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Character sums and the Riemann Hypothesis
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Dedicated to Henryk on his semisesquicentennial

Abstract. We prove that an innocent looking inequality implies the Riemann Hy-
pothesis and show a way to approach this inequality through sums of Legendre symbols.

Introduction. Let

f(x) =
∞∑
n=1

λ(n) sin 2πnx

n2

where λ is the Liouville lambda-function (1). Since |λ(n)| = 1, this series is
absolutely convergent for real x, so that f is continuous, odd and periodic
with period 1 on R. Here is a plot of f(x) for 0 ⩽ x ⩽ 1 using 1000 terms of
the series defining f :
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Theorem 1. If f(x) ⩾ 0 for 0 ⩽ x ⩽ 1/4, then the Riemann Hypothesis
is true.

Theorem 1 is deceptive in that it looks like it should be a simple matter
to prove that f(x) is non-negative. A problem is that it is not clear whether
f(x) is differentiable or not, and even if it is, it would be difficult to estimate
the derivative. So, proving that f(x) > 0 at some point does not immediately
tell us about f(x) at nearby points.

The “1/4” in Theorem 1 can be replaced by any positive constant. So the
real issue is trying to prove that f(x) > 0 for small positive x.

Note that ∣∣∣∣ ∞∑
n=N+1

λ(n) sin 2πnx

n2

∣∣∣∣ < ∞�

N

u−2 du =
1

N

so that if for some x there is an N such that

(1)
N∑
n=1

λ(n) sin 2πnx

n2
⩾

1

N

then it must be the case that f(x) > 0. We will use this idea a little later.
We can give an “explicit formula” for f in terms of the zeros ρ = β + iγ

of ζ:

Theorem 2. Assuming the Riemann Hypothesis,

f(x) = −4π2x3/2

3ζ(1/2)
− 8π2

3
x3/2

∑
n⩽4x

ℓ(n)√
n

(
1− n

4x

)3/2

+ π lim
T→∞

∑
ρ=1/2+iγ

|γ|⩽T

Res
z=ρ−1

X(1− z)ζ(2z + 2)x1−z

(1− z)ζ(z + 1)
.

Here ℓ(n) is defined through its generating function
∞∑
n=1

ℓ(n)n−s =
ζ(2s− 1)

ζ(s)

for ℜs > 1. Also, X(s) is the factor from the functional equation for ζ(s)
which can be defined by

X(s)−1 = X(1− s) =
ζ(1− s)

ζ(s)
= 2(2π)−sΓ (s) cos

πs

2
.

Note that if the zeros of ζ(s) are simple, then the term with the sum over
the zeros of ζ becomes

π
∑
ρ

X(2− ρ)ζ(2ρ)x2−ρ

(2− ρ)ζ ′(ρ)
.
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Theorem 2 is nearly a converse to Theorem 1 in the sense that if RH is
true and all the zeros are simple and

(2)
∑
ρ

∣∣∣∣X(2− ρ)ζ(2ρ)

(2− ρ)ζ ′(ρ)

∣∣∣∣ ⩽ − 4π

3ζ(1/2)

then f(x) ⩾ 0 for 0 ⩽ x ⩽ 1/4. Note that

− 4π

3ζ(1/2)
= 2.86834 . . . and

∑
|γ|⩽1000

∣∣∣∣X(2− ρ)ζ(2ρ)

(2− ρ)ζ ′(ρ)

∣∣∣∣ = 0.264954 . . .

so that the inequality (2) seems plausible.
Finally, we remark that the formula of Theorem 2 for f(x) hides very

well the fact that f(x) is periodic with period 1!

1. Prior results. There has been quite a lot of work connecting partial
weighted sums of the Liouville lambda-function and the Riemann Hypothe-
sis. We refer to [BFM] for a nice description of past work. In that paper the
authors prove that the smallest value of x for which∑

n⩽x

λ(n)

n
< 0

is x = 72185376951205.

