
1 fn=m
1
" wla2)e(r2) if n#m.
a2,

ro|lm—n

S x(m)x(n) =

(@) x (mod q1)

Proof. See, e.g., |5, Lemma 2.7, p. 348|. =

The next is the well-known functional equation for primitive Dirichlet
L-functions.

THEOREM 2. Let x (mod q) be a primitive character. Then, for o > 1,
we have

(47> Lk(l - 37X) = fyk(sa)()Lk(S?Y%
where
s—1/2 sta
50 =<(2) f((ﬁ) (el = ).
2
with

gl ix(=)=-1,
0 ifx(-1)=1.

Proof. See, e.g., [I7, Section 5.9]. =

LEMMA 5. We have, for any k > 2,

(1) ne)= ("7,
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Proof. By the relation
1\ & k+j-1\
(=) -5 () e

and the Euler product

P 1=p
we have

k [e’e) . )
an ¢e-TI(—=) ~OX ("7 ) >

D p p j=0 J
We also have
(4.10) HOEDY Tk;ff) =TI np7 (o>1).
n=1 p j=0
Thus, by and ,
ne) = ("7

(4.11) ) _

YE]
= P i=0

Proof. We have the identity

(e )
4.12 —=|1- = ——.
(4.12) 2 = 2

This identity (4.12) follows from a hypergeometric relation; see, e.g., [19]
Proposition C.2, p. 1295]. By (4.8)), the left side of (4.12) is equal to that

of (ITT). u

The next lemma is based on the Parseval formula for Mellin transforms
(see, e.g., [23, Theorem 1.17, p. 33|) and makes use of the condition (1.9) in
the statement of Corollary [T}

LEMMA 7. We have, with f,,, defined as in (5.20) and x1 a generic
primitive character,

(4.13) M| fr [P1(1) = 1.
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Proof. By definition of the Mellin transform and the Parseval formula
for the Mellin transform |23, Theorem 1.17, p. 33|, we have

M[’fT,X1‘2](1) = S fr,x1(y,xl)mdy
0
- 2’71T’L S M fraal($)M[Frx ) (1 = 5) ds.

2
By definition of the Mellin transform again and by (5.20)), the above is equal

to
| IHE) 1o
%(E)M[w](l_s (1 s a) H(l_xl(m>

plr p*
rk(1=sta) 1 x;(sp) k
< M) e y( _ﬁ@) s
= o | M)~ s)Mwl(s) ds = § (o) de,
(2) 0

where the last equality follows by the Parseval formula for Mellin transforms
once more time. By (1.9)), this gives the right side of (4.13). m

5. Proof of Theorem [1} [Full main term with power-saving error|

fterml
5.1. Step 1: Applying the functional equation and reduction in q.

We first rewrite the variance ([1.16)) as a sum over primitive characters, in
order to apply the functional equation. By Lemmas [2] and |3, we have

> A Xl = r S Y[ e (;)‘2

(IS;)S% d qTX (mod q) ' (n,r)=1
a,d)=

Substituting

w@) _ 2% g M[w](s)(;)_sds (0> 1),

into the above and interchanging the order of summation and integration,

the left side of ((1.16) can be written as
(5. 1)

=D

d qr x1 (mod q)
>1

(0 >1).

S M{w](s) X Z 7(n)x1(n) d82

™ @) (=1
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Since ¢ > 1, x1 (mod ¢) is non-principal, the function L(s,x1x0,)* =
Z(m,)zl W has no poles. Moreover, since zero is not in the support of
w(y), the Mellin transform Mw](s) also has no poles. Hence, the integrand
in is entire and we may shift the line of integration to the left of the
one-line.

Shifting the line of integration to ¢ = —e¢, applying the functional equa-

tion 1} and making a change of variables s to 1 — s, (5.1)) is equal to

62— Y o | M- X e )
d qlr x1 (mod q) (14€)
k 2
(-0
plr
Let
(5.3) Q = diiiz,

This choice of @ comes from equating the error terms from (5.7]) with ( .
below. We will now show that contributions from characters Wlth modulus
q < @ are negligible.

