AVERAGES OF LONG DIRICHLET POLYNOMIALS

BRIAN CONREY AND JON KEATING

1. INTRODUCTION AND STATEMENT OF RESULTS

It has been conjectured by Keating and Snaith that
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This has been proven for k£ = 1 and k = 2. The method of proof involves approximating ((s)
or ((s)? by appropriate Dirichlet polynomials and analyzing the mean-square of such. In
the pursuit of proving the above conjecture for values of k larger than 2, it may be of some
interest to consider in general the mean square of Dirichlet polynomials with coefficients
di(n) where
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for various values of k£ and N.
Here we present a method which will lead to conjectural values for
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for integer values of £ and N = T with a > 0. In particular we are interested in unit
intervals of o between 0 and k. For example it can be shown that
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FIGURE 1. The plot of Ms(«) for 0 < a < 2.

This translates to

a f0<a<l1
Ml(o‘)_{l if1<a

Also, it can likely be proven that

ot ifo<a<1
My(a) =< —a*+8a®—24a? +32a— 14 ifl<a <2
2 if 2 <«

Next, we conjecture that

(o ifo<a<1
—20° 4 2708 — 324a” + 226808 — 86940’ +
19278a* — 2545203 + 1976402 — 8343 + 1479 fl<a<2
a® — 2708 + 324a” — 226885 + 10206a°
—30618a* + 61236a> — 7873202 + 59049 — 19641 if 2 < o < 3
[ 42 if3<a

Mg(Oé) =

This is a consequence of the conjecture of [CFKRS] known as “the recipe.” We will sketch
its derivation later.

The polynomials here are interesting because of their smoothness properties. The graphs
of Ms(a) and M3(«) are included. Notice that they are very smooth, monotonic, and are
symmetric.



AVERAGES OF LONG DIRICHLET POLYNOMIALS 3

40
30~
20

10 -

0.5 1.0 1.5 2.0 2.5 3.0

FIGURE 2. The plot of M;(«a) for 0 < aw < 3.

In fact, M3(«) is 9-times continuously differentiable at &« = 0 and o = 3 and is 5-times
differentiable at @ = 1 and o = 2. It can be proven that the only piecewise polynomial
f(a) (with pieces of degree at most 9) which is 0 for o« < 0 is 42 for aw > 3, is monotonic,
and satisfies f(3 — ) = 42 — f(«) and has the same smoothness properties as Mj(«) is
f(a) = Mz(c). Note that the symmetry together with Mz(a) = o for 0 < a < 1 implies
that for 2 < o < 3 we have

Ms(a) = (o — 3)° + 42.

which only leaves the range 1 < o < 2 in question. Let P(«) be the polynomial that agrees
with M3(«) in the range 1 < o < 2. Then it satisfies P(«) + P(3 — ) = 42; this determines
half of its 10 coefficients. Then the 5 times smoothness at o = 1 determine the other 5.

2. A PROOF OF THE k = 2 CASE

We sketch a possible proof of the k = 2 case. First of all, with s = 1/24it and a, 8,7,0 <
(log T)~" it is a theorem (but whose proof is not written down in full details anywhere) that

(1)/0 C(s+a)l(s+B)C(1—s+7)¢(1—s+0) dt:/o Zy(a, B,,8) dt + O(T?3+),
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where

—a—7y —a—0
Zt(a767775) = Z(O{,ﬁ,’)/,é)—‘— <i) Z(_f}/aﬁv —Oé,é)—i- (i) Z(_575777 _a)
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where

Cl4+a+9)C(1+a+6)C(1+B+7)C(1+9)

2l B,7,0) = C2+a+B8+~+0)

This theorem, possibly with a weaker error term, could be proven in the case that real parts
of the «, 8,7, 9 are small but that the imaginary parts can be as large as T'; (Sandro Bettin
did this for the mean square case, see [B]). We will assume this uniform version of the fourth
moment. By Perron’s formula we have

w z

dw dz dt

w z

Nw+z T
- (2712)2// W/0 C(s+w)*¢(1 — s+ 2)* dt dw dz

We evaluate the inner integral over t using a limiting case of (1) with & = § = w and
v =06 = z. Also, we are only interested in the leading order term, so, for example, the
denominator in the recipe formula above just becomes ((2) = 72/6 and we replace (1 + x)
by 1/x, (t/2m)~* by T~%, etc. In this context then, we have

L(T,N) = /0 ﬁ/ C(s+w)2C(1—s+z)2N

1— (24 (w+2)?)T v 2log” T — 27222
(w4 2)*

C(QT)*/O C(s+w)*C(1 — s+ 2)% dt ~

Inserting this above we find that

¢2)~'T NP (1 — (24 (w+2)2) T *log” T — 2T~ 2~%)
IL(T,N) ~ (271)? e dw dz.

(w+ 2)4

The integrals over z and w are for the real parts of z and w being small but positive. We
can see from this formula that we will get different answers when N < T, T < N < T?, and
T? < N. For example, if T < N < T? we will move the paths of integration to the right
(and so get 0) for the terms which involve 7722 If N < T then we do likewise for the
terms which involve T7*~% or T~2¥~2?, For the rest of the terms we move the paths to the
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left and collect the residues at w = 0 and z = 0. In this way we find that I,(7, N) ~ %(Q)X
log* N if N <T
8log® Nlog T + 321log N log® T — 241log® N log? T — log* N — 14log* T
f7T <N <T?
2log* T if 7?2 < N

The result about Ms(«) follows.

