

AVERAGES OF LONG DIRICHLET POLYNOMIALS

BRIAN CONREY AND JON KEATING

1. INTRODUCTION AND STATEMENT OF RESULTS

It has been conjectured by Keating and Snaith that

$$\frac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2k} dt \sim \frac{g_k a_k (\log T)^{k^2}}{k^2!}$$

where for positive integer k ,

$$a_k = \prod_p \left(1 - \frac{1}{p}\right)^{(k-1)^2} \sum_{j=0}^{k-1} \frac{\binom{k-1}{j}^2}{p^j}$$

and

$$g_k = \frac{k^2!}{1^1 \cdot 2^2 \cdot \dots \cdot k^k \cdot (k+1)^{k-1} \cdot \dots \cdot (2k-1)^1}.$$

This has been proven for $k = 1$ and $k = 2$. The method of proof involves approximating $\zeta(s)$ or $\zeta(s)^2$ by appropriate Dirichlet polynomials and analyzing the mean-square of such. In the pursuit of proving the above conjecture for values of k larger than 2, it may be of some interest to consider in general the mean square of Dirichlet polynomials with coefficients $d_k(n)$ where

$$\zeta(s)^k = \sum_{n=1}^{\infty} \frac{d_k(n)}{n^s}.$$

Thus, we consider

$$I_k(T, N) = \int_0^T \sum_{n=1}^N \left| \frac{d_k(n)}{n^{1/2+it}} \right|^2 dt$$

for various values of k and N .

Here we present a method which will lead to conjectural values for

$$M_k(\alpha) = \lim_{T \rightarrow \infty} \frac{(k^2)!}{a_k T (\log T)^{k^2}} I_k(T, N)$$

for integer values of k and $N = T^\alpha$ with $\alpha > 0$. In particular we are interested in unit intervals of α between 0 and k . For example it can be shown that

$$\frac{1}{T} \int_0^T \left| \sum_{n \leq N} \frac{1}{n^{1/2+it}} \right|^2 dt \sim \begin{cases} \log N & \text{if } N \leq T \\ \log T & \text{if } N > T \end{cases}$$

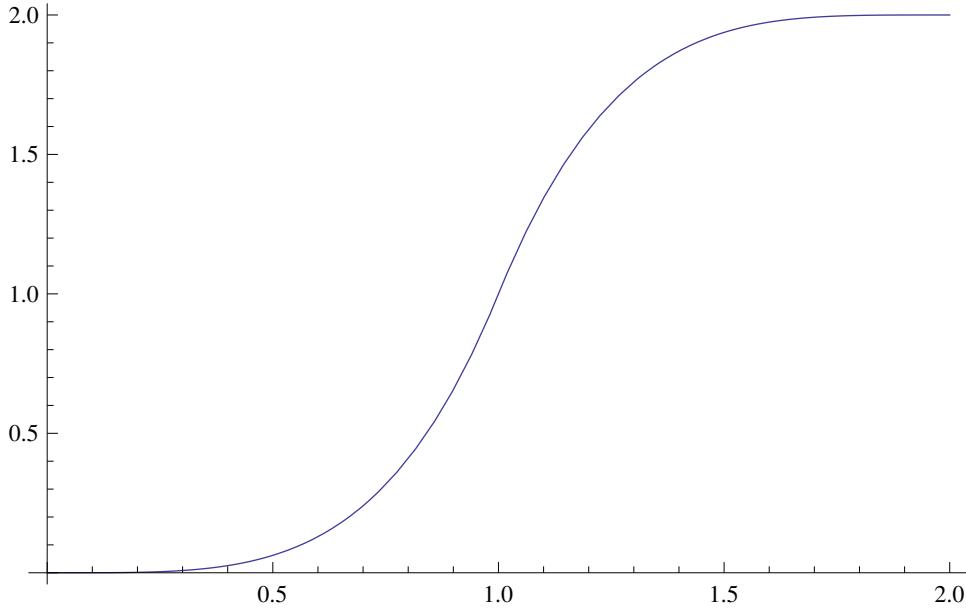


FIGURE 1. The plot of $M_2(\alpha)$ for $0 < \alpha < 2$.