2. Character sums. A possible approach to proving that f(x) > 0 for
small x > 0 lies in the fact that λ is completely multiplicative and takes
the values ±1. This scenario resembles quadratic Dirichlet characters (for
simplicity think Legendre symbols) except that Dirichlet characters can also
take the value 0. By the Chinese Remainder Theorem, for any N there is
a prime number q such that λ(n) =

(
n
q

)
for all n ⩽ N , where

(
.
q

)
is the

Legendre symbol (2) modulo q. As an example,

λ(n) =

(
n

163

)
for all n ⩽ 40, but they differ at n = 41.

Let

fq(x) =

∞∑
n=1

(
n
q

)
sin 2πnx

n2

be the Fourier sine series with λ(n) replaced by
(
n
q

)
. If fq(x) ⩾ 0 for 0 ⩽ x ⩽

1/4 for a sufficiently large set of q, then it must also be the case that f(x) ⩾ 0
for 0 ⩽ x ⩽ 1/4. (The proof is that if f(x0) < 0 for some 0 < x0 < 1/4,

(2)
(
n
q

)
= 0 if (n, q) > 1;

(
n
q

)
= +1 if n is a square modulo q; and

(
n
q

)
= −1 if n is

not a square modulo q.
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then we can find a q such that
(
n
q

)
= λ(n) for all n ⩽ N where N is chosen

so large that |f(x0)| > 1/N ; then it must be the case by the analogue of (1)
for fq that fq(x0) < 0.) The same assertion but with q restricted to primes
congruent to 3 modulo 8 is also valid, since the Legendre symbols for these q
can also imitate λ(n) for arbitrarily long stretches 1 ⩽ n ⩽ N . We can
express this as follows:

Theorem 3. If
fq(x) ⩾ 0

for all 0 ⩽ x ⩽ 1/4 and all primes q congruent to 3 modulo 8, then the
Riemann Hypothesis is true.

Remark 1. We could just as well have stated this theorem for q ≡
3 mod 4. However, the intention is that we are interested in q for which
χq imitates λ. Insisting that χq(2) = −1 leads to the condition that q ≡
3 mod 8.

The sums fq(x) still have the same problem in that it is tricky to prove
for sure that they are positive for small positive x. However, the analogue of
Theorem 2 above is much simpler, is unconditional, and leads to a straight-
forward way to check, for any given fixed q, that fq(x) ⩾ 0 for 0 ⩽ x ⩽ 1/4.

Theorem 4. Let x ⩾ 0. Let q ≡ 3 mod 8 be squarefree. Then

fq(x) = 2πxLq(1)−
2π2x
√
q

∑
n⩽xq

(
n

q

)(
1− n

xq

)
where

Lq(1) =

∞∑
n=1

(
n
q

)
n
.

Now Dirichlet’s class number formula enters the picture. LetK=Q(
√
−q)

be the imaginary quadratic field obtained by adjoining
√
−q to the ratio-

nals Q. Let h(q) be the class number (3) of K. Then Dirichlet’s formula
reads

h(q) =

√
q

π
Lq(1)

for squarefree q ≡ 3 mod 4 and q > 3 (see [D] or [IK]). Thus, the theorem
above can be rephrased in terms of h(q). Moreover, we can express Lq(1) as
a finite character sum:

Lq(1) = − π

q3/2

q∑
n=1

n

(
n

q

)
.

(3) The class number is a measure of how close to unique factorization the integers
of K are; h(q) = 1 means the integers of K can be factored into primes in only one way.
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Since
(
n
q

)
is an odd function of q, we also have

Lq(1) = − 2π

q3/2

(q−1)/2∑
n=1

n

(
n

q

)
and

h(q) = Sq

(
q

2

)
where Sq(N) :=

∑
n⩽N

(
n

q

)(
1− n

N

)
.

Corollary 1. Let q > 3 be squarefree with q ≡ 3 mod 8. Then

fq(x) =
2π2x
√
q

(
Sq

(
q

2

)
− Sq(qx)

)
.

