A double angle formula: $sin 2x = 2 sin x cos x$. A $5 by 8$ chessboard contains $5 times 8 = 40$ little squares. We have $abs u+v <= abs u + abs v$ for all $u,v in CC$, while $norm(vec u + vec v)^2 = norm(vec u)^2 + norm(vec v)^2$ only if $vec u perp vec v$. If $a x^2 + b x + c = 0$ then $x = (-b pm sqrt(b^2 - 4 a c))/2a$, and $$"if" a x^2 + b x + c = 0 "then" x = (-b pm sqrt(b^2 - 4 a c))/2a $$ $$zeta(s) = \sum_n=1^infty 1/n^s = prod_p (1-p^-s)^-1$$ $$ abs x = cases: x if x > 0 0 if x = 0 -x otherwise $$ Another line. $$ derivation: int_A^T 1/(x log x llog x) dx = lllog T + bigO(1) asymp lllog T $$ as $T to infty$. $$ system: a + b = c < 8 +55 a^2 <= 77 b^3 + 12 x^n + y^n = z^n $$ +++++++++++++++= Volker's MathML generator https://speech-rule-engine.github.io/semantic-tree-visualiser/visualise.html $tan x = (sin x)/(cos x)$ A double angle formula: $sin 2x = 2 sin x cos x$. A $5 by 8$ chessboard contains $5 times 8 = 40$ little squares. We have $abs u+v <= abs u + abs v$ for all $u,v in CC$, while $norm(vec u + vec v)^2 = norm(vec u)^2 + norm(vec v)^2$ only if $vec u perp vec v$. The Chebyshev polynomials of the first kind, $T_n$, are defined by $T_n(cos theta) = cos(n theta)$. They are orthogonal with respect to the inner product $$ = \int_-1^1 f(x) g(x) dx/sqrt[1-x^2] $$ [[above weight in the integral not parsing correctly: consider wrapping the sqrt) If $y'' = c^2 y$ then $y(x) = A e^(c x) +b e^{-c x}$ for some $A,b in CC$ $(f g)' = f' g + f g'$ $f(g(x))' = f'(g(x)) g'(x)$ If $A$ is a permutation matrix then $det A = +-1$ If $g \in G$ then $order g | order G$ If $a$ and $b$ are finite sets, then $card(a product b) = card a times card b$ If $a x^2 + b x + c = 0$ then $x = (-b pm sqrt(b^2 - 4 a c))/2a$, and $$"if" a x^2 + b x + c = 0 "then" x = (-b pm sqrt(b^2 - 4 a c))/2a $$ $$ derivation: int_A^T 1/(x log x llog x) dx = lllog T + bigO(1) asymp lllog T $$ as $T to infty$. ${ f:RR to ZZ | f(0) <= 5}$ $int_0^infty x/(e^(sqrt x)) dx$ $sigma(n) = sum_d|n d$, and more generally, $sigma_k(n) = sum_d|n d^k$ $J_0^2(x) + a_i^45$ $f(1/2) + f(1//2) = e^pi$ $lim_[x to infty] (sin x)/x = 0$ ${3,4} subset ZZ$, and $(3,4) in RR^2$, and $(3, 4) subset RR$. $80 cent + 20 cent = dollar1$ $emptyset = {x in ZZ | 0 < x < 1}$ $sum_n=1^N n = N(N+1)/2$ $sin^2 x + cos^2 x = 1$ The Fibonacci sequence is defined by the recursion $F_(n+1) = F_n + F_(n-1)$, with initial conditions $F_0 = F_1 = 1$. In closed form: $$ F_n = floor(1/sqrt5 \phi^n) "where" phi = (1 + sqrt(5))/2 "is the golden ratio". $$ We use the following notation for integration along a vertical line in the complex plane: $$ int_((c)) f(s) ds := int_(c-i infty)^(c + i infty) f(s) ds . $$ For example, we have the Mellin inversion pair: $$ Gamma(s) = \int_0^infty e^-x x^s dx/x "and" e^z = 1/(2 pi i) int_((1)) Gamma(s) z^-s ds . $$ $−(2n+2) < −a_n < -2n$ $$(k+1)(k/2 + 1)$$ If $a | b$ then $c a | c b$. $e^{i theta} = cos(theta) + i sin(theta)$ $ZZ subset RR intersect QQ$ $y^2 = x^3 + a x + b "with" a, b in QQ$ $18 cong 7 mod 11$ $x^2 cong 0 "or" 1 mod 4$ $$ p | prod_n=1^K a_n "implies" p | a_n "for some" n $$ $(p-1)! cong -1 mod p$ If $a !cong 0 mod b$ then $a^(p-1) congruent -1 mod p$ $$zeta(s) = \sum_n=1^infty 1/n^s = prod_p (1-p^-s)^-1$$ $1 != 2$ -------------- $$ abs x = cases: x if x > 0 0 if x = 0 -x otherwise $$ Another line. $$ system: a + b = c a^2 < 77 b^3 + 12 $$ $$ system: a + b = c < 8 +55 a^2 <= 77 b^3 + 12 x^n + y^n = z^n $$ Some words. Markup for K/Q ? Gegenbauer polynomial: $G_n^(alpha)(x)$ Chebyshev polynomial: $P_n(x)$ *** need the above to be recocnised as functions ??? maybe funcitonwrap ? ??? also rething opwrap: should it have the argument in it? (answer: no, because it is hard to parse what is the argument) $$zeta(s) = \sum_n=1^infty 1/n^s = prod_p (1-p^-s)^-1$$ $sum_(n=1)^oo x^n = frac1{1-x}$$ $12x^2-5x^2+19x-100/99-p^y$ need a test to compare \frac{-x^2}{1} and -\frac{x^2}{2} $Gamma(s) = \int_0^infty e^-x x^s dx/x$ $e^x^2/2 + e^-x^2 / 2 + e^[x^2]/2 + e^[x^2] / 2 + e^(-x^2 / 2) e^(- x^2 / 2) $ $sin x^2$ or $sin (1+x)^2$ $x^{(} + y^{)} = z^[$ Suppose $x > 0$, and $y < 0$.