This translates to

$$M_1(\alpha) = \begin{cases} \alpha & \text{if } 0 \leq \alpha \leq 1 \\ 1 & \text{if } 1 < \alpha \end{cases}$$

Also, it can likely be proven that

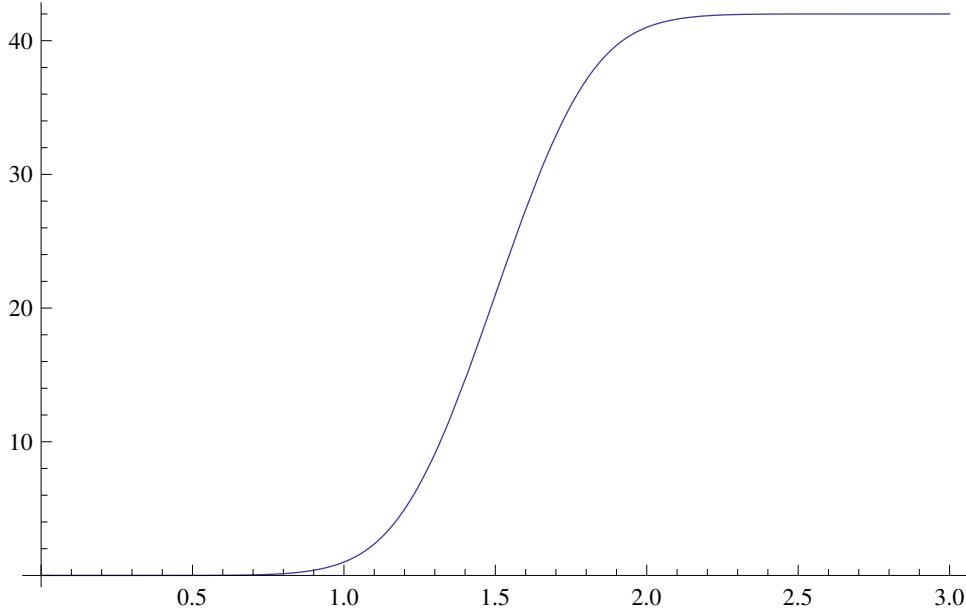
$$M_2(\alpha) = \begin{cases} \alpha^4 & \text{if } 0 \leq \alpha \leq 1 \\ -\alpha^4 + 8\alpha^3 - 24\alpha^2 + 32\alpha - 14 & \text{if } 1 < \alpha \leq 2 \\ 2 & \text{if } 2 < \alpha \end{cases}$$

Next, we conjecture that

$$M_3(\alpha) = \begin{cases} \alpha^9 & \text{if } 0 \leq \alpha \leq 1 \\ -2\alpha^9 + 27\alpha^8 - 324\alpha^7 + 2268\alpha^6 - 8694\alpha^5 + 19278\alpha^4 - 25452\alpha^3 + 19764\alpha^2 - 8343\alpha + 1479 & \text{if } 1 < \alpha \leq 2 \\ \alpha^9 - 27\alpha^8 + 324\alpha^7 - 2268\alpha^6 + 10206\alpha^5 - 30618\alpha^4 + 61236\alpha^3 - 78732\alpha^2 + 59049\alpha - 19641 & \text{if } 2 \leq \alpha \leq 3 \\ 42 & \text{if } 3 \leq \alpha \end{cases}$$

This is a consequence of the conjecture of [CFKRS] known as “the recipe.” We will sketch its derivation later.

The polynomials here are interesting because of their smoothness properties. The graphs of $M_2(\alpha)$ and $M_3(\alpha)$ are included. Notice that they are very smooth, monotonic, and are symmetric.

FIGURE 2. The plot of $M_3(\alpha)$ for $0 < \alpha < 3$.