Here is a plot of

f163(x) =
2π2x√
163

(
S163

(
163

2

)
− S163(163x)

)
for 0 ⩽ x ⩽ 1 and a plot of the difference f(x)− f163(x):
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We can use the corollary to prove that f163(x) ⩾ 0 for 0 ⩽ x ⩽ 1/2 and
consequently that f(x) ⩾ 0 for 1/4 > x ⩾ 0.043 as follows:
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f(x) =
40∑
n=1

λ(n) sin 2πnx

n2
+
Θ

40
=

40∑
n=1

χ163(n) sin 2πnx

n2
+
Θ

40

= f163(x) +
Θ

20
=

2π2x√
163

(
S163

(
163

2

)
− S163(163x)

)
+
Θ

20

where Θ denotes a number with absolute value at most 1, not necessarily the
same at each occurrence. Now for a an integer, S163(163x) is constant for x
in the interval

[
a

163 ,
a+1
163

)
. Therefore, f163(x) ⩾ min

{
f163

(
a

163

)
, f163

(
a+1
163

)}
for x in this interval. We can tabulate these values:

a 1 2 3 4 5 6 7 8 9 10
f163

(
a

163

)
0.0095 0.0095 0.019 0.038 0.047 0.066 0.076 0.095 0.12 0.14

Since Θ
20 ⩽ 0.05, it follows from (1) that f(x) ⩾ 0 for 0.25 ⩾ x ⩾ 7

163
= 0.043.

Corollary 2. f(x) ⩾ 0 for 0.043 ⩽ x ⩽ 0.25.

It seems clear that for any given ϵ > 0 we could replace 0.043 by ϵ in this
inequality with enough computation time. Also, if we use Euler products
instead of Dirichlet series, we can show that f(x) ⩾ 0 for 1/4 ⩾ x ⩾ 0.011.

The following conjecture seems surprising.

Conjecture 1. If q ≡ 3 mod 8 is squarefree, then fq(x) ⩾ 0 for 0 ⩽
x ⩽ 1/2.

Remark 2. J. Bober has checked that this inequality is true for all primes
q ≡ 3 mod 8 up to 109.

Now we turn to the proofs.

3. Useful lemmas

Lemma 1. For y > 0 we have
1

2πi

�

(c)

X(1− s)y1−s

1− s
ds =

sin 2πy

π

for any c satisfying 0 < c < 1 where (c) denotes the path from c − i∞ to
c+ i∞.

The integrand has simple poles at s = 0,−2,−4, . . . with the residue at
s = −2n equal to

1

π

(−1)n(2πy)2n+1

(2n+ 1)!
.

Summing these leads to the desired formula. See also [T1]; the above is the
integral of formula (7.9.5) in [T1].
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Lemma 2. If c > 0 and ℜa > 0, then

1

2πi

�

(c)

Γ (s)Γ (a)

Γ (s+ a)
x−s ds =

{
(1− x)a−1 if 0 < x < 1,

0 if x ⩾ 1.

This is formula (7.7.14) of [T1].

Lemma 3. If c > 0, then

1

2πi

�

(c)

xs

s(s+ 1)
ds =

{
1− 1

x if x > 1,

0 if 0 < x ⩽ 1.

This lemma is well-known and is easy to verify.

4. Proofs of theorems

Proof of Theorem 1. This assertion is a consequence of Landau’s Theo-
rem: “If g(n) ⩾ 0 then the rightmost singularity of

∑∞
n=1 g(n)n

−s is real.”
This is Theorem 10 of [HR] and Theorem 1.7 of [MV2]. What we actually
need is an integral version of this theorem: “If g(x) ⩾ 0 then the rightmost
singularity of

	∞
1 g(x)x−s dx is real.” The proof of this version is essentially

the same as that of the first version (see [MV2, Lemma 15.1]). The applica-
tion to our situation is slightly subtle. We argue as follows. Since

∞∑
n=1

λ(n)n−s =
ζ(2s)

ζ(s)
,

it follows from Lemma 1 that
f(x)

π
=

1

2πi

�

(c)

X(1− s)

1− s

ζ(2s+ 2)

ζ(s+ 1)
x1−s ds

where 0 < c < 1. The integral is absolutely convergent for 0 < c < 1/2. By
Mellin inversion we have

πX(1− s)

1− s

ζ(2s+ 2)

ζ(s+ 1)
=

∞�

0

f(x)xs−2 dx.