Suppose
(5.4) q<Q.
By repeated integration by parts and by rapid decay of derivatives of the
smooth weight w(y), we have

1
(1 +[¢))4
for any A > 0. Also, for s = 1+ ¢ + it, we have, by , the bounds

'Yk(S,Xl) < qk(1/2+e) < Qk(1/2+e),
k
o)<t JI(1- 42 <«
plr

Thus, by the above estimates, the integral in (5.2) is < Q*/2*¢. Hence, by
the above,

Mw|(1l —s) <

65 5 X X |gg | Ml -9x T o)
d=qr x1 (modq) (1+¢)
1<g<@Q
- @\ P ke 1 .
x L (&Xl)l}(l_ pls) dS’ < Q" () Z ¢ (q)-
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By (5.4), (4.1), the crude bounds ¢*(¢q) < q and

1
5.6 —— < d e,
(56) o(d)
we have )
() Z ¢ (q) < d Q.
¥ d=qr

1<g<@Q
With this, (5.5)) is bounded by

Qk+1

k+1 j—1+e Xl-‘,—s
(5.7) QF g1+ « -

By the choice (j5.3)), the above is
< Xreging « Xteqw
uniformly for all ¢ in (L.15]). It thus suffices to assume ¢ > Q.

5.2. Step 2: Reduction to the dual sum. Suppose g > (). We now
introduce the parameter N and truncate the n sum in L¥(s,X7). Terms with
n < N account for the main term, and terms with n > N will be shown in
this step to be small. By Euler products, we have

o _ k
yo i) H<1 _ Xl(p)) LF(s,x1) (0> 1)
(n,r)=1 " plr P

Thus, substituting

(5.8)
Fovny —TT(1_ 0@\ ()% (1) () (1)
o) (R MR 5

n,r)=1 n,r)=

for L*(s,%;) in (5.2)), with N to be chosen below, we have, by (5.5), (5.2),

and ,
(5.9) > Aw(mki X, d,a)?

1<a<d
(a d)=1

a3l b (% X )

d qr x1 modq) (1+B n<N n>N
>Q (n,r)=1  (n,r)=1

~ xi(p) 2
xM[w](l—s>X1Sv’f(s,xl)r[(l)fgj(;) as| +o(xtas),

plr ps
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where we have moved the line of integration to ¢ = 1+ B, B > 0. Analogously
to Step 1, we will show that contributions from terms with n > N in the
above are negligible. The main difference in this step is that there is an
additional saving from the sum Y, .y n~7"¢. We have, for s =1+ B + it,

3 Tk(nl>§1(n) < N-Bte, X1= « X-B k(s yy) < g"BH2)

n>N
(n,r)=1

L (s, %) < 1, IHF—Xﬂm>%F—Xﬂm>42<ﬁBK

pl—s ps
plr

Thus, by the above estimates, the contribution from terms with n > N in
the integral on the right side of (5.9) is

(5.10) « N-Brex—Bgk(B+1/2) kB+e
We choose

(5.11) N = gk—ctd/2.

and

(5.12) B #

With the choices (5.11)) and (5.12)), the estimate (5.10) is < d—4/2%¢, for any

A > 0. This bound shows that the contribution from terms with n > N on
the right side of can be absorbed into the big-oh term.

We are now left to consider terms with ¢ > @ and n < N. To summarize,
we now have

(513) Y |Au(m X, d,a)?

1<a<d
ww
1 X
Z LY nmmmg= | Mlul(1 = 5) s
Z R R (1+5B)
1- 40Nk 2 ;
X’Yk(s’XI)H(lil(p)) ds —l—O(XlJrEd_W).

plr p°
For the evaluation of the main term, we will move the line of integration to
the critical line s = 1/2 + it.

5.3. Step 3: Off-diagonal analysis. Let s = 1/2 + it. We expand out
the square on the right side of and first treat the off-diagonal terms.
Let

XY =d".
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We write

X . le/QTk/27Tk/2 nrkak\ =8 [‘( )
(nX)S’Y (saXI) =€ Y1/2 Y 1— k
r(=3)
and
1— x1(p) k 00 k _k _k
Hi—iw) = 2 S (-0
p|r s 11 5eeey80=0 J1,...,00=
% (_1)¢1+...+Z‘£ Xl(pl "'pZE)Yﬂp]ll"‘p%)
p111(1*8) » .pze(I*S)pils B 'pées
where

r = p?1p52 .. .p?f
is the prime factorization of r. Denote

)= z ol (5 I 3 TG B

, T sta\k pil(sfl) pze(s 1)
X 5— S Mw](1 - s)y $§+()1 k : e .pft’s
(1/2) P=) b

We write the off-diagonal terms n # m on the right side of (5.13]) as

ds.

X 1 k nrkak mrkmk
610 3o X @ X nwn (M) T o (M
d=qr n<N m<N
q>Q (n,r)=1 (m,r)=1
m#n
<Y xmpl - p ) xa(mplt - pyf).
x1 (mod q)

Since x1 and ¥, are characters modulo ¢, we find that xi(mp" ---pi‘Z
X 1 X1 1 ¢
Xi(np" -+ pyf) =0, unless

(5.15) (npt" - p}f s q) = (mp! -~ plfq) = 1.
Also, note that, since n # m, p; |7‘ and (nm r) =1,
(5.16) np“ Y # mpy - plf
Thus, by - -, and (4.6) 7 we have
> i atm = % pom(2).
X1 (mod q) ol(gnp]t - pyt —mpitp)
Let

Je i1

by —pl Py Py ”_pzz (mod ),
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where the bar denotes inverse modulo 9. Note that, by (5.16)),
(5.17) m # nby.