In fact, $M_3(\alpha)$ is 9-times continuously differentiable at $\alpha = 0$ and $\alpha = 3$ and is 5-times differentiable at $\alpha = 1$ and $\alpha = 2$. It can be proven that the only piecewise polynomial $f(\alpha)$ (with pieces of degree at most 9) which is 0 for $\alpha < 0$ is 42 for $\alpha \geq 3$, is monotonic, and satisfies $f(3 - \alpha) = 42 - f(\alpha)$ and has the same smoothness properties as $M_3(\alpha)$ is $f(\alpha) = M_3(\alpha)$. Note that the symmetry together with $M_3(\alpha) = \alpha^9$ for $0 < \alpha < 1$ implies that for $2 < \alpha < 3$ we have

$$M_3(\alpha) = (\alpha - 3)^9 + 42.$$

which only leaves the range $1 < \alpha < 2$ in question. Let $P(\alpha)$ be the polynomial that agrees with $M_3(\alpha)$ in the range $1 < \alpha < 2$. Then it satisfies $P(\alpha) + P(3 - \alpha) = 42$; this determines half of its 10 coefficients. Then the 5 times smoothness at $\alpha = 1$ determine the other 5.

2. A PROOF OF THE $k = 2$ CASE

We sketch a possible proof of the $k = 2$ case. First of all, with $s = 1/2 + it$ and $\alpha, \beta, \gamma, \delta \ll (\log T)^{-1}$ it is a theorem (but whose proof is not written down in full details anywhere) that

$$(1) \int_0^T \zeta(s + \alpha)\zeta(s + \beta)\zeta(1 - s + \gamma)\zeta(1 - s + \delta) dt = \int_0^T \mathcal{Z}_t(\alpha, \beta, \gamma, \delta) dt + O(T^{2/3 + \epsilon}),$$

where

$$\begin{aligned} \mathcal{Z}_t(\alpha, \beta, \gamma, \delta) &= Z(\alpha, \beta, \gamma, \delta) + \left(\frac{t}{2\pi}\right)^{-\alpha-\gamma} Z(-\gamma, \beta, -\alpha, \delta) + \left(\frac{t}{2\pi}\right)^{-\alpha-\delta} Z(-\delta, \beta, \gamma, -\alpha) \\ &\quad + \left(\frac{t}{2\pi}\right)^{-\beta-\gamma} Z(\alpha, -\gamma, -\beta, \delta) + \left(\frac{t}{2\pi}\right)^{-\beta-\delta} Z(\alpha, -\delta, \gamma, -\beta) \\ &\quad + \left(\frac{t}{2\pi}\right)^{-\alpha-\beta-\gamma-\delta} Z(-\gamma, -\delta, -\alpha, -\beta) \end{aligned}$$

where

$$Z(\alpha, \beta, \gamma, \delta) = \frac{\zeta(1 + \alpha + \gamma)\zeta(1 + \alpha + \delta)\zeta(1 + \beta + \gamma)\zeta(1 + \delta)}{\zeta(2 + \alpha + \beta + \gamma + \delta)}$$

This theorem, possibly with a weaker error term, could be proven in the case that real parts of the $\alpha, \beta, \gamma, \delta$ are small but that the imaginary parts can be as large as T ; (Sandro Bettin did this for the mean square case, see [B]). We will assume this uniform version of the fourth moment. By Perron's formula we have

$$\begin{aligned} I_2(T, N) &= \int_0^T \frac{1}{(2\pi i)^2} \iint_{z,w} \zeta(s+w)^2 \zeta(1-s+z)^2 \frac{N^w}{w} \frac{N^z}{z} dw dz dt \\ &= \frac{1}{(2\pi i)^2} \iint_{z,w} \frac{N^{w+z}}{wz} \int_0^T \zeta(s+w)^2 \zeta(1-s+z)^2 dt dw dz \end{aligned}$$

