SMALL POPULATIONS OF ZEROS OF L-FUNCTIONS

B.J. CONREY AND H. IWANIEC

3 1. INTRODUCTION

Given an L-function of arithmetic nature

(1.1) L(s) =) A(n)n~*
1

chances are that all its zeros p = B+ in the critical strip s = o +1£,0 < o < 1 are
actually on the critical line o = -é— (the symmetry line of the functional equation).
This is a Generalized Riemann Hypothesis. So far not a single L-function is known
which satisfies the GRH. Thus it is appropriate to ask how many zeros can possibly

be off the line. Specifically we consider the zeros in the rectangles

s=o+itwitha<o<l], [t|<T

where -%— < a < 1, T > 2, and we wish to show that the number of such zeros

(counted with multiplicity), say N(«,T), is relatively small. For many L-functions
we can show that '

(1.2) _ N(a,T) < T "

with some positive constant 7 = n(a). Since the number of all zeros in the rectangle
O<o<1,|t|<Tis |

N(T)=<TlogT

the bound (1.2) tells us that almost all zeros are located near the critical line.

Although we believe in the validity of the GRH, so (1.2) is just a bound for the

cardinality of the empty set, there is great interest for applications to make (1.2)
as strong as possible.

- DENSITY CONJECTURE. For % <a<landT > 2 we have

(1.4) S N(o,T)  T?A-®)te "

where € = ¢(T) — 0 as T' — 0.
For many applications the bound (1.4) would be as helpful as the GRH, however

the best known results are a bit short. For example, in the case of the Riemann
zeta function

1
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(1.5) A=) =] (-3)

p

we know that

(16) (a T) Tc(a)(l —a)+e

with c(a) = 3/(2 — @) due to A.E. Ingham [I} and c¢(a) = 3/(3a — 1) due to M.N.
Huxley {H|, where ¢ = ¢(T) — 0 as T' — oo0.
The classical Lindelof Hypothesis, which asserts that

‘ 1
(1.7) ((-2-
with a,ny' e > 0, the implied constant depending on e, does imply (1.4) for the

Riemann zeta function. By the way, the LH is equivalent with the assertion that
(see [B])

+it) < (Jt] +1)°

(.1.8) N(a,T+1)=N(a,T) + o(logT)

forany—%<a<1. '

In these notes we are going to investigate various estimates for sums over the
zeros off the critical line which clearly support the validity of the DC in considerable
generality. In particular we shall prove unconditionally that the “solitary” zeros

satisfy the DC.

REMARKS. Professor R. Balasubramanian has kindly pointed out that he and
K. Ramachandra (see [BR|,|R|) have also established “Density Conjecture” for iso-
lated zeros in some sense. We also learned from the MathSciNet review of [BR|
by D.R. Heath-Brown that the reviewer has shown (unpublished, 1975) the density
hypothesis for the “e-isolated” zeros. However, this “c-isolated” concept is more
restrictive than our “small populations”. After presentation of our results in Chen-
nai, January 2012, by the second author J. Kaczorowski revealed that he also has
established similar results (unpublished).
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(2.9) o >0+ it —v| <logT.

Let N*(a,T) denote the number of extremal zeros p, = 8, +iv, with 3, > d, | <
T'. Then we have

(2.10) ~ N(o,T =1og®T) < N*(a, T)(log T)?,

because for every zero p = 3+ iy with 8 > «, |y| < T — log® T there is an extremal
zero p, = By + iy, with 3, = a, |y, — v| < logT.

In view of (2.10) we can restrict the counting of all zeros in rectangles to these
which are extremal without missing a chance for the Density Conjecture. Actually
we are going to take into account all the zeros with certain weights which are heavier
when being closer to an extremal zero. Specifically we consider

- (2.11) ‘ W(it) = Z T?(p — it) ™"

1
£<G<1

where k > 2,T > 2 and t is a real number. Note that W (:t) depends on k and
T (which property we have not displayed for notational simplicity). We shall play
with the variables k and T in Section 6. The series (2.11) converges rapidly; only the
zeros p = (3 + ¢y of height ~ close to ¢ ma,ke‘ an essential contribution. Eventually
we shall choose t = +,., the height of the extremal zero. In this case the extremal
zero p, = (3, + 17y, contributes to W (ivy,) exactly

(2.12) V, =TF B-".

We shall get a lower bound for |W (iv, )| at special points which is not much smaller
than (2.12). This goal is easy for the solitary zeros p, = (3, + iy, (see Section 5)
and quite hard when there is a large population of zeros p = 8 + 1y near p,. We
shall treat small populations of zeros by the Power Sums Method of P. Turan [T] in
Section 6. Our results are similar and conditional like thzse of Turan (see Chapter
37 of [T]). However there are some differences in the arguments. For instance we
are able to select special subsets of zeros (extremal, dominant, solitary,...), drop
the others by positivity features getting estimates of the Density Conjecture for the
number of these distinguished zeros.

