
AVERAGES OF LONG DIRICHLET POLYNOMIALS

BRIAN CONREY AND JON KEATING

1. Introduction and statement of results

It has been conjectured by Keating and Snaith that
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and
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11 · 22 · . . . kk · (k + 1)k−1 · · · · · (2k − 1)1
.

This has been proven for k = 1 and k = 2. The method of proof involves approximating ζ(s)
or ζ(s)2 by appropriate Dirichlet polynomials and analyzing the mean-square of such. In
the pursuit of proving the above conjecture for values of k larger than 2, it may be of some
interest to consider in general the mean square of Dirichlet polynomials with coefficients
dk(n) where

ζ(s)k =
∞∑
n=1

dk(n)

ns
.

Thus, we consider
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n1/2+it

∣∣∣∣2 dt

for various values of k and N .
Here we present a method which will lead to conjectural values for

Mk(α) = lim
T→∞

(k2)!

akT (log T )k2
Ik(T,N)

for integer values of k and N = Tα with α > 0. In particular we are interested in unit
intervals of α between 0 and k. For example it can be shown that

1

T

∫ T

0

∣∣∣∣∣∑
n≤N

1

n1/2+it

∣∣∣∣∣
2

dt ∼
{

logN if N ≤ T
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Figure 1. The plot of M2(α) for 0 < α < 2.

This translates to

M1(α) =

{
α if 0 ≤ α ≤ 1
1 if 1 < α

Also, it can likely be proven that

M2(α) =

 α4 if 0 ≤ α ≤ 1
−α4 + 8α3 − 24α2 + 32α− 14 if 1 < α ≤ 2
2 if 2 < α

Next, we conjecture that

M3(α) =



α9 if 0 ≤ α ≤ 1
−2α9 + 27α8 − 324α7 + 2268α6 − 8694α5+

19278α4 − 25452α3 + 19764α2 − 8343α + 1479 if 1 < α ≤ 2
α9 − 27α8 + 324α7 − 2268α6 + 10206α5

−30618α4 + 61236α3 − 78732α2 + 59049α− 19641 if 2 ≤ α ≤ 3
42 if 3 ≤ α

This is a consequence of the conjecture of [CFKRS] known as “the recipe.” We will sketch
its derivation later.

The polynomials here are interesting because of their smoothness properties. The graphs
of M2(α) and M3(α) are included. Notice that they are very smooth, monotonic, and are
symmetric.
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Figure 2. The plot of M3(α) for 0 < α < 3.

In fact, M3(α) is 9-times continuously differentiable at α = 0 and α = 3 and is 5-times
differentiable at α = 1 and α = 2. It can be proven that the only piecewise polynomial
f(α) (with pieces of degree at most 9) which is 0 for α < 0 is 42 for α ≥ 3, is monotonic,
and satisfies f(3 − α) = 42 − f(α) and has the same smoothness properties as M3(α) is
f(α) = M3(α). Note that the symmetry together with M3(α) = α9 for 0 < α < 1 implies
that for 2 < α < 3 we have

M3(α) = (α− 3)9 + 42.

which only leaves the range 1 < α < 2 in question. Let P (α) be the polynomial that agrees
with M3(α) in the range 1 < α < 2. Then it satisfies P (α) +P (3−α) = 42; this determines
half of its 10 coefficients. Then the 5 times smoothness at α = 1 determine the other 5.

2. A proof of the k = 2 case

We sketch a possible proof of the k = 2 case. First of all, with s = 1/2+it and α, β, γ, δ �
(log T )−1 it is a theorem (but whose proof is not written down in full details anywhere) that∫ T

0

ζ(s+ α)ζ(s+ β)ζ(1− s+ γ)ζ(1− s+ δ) dt =

∫ T

0

Zt(α, β, γ, δ) dt+O(T 2/3+ε),(1)
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where

Zt(α, β, γ, δ) = Z(α, β, γ, δ) +

(
t

2π

)−α−γ
Z(−γ, β,−α, δ) +

(
t

2π

)−α−δ
Z(−δ, β, γ,−α)

+

(
t

2π

)−β−γ
Z(α,−γ,−β, δ) +

(
t

2π

)−β−δ
Z(α,−δ, γ,−β)

+

(
t

2π

)−α−β−γ−δ
Z(−γ,−δ,−α,−β)

where

Z(α, β, γ, δ) =
ζ(1 + α + γ)ζ(1 + α + δ)ζ(1 + β + γ)ζ(1 + δ)

ζ(2 + α + β + γ + δ)

This theorem, possibly with a weaker error term, could be proven in the case that real parts
of the α, β, γ, δ are small but that the imaginary parts can be as large as T ; (Sandro Bettin
did this for the mean square case, see [B]). We will assume this uniform version of the fourth
moment. By Perron’s formula we have

I2(T,N) =

∫ T

0

1

(2πi)2

∫∫
z,w

ζ(s+ w)2ζ(1− s+ z)2
Nw

w

N z

z
dw dz dt

=
1

(2πi)2

∫∫
z,w

Nw+z

wz

∫ T

0

ζ(s+ w)2ζ(1− s+ z)2 dt dw dz

We evaluate the inner integral over t using a limiting case of (1) with α = β = w and
γ = δ = z. Also, we are only interested in the leading order term, so, for example, the
denominator in the recipe formula above just becomes ζ(2) = π2/6 and we replace ζ(1 + x)
by 1/x, (t/2π)−α by T−α, etc. In this context then, we have

ζ(2)−1

T

∫ T

0

ζ(s+ w)2ζ(1− s+ z)2 dt ∼ 1− (2 + (w + z)2)T−w−z log2 T − 2T−2w−2z

(w + z)4

Inserting this above we find that

I2(T,N) ∼ ζ(2)−1T

(2πi)2

∫∫
z,w

Nw+z

wz

(1− (2 + (w + z)2)T−w−z log2 T − 2T−2w−2z)

(w + z)4
dw dz.