We evaluate the inner integral over t using a limiting case of (1) with $\alpha = \beta = w$ and $\gamma = \delta = z$. Also, we are only interested in the leading order term, so, for example, the denominator in the recipe formula above just becomes $\zeta(2) = \pi^2/6$ and we replace $\zeta(1+x)$ by $1/x$, $(t/2\pi)^{-\alpha}$ by $T^{-\alpha}$, etc. In this context then, we have

$$\frac{\zeta(2)^{-1}}{T} \int_0^T \zeta(s+w)^2 \zeta(1-s+z)^2 dt \sim \frac{1 - (2 + (w+z)^2)T^{-w-z} \log^2 T - 2T^{-2w-2z}}{(w+z)^4}$$

Inserting this above we find that

$$I_2(T, N) \sim \frac{\zeta(2)^{-1}T}{(2\pi i)^2} \iint_{z,w} \frac{N^{w+z}}{wz} \frac{(1 - (2 + (w+z)^2)T^{-w-z} \log^2 T - 2T^{-2w-2z})}{(w+z)^4} dw dz.$$

The integrals over z and w are for the real parts of z and w being small but positive. We can see from this formula that we will get different answers when $N < T$, $T < N < T^2$, and $T^2 < N$. For example, if $T < N < T^2$ we will move the paths of integration to the right (and so get 0) for the terms which involve T^{-2w-2z} . If $N < T$ then we do likewise for the terms which involve T^{-z-w} or T^{-2w-2z} . For the rest of the terms we move the paths to the

left and collect the residues at $w = 0$ and $z = 0$. In this way we find that $I_2(T, N) \sim \frac{T}{4! \zeta(2)} \times$

$$\times \begin{cases} \log^4 N & \text{if } N < T \\ 8 \log^3 N \log T + 32 \log N \log^3 T - 24 \log^2 N \log^2 T - \log^4 N - 14 \log^4 T & \text{if } T < N < T^2 \\ 2 \log^4 T & \text{if } T^2 < N \end{cases}$$

The result about $M_2(\alpha)$ follows.

3. DERIVATION OF THE CASE $k = 3$

We use the conjecture of [CFKRS]. Let

$$Z_\zeta(A; B) = \prod_{\alpha \in A, \beta \in B} \zeta(1 + \alpha + \beta)$$

and

$$\begin{aligned} \mathcal{A}(A; B) &= \prod_p \prod_{\alpha \in A, \beta \in B} \left(1 - \frac{1}{p^{1+\alpha+\beta}}\right) \\ &\times \int_0^1 \prod_{\alpha \in A} z_{p,\theta}(1/2 + \alpha) \prod_{\beta \in B} z_{p,-\theta}(1/2 + \beta) d\theta \end{aligned}$$

where $z_{p,\theta}(x) = 1/(1 - e(\theta)/p^x)$. Then

$$\begin{aligned} &\int_0^T \prod_{\alpha \in A} \zeta(1/2 + i\tau + \alpha) \prod_{\beta \in B} \zeta(1/2 - i\tau + \beta) d\tau \\ &= \int_0^T \sum_{\substack{S \subseteq A \\ T \subseteq B \\ |S|=|T|}} e^{-\ell(\sum s + \sum t)} \mathcal{A}Z_\zeta(\overline{S} \cup (-T); \overline{T} \cup (-S)) d\tau \\ &\quad + O(T^{1/2+\epsilon}). \end{aligned}$$

where $\ell = \log \frac{t}{2\pi}$.

We use the above with A and B being sets of cardinality 3. A limiting argument that allows for A and B to be multisets $A = \{w, w, w\}$ and $B = \{z, z, z\}$ implies that