Writing the condition 0 | np{l > -péé —mpt! - -pé"' as m = nb, (modd), (5.14))
can be rewritten as

618) T T L w(?) X Tk(@ﬂ(nr?k)

d=qr n<N
7>Q (n,r)=1
mrkrk
<X amn (M)
m<N
(m,r)=1
m#n

m=nb, (modd)

If 9 > N, then the m sum in the above is empty, by (5.17). If 0 < N, then
the m sum in (5.18) is bounded by

e e y1/2 v1/2 n1/2

rYIN > EYCRYIA (rY N)* TRZ
m<N

m=nb, (mod?d)

With this estimate, contribution from 9 < N to (5.18) is bounded by

Xl+e 1 () YN N
5.19 S - k AV, LY X1+67 X1+€d—5/2
G190 g <N < ’
d=qr  0lq
>Q

by (5.11)) and (5.6)). This estimate for the off-diagonal terms on the right side
of (5.13)) with @ < N is acceptable for (1.16)).

Lastly, we treat the diagonal terms in ([5.13]).

5.4. Step 4: Diagonal analysis. For ¢ > 1, let

(5 a)k 1— Xi(p) k

_ —s 2 p—°

520 i) = 5y | Ml -2 T (2 as
(o) ( 2 ) plr s

This function can also be written as an inverse Mellin transform as

521) fong) =M [s > Mluia - ) Ff(l J|[( Xl@)k]@).
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We thus have, by (5.13), (5.19), and (.20),
(5.22) > | Aw(mi X, d,a)?

1<a<d
(a,d)=1

Z > X

d qr x1 (modgq) n<N
(n,r)=1

X
f”“<nq7T )‘

+ O(X”Gd_m).

X
Jrixa <n g - >

for any B > 0. We now write

5 a0 () < (3 - X )i

n<N n>N
(n,r)=1 (7”") 1 (n,)=1

We also have

(5.23)

4 2B+2
2kB+e¢
L | —= T

nXWk 2
fr)a q .

For terms n > N in the above, we have, by (5.23)),

X
fm<nqﬂ >‘

< @2RBEN—@2B+1) x—2Bte o ylte —6(B+1/2)

(5.24) Z Z > n

d q7“ 1 (modg) n>N
(n,r)=1

for any B > 0. This estimate is acceptable for (1.16)).

Finally, we have, by inverse Mellin transform of f,.,

o ()]

= | MUl PG >()$) 5

n=1
2) sl

o0

> wn)?

n=1
(n,r)=1

for o > 1. Therefore, by (5.22)), (5.24), and the above, we obtain
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(5.25) > |Au(m; X, d,a)?
1<a<d
(a d)=1

Y Y o) S

d qr x1 modq (2) n
>Q (n,r)=1

n 0(X1+€d*%+z).
This proves (|1.16)). =

6. Proof of Corollary

6.1. Step a: Full main term as a residue plus an error term. We
start with (5.25). The integrand in (5.25)) has a pole of order k? at s = 1.
The residue at this pole is equal to

61) Mllfoso 0P <1g<(q/;)k>) = pios o1 1)

by (I3), where
k2-1
(62 ot = b
is an explicit polynomial in y of degree k:2 —1. The leading coefficient by2_;(7)
in (6.2)) is equal to

ak(r) _ 1 1, 1 s Tk
R T A z_:

by (1.3). Note that
) 2 o= T (n)?
ar(l) = lim (s — 1)k g s = Gk

s—1+

771):1

n=1

and that the factor ax(r) is uniformly bounded in r, since we can rewrite

(n)=1 n=1 vir im0 P
S0 ’ . ~
(6.3) ap(r) = ag H (Z Tk;}j)>
plr "3=0

We thus move the line of integration of the integral in ([5.25)) to o = 1/2.
Passing the pole at s = 1, we pick up this residue and obtain

o (7)) co((5) )
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for this integral. Thus, from and (| we have

(65) Z ‘Aw(Tk;Xv d, a)|2

i = 2l (s 4) ) o (5) )]

(a,d)=1
d qr

q>Q

+O(X1+fd*%+2).