We split the integral into two integrals at x = 4 so that

πX(1− s)

1− s

ζ(2s+ 2)

ζ(s+ 1)
=

4�

0

f(x)xs−2 dx+

∞�

4

f(x)xs−2 dx = I1(s) + I2(s),

say. The integral defining I1(s) is absolutely convergent for σ > 1 and the
second integral is absolutely convergent for σ < 1. Using the periodicity of f
we can show that the second integral converges for σ < 2. Indeed, let

F (x) =

x�

0

f(t) dt.
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Then F (n) = 0 for all integers n and F is bounded. Therefore,

I2(s) =

∞∑
n=4

n+1�

n

f(x)xs−2 dx

=
∞∑
n=4

(
F (x)xs−2|x=n+1

x=n − (s− 2)

n+1�

n

F (x)xs−3 dx
)

= −(s− 2)

∞�

4

F (x)xs−3 dx.

This integral converges for ℜs < 2. So, we now have I2 analytic for ℜs < 2.
Clearly, I1 + I2 is analytic for ℜs > max {−1/2, ρ− 1}, i.e. for ℜs > 0. (The
pole of X(1 − s) at s = 0 is canceled by the zero of 1/ζ(s + 1) at s = 0.)
It follows that I1(s) = (I1(s) + I2(s)) − I2(s) is analytic for ℜs > 0. Hence
I2(s) is also analytic for ℜs > 0, and since we already knew it was analytic
for ℜs < 2, it follows that I2(s) is entire. Now, we can write I1 as

I1(s) =

∞�

1/4

f(1/x)x−s dx.

Recall we have assumed that f(1/x) ⩾ 0 for x ⩾ 4. Therefore, by Landau’s
Theorem, the rightmost singularity of I1(s) is real. Since I2 is entire, it
follows that the rightmost pole of I1(s) + I2(s) must also be real. But the
rightmost real pole of

I1(s) + I2(s) =
πX(1− s)

1− s

ζ(2s+ 2)

ζ(s+ 1)

is at s = −1/2. This must be the rightmost pole. Therefore the poles at
ρ− 1 must all have their real parts less than or equal to −1/2. In particular,
ℜρ ⩽ 1/2, which is RH.

Proof of Theorem 2. We start again from
f(x)

π
=

1

2πi

�

(c)

X(1− s)ζ(2s+ 2)x1−s

(1− s)ζ(s+ 1)
ds

where 0 < c < 1/2. The integrand has poles only at s = −1/2 and at
s = ρ− 1 where ρ is a complex zero of ζ(s), and nowhere else in the s-plane.
The residue at s = −1/2 is

X
(
3
2

)
3
2ζ

(
1
2

)x3/2 = − 4π

3ζ
(
1
2

)x3/2.
Assuming that the zeros are simple, the residue at s = ρ− 1 is

X(2− ρ)ζ(2ρ)x2−ρ

(2− ρ)ζ ′(ρ)
.
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We (carefully) move the path of integration to (c) where −2 < c < −1. To
do this we have to cross through a field of poles arising from the zeros of
the zeta-function. We use Theorem 14.16 of [T1] (see also [R]) to find a path
on which 1/ζ(s + 1) ≪ T ϵ where we can safely cross. Using the bounds
|X(1 − s)| ≪ T σ−1/2 and ζ(2s + 2) ≪ T−1/2−σ we can get the sum of the
residues arising from the zeros up to height T together with an error term
that tends to 0 as T → ∞. Thus, assuming the zeros are simple,

f(x)

π
= − 4πx3/2

3ζ(1/2)
+
∑
ρ

X(2− ρ)ζ(2ρ)x2−ρ

(2− ρ)ζ ′(ρ)

+
1

2πi

�

(c)

X(1− s)ζ(2s+ 2)x1−s

(1− s)ζ(s+ 1)
ds.

If the zeros are not simple, we modify the sum over zeros appropriately. We
make the change of variable s 7→ −s in the integral. Using the functional
equation for the ζ-function and functional relations for the Γ -function, we
see that the new integrand is

X(1 + s)ζ(2− 2s)x1+s

(1 + s)ζ(1− s)
= −π3/222s

Γ
(
s− 1

2

)
Γ (s+ 2)

ζ(2s− 1)

ζ(s)
x1+s.

By Lemma 2,

1

2πi

�

(c)

π3/222s
Γ
(
s− 1

2

)
Γ (s+ 2)

ζ(2s− 1)

ζ(s)
x1+s =

8π

3
x3/2

∑
n⩽4x

ℓ(n)√
n

(
1− n

4x

)3/2

.