$$\frac{1}{T} \int_0^T \zeta(s+w)^3 \zeta(1-s+z)^3 dt \sim F_3(w, z)$$

where

$$\begin{aligned}
F_3(w, z) = & \frac{1}{4}(w+z)^{-9}(4 + T^{-w-z}(-w^4 \log^4(T) - 4w^3z \log^4(T) + 4w^3 \log^3(T) \\
& - 6w^2z^2 \log^4(T) + 12w^2z \log^3(T) - 12w^2 \log^2(T) - 4wz^3 \log^4(T) \\
& + 12wz^2 \log^3(T) - 24wz \log^2(T) - z^4 \log^4(T) + 4z^3 \log^3(T) \\
& - 12z^2 \log^2(T) - 12) + T^{-2w-2z}(w^4 \log^4(T) + 4w^3z \log^4(T) + 4w^3 \log^3(T) \\
& + 6w^2z^2 \log^4(T) + 12w^2z \log^3(T) + 12w^2 \log^2(T) + 4wz^3 \log^4(T) \\
& + 12wz^2 \log^3(T) + 24wz \log^2(T) + z^4 \log^4(T) + 4z^3 \log^3(T) \\
& + 12z^2 \log^2(T) + 12) - 4T^{-3w-3z})
\end{aligned}$$

We compute

$$I_3(T) = \frac{1}{(2\pi i)^2} \iint_{w,z} \frac{N^{w+z}}{wz} F_3(w, z) dw dz$$

for various ranges of N . If $N < T$ only the first term matters; if $T < N < T^2$ then the terms with T^{-w-z} also contribute; if $T^2 < N < T^3$ then we must also include the terms with T^{-2w-2z} ; if $N > T^3$ then we include all of the terms. Computing residues at $w = 0$ and $z = 0$ leads to the above result for M_3 .

4. $k = 4$

We know that $M_4(\alpha) = \alpha^{16}$ for $0 < \alpha < 1$. We know also that $M_4(\alpha) = 24024$ for $\alpha \geq 4$ and that $M_4(\alpha) = 24024 - M_4(4 - \alpha)$ for all α , so that determines $M_4(\alpha)$ for $3 < \alpha < 4$. One might guess that it will be 9 times differentiable at $\alpha = 1$ and $\alpha = 3$. And 7 times differentiable at $\alpha = 2$.

We can use a result in [CG] to conjecturally determine $M_4(\alpha)$ (and indeed any $M_k(\alpha)$) for $1 < \alpha < 2$. From that paper, which is based on the predicted behavior of divisor correlations

$$\sum_{n \leq x} d_k(n) d_k(n+h)$$

we have

Conjecture 1. *For any positive integer k , we conjecture that $M_k(\alpha)$ exists and that*

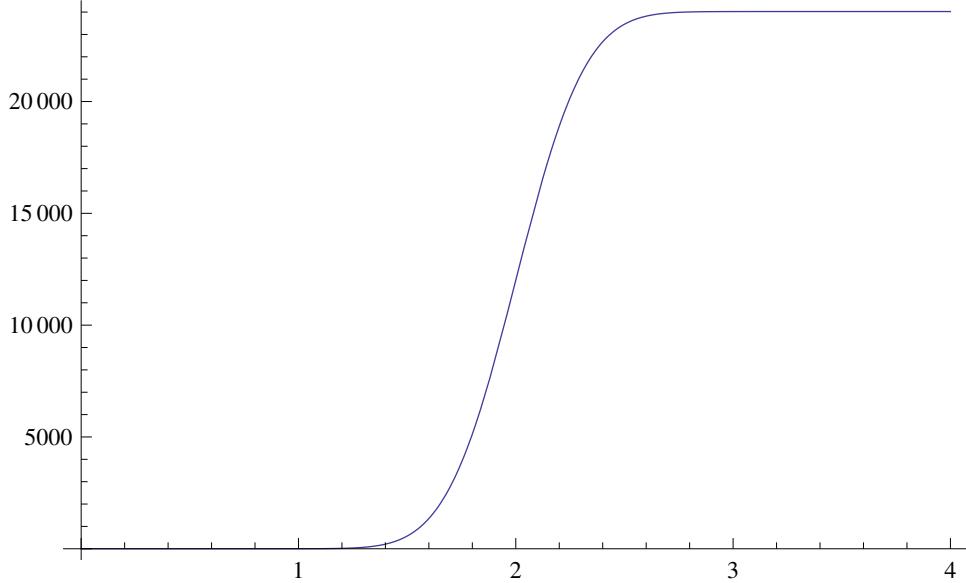
$$M_k(\alpha) = \alpha^{k^2} \left(1 - \sum_{n=0}^{k^2-1} (-1)^n (1 - \alpha^{-n-1}) \binom{k^2}{n+1} \gamma_k(n) \right)$$