The integrals over z and w are for the real parts of z and w being small but positive. We
can see from this formula that we will get different answers when N < T , T < N < T 2, and
T 2 < N . For example, if T < N < T 2 we will move the paths of integration to the right
(and so get 0) for the terms which involve T−2w−2z. If N < T then we do likewise for the
terms which involve T−z−w or T−2w−2z. For the rest of the terms we move the paths to the
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left and collect the residues at w = 0 and z = 0. In this way we find that I2(T,N) ∼ T
4!ζ(2)
×

×


log4N if N < T
8 log3N log T + 32 logN log3 T − 24 log2N log2 T − log4N − 14 log4 T

if T < N < T 2

2 log4 T if T 2 < N

The result about M2(α) follows.

3. Derivation of the case k = 3

We use the conjecture of [CFKRS]. Let

Zζ(A;B) =
∏

α∈A,β∈B

ζ(1 + α + β)

and

A(A;B) =
∏
p

∏
α∈A,β∈B

(
1− 1

p1+α+β

)

×
∫ 1

0

∏
α∈A

zp,θ(1/2 + α)
∏
β∈B

zp,−θ(1/2 + β) dθ

where zp,θ(x) = 1/(1− e(θ)/px). Then∫ T

0

∏
α∈A

ζ(1/2 + iτ + α)
∏
β∈B

ζ(1/2− iτ + β) dτ

=

∫ T

0

∑
S⊂A
T⊂B
|S|=|T |

e−`(
∑
s+

∑
t)AZζ(S ∪ (−T );T ∪ (−S)) dτ

+O(T 1/2+ε).

where ` = log t
2π

.
We use the above with A and B being sets of cardinality 3. A limiting argument that

allows for A and B to be multisets A = {w,w,w} and B = {z, z, z} implies that

1

T

∫ T

0

ζ(s+ w)3ζ(1− s+ z)3 dt ∼ F3(w, z)
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where

F3(w, z) =
1

4
(w + z)−9(4 + T−w−z(−w4 log4(T )− 4w3z log4(T ) + 4w3 log3(T )

−6w2z2 log4(T ) + 12w2z log3(T )− 12w2 log2(T )− 4wz3 log4(T )

+12wz2 log3(T )− 24wz log2(T )− z4 log4(T ) + 4z3 log3(T )

−12z2 log2(T )− 12) + T−2w−2z(w4 log4(T ) + 4w3z log4(T ) + 4w3 log3(T )

+6w2z2 log4(T ) + 12w2z log3(T ) + 12w2 log2(T ) + 4wz3 log4(T )

+12wz2 log3(T ) + 24wz log2(T ) + z4 log4(T ) + 4z3 log3(T )

+12z2 log2(T ) + 12)− 4T−3w−3z)

We compute

I3(T ) =
1

(2πi)2

∫∫
w,z

Nw+z

wz
F3(w, z) dw dz

for various ranges of N . If N < T only the first term matters; if T < N < T 2 then the
terms with T−w−z also contribute; if T 2 < N < T 3 then we must also include the terms with
T−2w−2z; if N > T 3 then we include all of the terms. Computing residues at w = 0 and
z = 0 leads to the above result for M3.

4. k = 4

We know that M4(α) = α16 for 0 < α < 1. We know also that M4(α) = 24024 for α ≥ 4
and that M4(α) = 24024 −M4(4 − α) for all α, so that determines M4(α) for 3 < α < 4.
One might guess that it will be 9 times differentiable at α = 1 and α = 3. And 7 times
differentiable at α = 2.

We can use a result in [CG] to conjecturally determine M4(α) (and indeed any Mk(α)) for
1 < α < 2. From that paper, which is based on the predicted behavior of divisor correlations∑

n≤x

dk(n)dk(n+ h)

we have

Conjecture 1. For any positive integer k, we conjecture that Mk(α) exists and that

Mk(α) = αk
2

(
1−

k2−1∑
n=0

(−1)n
(
1− α−n−1

)( k2

n+ 1

)
γk(n)

)
for 1 < α < 2 where

γk(n) =
∑

1≤i,j≤k

(
k

i

)(
k

j

)(
n− 1

i− 1, j − 1, n− i− j + 1

)
;

also
γk(0) = k.
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Figure 3. The plot of M4(α) for 0 < α < 4.

In [CK1-3] we confirm that the correlation method of [CG] agrees with the prediction of
the recipe in [CFKRS]. These independent lines of reasoning thus both give

M4(α) = −3α16 + 64α15 − 1920α14 + 35840α13 − 393120α12 + 2725632α11 − 12684672α10

+41367040α9 − 97348680α8 + 168351040α7 − 215767552α6 + 204701952α5

−141989120α4 + 70035840α3 − 23281920α2 + 4679424α− 429844

for 1 < α < 2, which does satisfy the aforementioned smoothness conditions. With this
information we can construct all of M4(α).

5. Remarks

With a lot more work we could find an explicit formula for Mk(α) for 2 < α < 3, or indeed
for any initial interval, using the recipe method. Also, we have a preliminary version of a new
method - the convolution coefficient correlation method - which would give an independent
avenue into determining the Mk(α). However, we suspect that there are simple smoothness
conditions which would completely characterize Mk(a). We are not sure exactly what these
are. However, the following may be a start.

Conjecture 2. For any positive integer k the function Mk(α) is (k−1)2 times continuously
differentiable at α = 1.

We have checked this conjecture for k ≤ 7 using the proposed formulas above for Mk(α)
for 0 < α < 2.
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