Then Theorem 2 follows.

Proof of Theorem 4. We denote χq(n) =
(
n
q

)
. By Lemma 1,

(3) fq(x) =
π

2πi

�

(c)

L(s+ 1, χq)X(1− s)x1−s
ds

1− s

where 0 < c < 1. Since χq is odd, we find that the integrand has a pole
at s = 0 and nowhere else in the complex plane. We move the path of
integration to (c) where c < −1 to see that

fq(x) = 2πxL(1, χq) +
π

2πi

�

(c)

L(s+ 1, χq)X(1− s)x1−s
ds

1− s
.

Now let s 7→ −s in the integral and use the functional equation (see [D], [IK]
or [MV2])

L(1− s, χq) = 2qs−1/2(2π)−sΓ (s) sin
πs

2
L(s, χq).
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After simplification, the integral above is

−2π2

2πi

�

(c)

qs−1/2x1+sL(s, χq)
ds

s(s+ 1)
.

By Lemma 3, this integral is

−2π2x
√
q

∑
n⩽xq

χq(n)

(
1− n

xq

)
.

The proof of Theorem 4 is complete.

Remark 3. Note that the non-negativity, for 0 < x < 1/4, of the right-
hand side of (3) implies the Riemann Hypothesis. This condition only in-
volves Dirichlet L-functions with quadratic characters. Thus, information
solely about Dirichlet L-functions potentially gives the Riemann Hypothe-
sis. This example shows that different L-functions somehow know about each
other.

5. Further remarks. Since

h(q) ≫ϵ q
1/2−ϵ,

we see that
fq(x) ⩾ 0 for a≪ x≪ q−1/2−ϵ.

In particular,
fq(a/q) ⩾ 0 for a≪ q1/2−ϵ.

But this does not give information about f(x).
Also, the Pólya–Vinogradov inequality tells us that

max
N

∣∣∣ N∑
n=1

χq(n)
∣∣∣ ≪ q1/2 log q

and the work of Montgomery and Vaughan [MV1] shows that the Riemann
Hypothesis for L(s, χ) implies that

max
N

∣∣∣ N∑
n=1

χq(n)
∣∣∣ ≪ q1/2 log log q.

Moreover, it is known that the right-hand side here cannot be replaced by
any function that goes to infinity slower. It is also known, assuming the
Riemann Hypothesis for L(s, χ), that

L(1, χ) ≪ log log q.
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Our desired inequality can be expressed in terms of L(1, χ) as

(4) max
N⩽q/4

N∑
n=1

χ(n)

(
1− n

N

)
⩽

√
q

π
L(1, χ).

It appears that both sides of this inequality can be as big as √
q log log q.

A question is whether the converse of Theorem 1 is true. It might be
possible to approach this by showing that the “3/2” derivative of f(x) is
positive at x = 0 so that there is a small interval to the right of 0 for
which f(x) ⩾ 0. This method, or trying to prove (2) directly, would involve
explicit estimates (assuming RH) for 1/ζ(s) in the critical strip; see [MV2,
Section 13.2] for a good approach to such explicit estimates.

Finally, we mention that f(x) can be evaluated at a rational number
x = a/q as an average involving Dirichlet L-functions L(s, χ) where χ is a
character modulo q.

6. Evaluation of fq(a/p). Let p < q and (a, p) = 1. We explicitly
evaluate fq(a/p) as a sum over characters modulo p as follows. We have

fq(a/p) =
∞∑
n=1

χq(n) sin
2πan
p

n2
=

∞∑
n=1

χq(n)

n2
1

ϕ(p)
ℑ
{ ∑
ψmod p

τ(ψ)ψ(an)
}

=
1

ϕ(p)
ℑ
{ ∑
ψmod p

τ(ψ)ψ(a)

∞∑
n=1

χq(n)ψ(n)

n2

}
=

1

ϕ(p)
ℑ
{ ∑
ψmod p

τ(ψ)ψ(a)L(2, χqψ)
}
.