for $1 < \alpha < 2$ where

$$\gamma_k(n) = \sum_{1 \leq i, j \leq k} \binom{k}{i} \binom{k}{j} \binom{n-1}{i-1, j-1, n-i-j+1};$$

also

$$\gamma_k(0) = k.$$

FIGURE 3. The plot of $M_4(\alpha)$ for $0 < \alpha < 4$.

In [CK1-3] we confirm that the correlation method of [CG] agrees with the prediction of the recipe in [CFKRS]. These independent lines of reasoning thus both give

$$\begin{aligned} M_4(\alpha) = & -3\alpha^{16} + 64\alpha^{15} - 1920\alpha^{14} + 35840\alpha^{13} - 393120\alpha^{12} + 2725632\alpha^{11} - 12684672\alpha^{10} \\ & + 41367040\alpha^9 - 97348680\alpha^8 + 168351040\alpha^7 - 215767552\alpha^6 + 204701952\alpha^5 \\ & - 141989120\alpha^4 + 70035840\alpha^3 - 23281920\alpha^2 + 4679424\alpha - 429844 \end{aligned}$$

for $1 < \alpha < 2$, which does satisfy the aforementioned smoothness conditions. With this information we can construct all of $M_4(\alpha)$.

5. REMARKS

With a lot more work we could find an explicit formula for $M_k(\alpha)$ for $2 < \alpha < 3$, or indeed for any initial interval, using the recipe method. Also, we have a preliminary version of a new method - the convolution coefficient correlation method - which would give an independent avenue into determining the $M_k(\alpha)$. However, we suspect that there are simple smoothness conditions which would completely characterize $M_k(\alpha)$. We are not sure exactly what these are. However, the following may be a start.

Conjecture 2. *For any positive integer k the function $M_k(\alpha)$ is $(k-1)^2$ times continuously differentiable at $\alpha = 1$.*

We have checked this conjecture for $k \leq 7$ using the proposed formulas above for $M_k(\alpha)$ for $0 < \alpha < 2$.

REFERENCES

- [CFKRS] Conrey, J. B.; Farmer, D. W.; Keating, J. P. ; Rubinstein, M. O.; Snaith, N. C.; Integral moments of L -functions. Proc. Lond. Math. Soc. 91 (2005) 33–104. arXiv math.NT/0206018.
- [CIS] Conrey, J. B.; Iwaniec, H.; Soundararajan, K. The sixth power moment of Dirichlet L-functions. Geom. Funct. Anal. 22 (2012), no. 5, 12571288. arXiv:0710.5176
- [CK1] Conrey, J. B.; Keating, J. P. Moments of zeta and correlations of divisor-sums: I. Phil. Trans. R. Soc. A, 20140313 (2015).
- [CK2] Conrey, J. B.; Keating, J. P. Moments of zeta and correlations of divisor-sums: II. submitted for publication.
- [CK3] Conrey, J. B.; Keating, J. P. Moments of zeta and correlations of divisor-sums: III. submitted for publication.
- [CS] Conrey, J. B.; Snaith, N. C. In support of n -correlation. Comm. Math. Phys. 330 (2014), no. 2, 639653.
- [IK] Iwaniec, Henryk; Kowalski, Emmanuel. Analytic number theory. American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004.
- [KaSa] Katz, N. M.; Sarnak, P. Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications, 45. American Mathematical Society, Providence, RI (1999).
- [KS1] Keating, J. P.; Snaith, N. C. Random matrix theory and $\zeta(1/2 + it)$. Comm. Math. Phys. 214 (2000), no. 1, 57–89.