6.2. Step b: The error term and 7;(c). The first big-oh term in (6.5))
contributes to the variance an amount

N ~1/2 1/2
@ (Q)<qk> ! e X
6.6 < X E — L X T ——.
( ) = go(d) X ka/Q
q>Q

By the choice (5.3)), this error term is equal to the second big-oh term in
(6.5)), and so the two error terms can be absorbed into one.

We now write

(g/m)* _ d+e
X (mr)F
With this, the leading order term in ([6.4) is equal to

ar(r )k k-1
(6.8) (kaﬁ i)' log<(q/X) >

(6.7)

= (,{gk@l)!((lﬂ — ¢)logd — klogmr)

= (,;’“Y)l)!(k &)~ (log d)F* 1
- (kikﬁ). <k21_ 1) (k — )" =2 (log d)** k log 7r
TR M(—k)kQ_l(log )k

= ay(r)(e) log )
- M(k:_ 1) (k — o) 2(log d)** 2k log mr

+ -+ m(—k)kQ_l(logWT)kz_l,

where the last equality comes from (|1.13]).
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Now that we have the factor v (c) showing up in the leading order term,
we next evaluate the matching arithmetic constant ax(d) by showing that

(6.9) Z " ( = ax(d),
d qr
then estimate contributions from lower order main terms.
6.3. Step c: Evaluating the matching arithmetic constant a;(d).

To help with the analysis in this step, we add terms with ¢ < ) back. This
adds an amount

90

<< Xle P )(1 ’3k+2+6

d=qr
q<Q

which is acceptable for the asymptotic. We rewrite the left side of as

1
m(ﬂ*@*%)(d)-

We first compute the Dirichlet series for ax(r)/ar. By (6.3)), the coefficients

)

plr ~j=0

are multiplicative in r. Thus, using Euler products, by (4.11)) we have

(6.10) Z; /“’f HZ&( >pjs
_ ] (1—*)% L

B 1;[ Zz':o ( i )2p_i 3=0

2k—1
(1-5)

o0
(6.11) pin) _
and the Euler product

(0.2 STy
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Hence, by (6.10)—(6.12), we have

Thus, at prime powers,

; 2k—1
1 e (1
(6.13) —(uxpxan) () = o3
k Zz:O ( i ) p—z
Hence, if d is factored as
d=pi*--py”,
with p; distinct, then (6.13) implies that
1 1 N 1 .
—uxprap)(d) = —(pxoxar)(pr’) - —(uxpxar)(py”)
k 95 ag
2k—1
(1-35)
= ¢(d) H 2
pld E:i:O ( i ) P
af d
= o) ™9,
g

Thus, by the above, we have
(nx o xag)(d) = p(d)a(d).
This proves . We last show

(6.14) “0

r)logr = o(logd).
d=qr

With this, together with (6.1), (6.5)), 7, and induction, we will have,
as d — 00,

k
Z | Ay (13 X, d, a) Z(p VP2 1<log<(q§) >,r>
1<a<d d qr
(a,d)=1
k2—1
~ ag(d)yr(c) X (logd)™ .

We now prove ([6.14)).
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6.4. Step d: Bounding lower order main terms. Similar to the
previous step, contributions from ¢ < @ to (6.14]),

90

r)logr < Qd—'1T¢ < d” sz te

d=qr
q<Q

are negligible.
We have, for R(s) > 1

Ls~a()logr (s~ a)fan) _

r=1
(1_7)2](} 1
by (6.10]), where Cj = Hp W We also have the well-known series
=0 [3 pil
¢ — A(n)
(6.16) —=(s) =Y ==  (R(s) > 1).
¢ n
n=1
Writing
" =pxe,

we have, by (6.15]),
1 (1 * @ * ax log)(d ¢'(s)
~ > B =G Z )
d=1
Thus, by (6.16)) and by equating coefficients above, we have

(6.17) > o (@an(r)logr = arCr > @(q)A(r).

d=qr d=qr

The r sum on the right of (6.17)) is restricted to prime powers of the form
(6.18) r=py, 1<j<v,1<8<a;
For each r in (6.18]), we have

d d
o) <g=-<—
T pj

since 8; > 1. Thus, summing over primes dividing d, by the above we have

(6.19) S oAl <dy loip .

d=qr pld

Introducing

(6.20) P = (logd)?,
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the above is bounded by

d<z ng+z 0gp> <<d<logp,zp+PZ]ogp> <<d(10gP)2.
pld

p p
pld pld pld
p<P p>P p<P p>P

Thus, by the above, (6.19), (6.17)), and the bound ¢(d) > d/loglogd, the
left side of (6.14]) is bounded by

(loglog d)® = o(log d).

This proves ((6.14)), and therefore the asymptotic (1.11)) as d goes to in-
finity. =
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