Now, if ψ is even then

τ(ψ) =

p∑
n=1

ψ(n)e(−an/p) =
p∑

n=1

ψ(−n)e(an/p) =
p∑

n=1

ψ(n)e(an/p) = τ(ψ),

while if ψ is odd then

τ(ψ) = −τ(ψ).

Thus, for even ψ,

ℑ{τ(ψ)ψ(a)L(2, χqψ) + τ(ψ)ψ(a)L(2, χqψ)} = 0,

and for odd ψ,

ℑ{τ(ψ)ψ(a)L(2, χqψ) + τ(ψ)ψ(a)L(2, χqψ)} = 2ℑ{τ(ψ)ψ(a)L(2, χqψ)}.
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Therefore, using the fact that τ(χp) = i
√
p when p ≡ 3 mod 4, we have

fq(a/p) =
1

ϕ(p)

∑
ψmod p

ψ(−1)=−1
ψ2 ̸=ψ0

ℑ{τ(ψ)ψ(a)L(2, χqψ)}

+ δ(p ≡ 3 mod 4)

√
p

ϕ(p)
ℜ{ψ(a)L(2, χqψ)}.

We use this to prove that

fq(1/3) > 0 and fq(1/5) > 0

for any q. By the formula above we have

fq(1/3) =

√
3

2
L(2, χqχ3) > 0

and

fq(1/5) =
2

ϕ(5)
ℑ{(−1.17557 + 1.90211i)L(2, χqψ1)} = 1.9α− 1.17β

where ψ1 = {1, i,−i,−1, 0} with τ(ψ1) = −1.17557 + 1.90211i and

α+ iβ = L(2, χqψ1) = 1 +
χq(2)i

22
− χq(3)i

32
− χq(4)

42
+ · · · .

Now

α ⩾ 1− 1

42
− 1

52
− · · · = 0.716 . . . and |β| < 1

22
+

1

32
+ · · · = 0.64 . . . .

Thus,
fq(1/5) > 0.6.

A couple of formulas may help us move forward here. One is that if θ1
and θ2 are characters with coprime moduli m1 and m2 respectively, then
(see [IK, (3.16)])

τ(θ1θ2) = θ1(m2)θ2(m1)τ(θ1)τ(θ2).

The other is that

L(1− r, θ) = −m
r−1

r

m∑
b=1

θ(b)Br(b/m)

for a character θ modulo m and a positive integer r where Br is the rth
Bernoulli polynomial (see [Wa, Theorem 4.2]). Recall the functional equation
(see [D]) for a primitive character θ modulo m:

L(1− s, θ) =

(
m

2π

)s
Γ (s)(eπis/2 + θ(−1)e−πis/2)L(s, θ)/τ(θ).
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It follows that for an even θ = χqψ, with q ≡ 3 mod 4 and ψ an odd character
modulo p, we have

L(2, χψ) = −π
(
pq

2π

)−1

L(−1, θ)/τ(θ)

= −π
(
pq

2π

)−1

L(−1, χψ)/(χ(p)ψ(q)τ(ψ)i
√
q).

Therefore,

ℑ{τ(ψ)ψ(a)L(2, χqψ)} = ℜ
{
2π2χq(p)ψ(aq)

pq3/2
L(−1, χqψ)

}
= −ℜ

{
π2χq(p)ψ(aq)√

q

pq∑
b=1

χq(b)ψ(b)B2(b/(pq))

}
.

We sum this equation over the odd characters modulo p using∑
ψmod p

ψ(−1)=−1

ψ

(
b

aq

)
=

1

2

∑
ψmod p

(
ψ

(
b

aq

)
− ψ

(
− b

aq

))

=
ϕ(p)

2

{
1 if b ≡ aq mod p,

−1 if b ≡ −aq mod p.

This gives∑
ψ mod p
ψ(−1)=−1

ℑ{τ(ψ)ψ(a)L(2, χqψ)}

= −ϕ(p)
2

π2χq(p)√
q

( ∑
b⩽pq

b≡aqmod p

χq(a)B2(b/(pq))−
∑
b⩽pq

b≡−aqmod p

χq(a)B2(b/(pq))
)
.

Note that

B2(x) = x2 − x+ 1/6.