3. DERIVATION OF THE CASE k =3
We use the conjecture of [CFKRS]. Let

Z(A;B) = [ ¢+a+p)

a€A,BEB

and

I I (1)

p a€cA,BEB

/ I zo(1/2+ ) [ z00(1/2+ B) db

a€cA BeB

where z,9(z) = 1/(1 — e(0)/p®). Then

/ HC 1/2 +i71 + ) HC 1/2 —it + ) dr

acA BeB

/ S SO AZ(FU (=TT U (=8)) dr

SCA
TCB
[SI=IT|

+O(T1/2+€>.
where ( = log 5-.

We use the above with A and B being sets of cardinality 3. A limiting argument that
allows for A and B to be multisets A = {w, w,w} and B = {z, z, z} implies that

T
7] dls e - s P b~ Fifu2)
0



6 BRIAN CONREY AND JON KEATING

where
1
Fs(w,z) = Z(w + 2) 24 + T (—w' log"(T) — 4w’z log*(T) + 4w log®(T)

—6w?2% log*(T) + 12wz log*(T) — 12w? log*(T') — 4wz*log*(T)
+12wz?1og*(T) — 24wz log*(T) — 2*log*(T) + 42°1og*(T)
—122210g*(T) — 12) + T727 2 (w* log"(T) + 4wz 1og*(T) + 4w?log*(T)
+6w?2% log(T) + 12w?z log®(T) + 12w? log*(T') + 4wz*log*(T)
+12w2?1og®(T) + 24wz log*(T) 4 z*log*(T) + 423 1og*(T)
+122210g*(T) + 12) — 4T 3v732)

We compute

1 Nwtz
L(T) = —— iy
3(T) (27i)? //wz wz 3(w, 2) dw dz

for various ranges of N. If N < T only the first term matters; if T < N < T? then the
terms with 7%~ also contribute; if 72 < N < T% then we must also include the terms with
T—2w=22. if N > T? then we include all of the terms. Computing residues at w = 0 and
z = 0 leads to the above result for Ms.

4. k=4

We know that My(a) = a'® for 0 < a < 1. We know also that My(a) = 24024 for o > 4
and that My(a) = 24024 — My(4 — «) for all «, so that determines My(a) for 3 < a < 4.
One might guess that it will be 9 times differentiable at « = 1 and o = 3. And 7 times
differentiable at oo = 2.

We can use a result in [CG]| to conjecturally determine M,(«) (and indeed any My («)) for
1 < a < 2. From that paper, which is based on the predicted behavior of divisor correlations

> " dp(n)di(n + h)

n<x

we have

Conjecture 1. For any positive integer k, we conjecture that My(a) exists and that

Mi(a) = ¥ (1 -3y (n’i 1)%<n>)

n=0
for 1 < a <2 where

k k n—1
Ye(n) = . ) . ] . . :
) 1§ZZJ§:’€<Z> <J) (2—1,]—1,71—@—]4_1)

V6(0) = k.

also
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FIGURE 3. The plot of M,(«a) for 0 < a < 4.

In [CK1-3] we confirm that the correlation method of [CG] agrees with the prediction of
the recipe in [CFKRS]. These independent lines of reasoning thus both give

My(a) = —3a™ + 640" — 19200 + 35840a" — 393120a'? + 2725632a'" — 12684672
+413670400° — 973486800 + 168351040a” — 21576755205 + 2047019520°
—1419891200* + 70035840a° — 232819200% + 46794240 — 429844

for 1 < a < 2, which does satisfy the aforementioned smoothness conditions. With this
information we can construct all of My(«).

5. REMARKS

With a lot more work we could find an explicit formula for M («) for 2 < a < 3, or indeed
for any initial interval, using the recipe method. Also, we have a preliminary version of a new
method - the convolution coefficient correlation method - which would give an independent
avenue into determining the My («). However, we suspect that there are simple smoothness
conditions which would completely characterize My (a). We are not sure exactly what these
are. However, the following may be a start.

Conjecture 2. For any positive integer k the function My(«) is (k—1)* times continuously
differentiable at o = 1.

We have checked this conjecture for k£ < 7 using the proposed formulas above for My(«)
for 0 < o < 2.



8 BRIAN CONREY AND JON KEATING

REFERENCES

[CFKRS] Conrey, J. B.; Farmer, D. W.; Keating, J. P. ; Rubinstein, M. O.; Snaith, N. C.; Integral moments
of L-functions. Proc. Lond. Math. Soc. 91 (2005) 33-104. arXiv math.NT/0206018.

[CIS] Conrey, J. B.; Iwaniec, H.; Soundararajan, K. The sixth power moment of Dirichlet L-functions. Geom.
Funct. Anal. 22 (2012), no. 5, 12571288. arXiv:0710.5176

[CK1] Conrey, J. B.; Keating, J. P. Moments of zeta and correlations of divisor-sums: I. Phil. Trans. R. Soc.
A 20140313 (2015).

[CK2] Conrey, J. B.; Keating, J. P. Moments of zeta and correlations of divisor-sums: II. submitted for
publication.

[CK3] Conrey, J. B.; Keating, J. P. Moments of zeta and correlations of divisor-sums: III. submitted for
publication.

[CS] Conrey, J. B.; Snaith, N. C. In support of n-correlation. Comm. Math. Phys. 330 (2014), no. 2, 639653.

[IK] Iwaniec, Henryk; Kowalski, Emmanuel. Analytic number theory. American Mathematical Society Col-
loquium Publications, 53. American Mathematical Society, Providence, RI, 2004.

[KaSa] Katz, N. M.; Sarnak, P. Random matrices, Frobenius eigenvalues, and monodromy. American Math-
ematical Society Colloquium Publications, 45. American Mathematical Society, Providence, RI (1999).

[KS1] Keating, J. P.; Snaith, N. C. Random matrix theory and ¢(1/2+it). Comm. Math. Phys. 214 (2000),
no. 1, 57-89.