Also, ∑
b⩽pq

b≡aqmod p

χq(b)−
∑
b⩽pq

b≡−aqmod p

χq(b) = 0,

∑
b⩽pq

b≡aqmod p

bχq(b)−
∑
b⩽pq

b≡−aqmod p

bχq(b) = 0.
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Thus, ∑
ψmod p

ψ(−1)=−1

ℑ{τ(ψ)ψ(a)L(2, χqψ)}

= −π
2χq(p)

2p2q5/2

( ∑
b⩽pq

b≡aqmod p

b2χq(b)−
∑
b⩽pq

b≡−aqmod p

b2χq(b)
)
.

Hence, we have

Theorem 5. For primes p and q both congruent to 3 modulo 4 and for
1 ⩽ a < p/2 we have

fq(a/p) = −π
2χq(p)

2p2q5/2

( ∑
b⩽pq

b≡aqmod p

b2χq(b)−
∑
b⩽pq

b≡−aqmod p

b2χq(b)
)
.

As a consequence we also have

Corollary 3. If

(5) testa(p, q) := −χq(p)
( ∑

b⩽pq
b≡aqmod p

b2χq(b)−
∑
b⩽pq

b≡−aqmod p

b2χq(b)
)
> 0

for all primes p < q congruent to 3 modulo 8 and all 0 < a < p/2, then the
Riemann Hypothesis follows.

We note that by these techniques one can show

Theorem 6.

fq(a/q) =
π2

2
√
q

(
χq(a)−

1

q2

q−1∑
c=1

c2(χq(c− a)− χq(c+ a))

)
.

When this formula is compared with our earlier formula

fq

(
a

q

)
=

2π2

q3/2

(
a

3

∑
n⩽ q−1

2

χq(n)−
a∑

n=1

(a− n)χq(n)

)
,

we deduce the identity

a

3

∑
n⩽(q−1)/2

χq(n)−
a∑

n=1

(a− n)χq(n)

=
q

4

(
χq(a)−

1

q2

q−1∑
c=1

c2(χq(c− a)− χq(c+ a))

)
for q ≡ 3 mod 4.

Now we indicate another possible direction.
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Proposition 1. If
fq(x) = 0

then x is a rational number.

Proof. By Corollary 1, fq(x) = 0 implies that Sq(q/2)−Sq(qx) = 0. But
Sq(q/2) = h(q) is an integer. So fq(x) = 0 implies that Sq(qx) is a rational
number. Now

Sq(qx) =
∑
n⩽[qx]

χq(n)

(
1− n

qx

)
=

∑
n⩽[qx]

χq(n)−
∑

n⩽[qx] nχq(n)

qx
.

This has the shape integer − integer
qx , which can only be rational if x is a

rational number.

So, it suffices to show that fq(x) has no rational zeros; perhaps a con-
gruence argument could work. However, Theorem 5 is not of much use here
because the hypothetical x for which fq(x) = 0 would likely have a denomi-
nator that is divisible by q, so the conditions of Theorem 5 do not hold.

We remark that there are rational values of x for which the numerator
of fq(x) is congruent to 0 modulo q; for example

f19
(
25
76

)
= 19

25 , f19
(

29
190

)
= 19

29 , f19
(

30
209

)
= 19

30 .

These examples, which all seem to have an x with denominator divisible
by q, might be worth studying further.

Here is one final formula that may or may not be useful. Suppose that
fq(x) = 0. Let y = xq. Then either∑

n⩽y

χq(n) = h(q) and
∑
n⩽y

nχq(n) = 0

or else

y =

∑
n⩽[y] nχq(n)∑

n⩽[y] χq(n)− h(q)
.

The first alternative seems unlikely as in that case there would be an interval
on which fq(x) would be identically 0.

7. Conclusion. Conjecture 1 has been checked for primes up to 109 and
it holds for those primes. However, probabilistic grounds call into question
its truth for all primes q ≡ 3 mod 8. Of course, one only needs its truth for
a set of characters χq for which χq(n) = λ(n) for all n ⩽ Nq where Nq → ∞
with q. Presumably something like this is correct (and should be equivalent
to RH), but it is not clear how to proceed. But the results of Section 6 suggest
a slightly alternative way forward which may have a more arithmetic flavor.
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