Complete density theorems are derived in modern time by means of “Large
Values of Dirichlet Polynomials” which play a role of individual zero detectors.
However, these methods work only for primitive L-functions of degree one and two
whereas the arguments described in these notes (and in the original paper of Turan)
have no such limitations, the obtained estimates are strong but partial.
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§ 2. ASSUMPTIONS

We require a little information about the L-functions (1.1). Actually we could
forget that p = (3 + 17 are the zeros of L(s), because we only need to know that
they are simple poles of a meromorphic function (J(s) which has a Dirichlet series
expansion

(2.1) Q(s) = Z g(n)n~°, if Res > 1
] .

- with coefficients satisfying

(2.2) ' lg(n)| < clogn

where c is a positive constant. In particular, ¢(1) = 0. Of course, we have in mind

(2.3) 8 Q) =-L'(s)/L(s)

in which case the Dirichl®, series expansion (2.1) follows by the Euler product for
L(s) and the coefficients q(%) are supported on prime powers. The estimate (2.2)
can be somewhat weaker:; as¥tated it is a kind of Ramanujan’s conjecture.

We assume that L(s) has seromorphic continuation to the half-plane Res > 0
with a pole at s = 1 and zeros at s = p = B + 1, so ((s) has simple poles at s = 1
and s = p. The number of these poles (counted with multiplicities) in unit squares
satisfy |

24)  #{p=B+iv 0<B <L, 81| <3} <clog(tl+3)

for every t, where c is a positive constant. We claim that

m 1 1
2- ———— L ] N ‘. L
(2.5) Q(s) = P ] Es|<1 — + O(log(ls| +3)), if Res > 5

Using (2.4) one can draw a continuous curve % (composed of horizontal and
vertical segments) in the strip

1 1 1
2.0 ' - < R —
(2.6) _ 5 < es<2+logT

such that every point s € € is distant from every pole p of Q(s) by

(2.7) _ s — p| > 1/log(|s| +T).

Hence using (2.5) and (2.4) we get

(2.8) Q(s) < log?(|s|+T), ifse¥.

A zero p = 8 + iy of L(s) (i.e. a pole of Q(s)) with 5 < 8 < 1and |y| < T is
called “extremal” if there are no zeros in the rectangle s = o + ¢t with
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1.
log T

(2.9) o> 0B+ it — | <logT.

Let N*(c, T) denote the number of extremal zeros p, = 3, +1v, with 8, > a, |7,| <
T'. Then we have

(2.10) ~ N(o,T —-10g’T) < N*(a, T)(log T)?,

because for every zero p = 3+ iy with 8 > o, |y| < T — log2 1" there is an extremal
ZeT0 Py = By + 17y, with B, 2 o, |7, — | < logT

In view of (2.10) we can restrict the counting of all zeros in rectangles to these
which are extremal without missing a chance for the Density Conjecture. Actually
we are going to take into account all the zeros with certain weights which are heavier
when being closer to an extremal zero. Specifically we consider

- (2.11) ' W(it) = Z T (p —

2 <f<1

where k > 2,7 > 2 and ¢ is a real number. Note that W (it) depends on k and
T (Whlch property we have not displayed for notational simplicity). We shall play
with the variables k and 7' in Section 6. The series (2.11) converges rapidly; only the
zeros p = (3 + 17y of height v close to ¢ make’ an essential contribution. Eventually
we shall choose t = =,, the height of the extremal zero. In this case the extremal
zero pr = (3. + i, contributes to W (ivy,) exactly

(2.12) V. =TF 3%

We shall get a lower bound for |W (iv,.)| at special points which is not much smaller
than (2.12). This goal is easy for the solitary zeros p, = B3, + i, (see Section 5)
and quite hard when there is a large population of zeros p = 8 + iy near p,. We
shall treat small populations of zeros by the Power Sums Method of P. Turan [T} in
Section 6. Our results are similar and conditional like thgse of Turan (see Chapter
37 of [T]). However there are some differences in the arguments. For instance we
are able to select special subsets of zeros (extremal, dominant, solitary,...), drop
the others by positivity features getting estimates of the Density Conjecture for the
number of these distinguished zeros.

Complete density theorems are derived in modern time by means of “Large
Values of Dirichlet Polynomials” which play a role of individual zero detectors.
However, these methods work only for primitive L-functions of degree one and two
whereas the arguments described in these notes (and in the original paper of Turan)
have no such limitations, the obtained estimates are strong but partial.
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§ 3. MEAN VALUE OF |W (it,)|?

Let 7 be a sequence of real numbers ¢, which is not very dense anywhere,
specifically we asume that

(3.1) #{r; |t — t| < 1} < clog(Jt] + 3)

for every t, where c is a positive constant.
Proposition 3.1. For k> 2 and T > 2 we have

(3.2) S 1Y T -ite) FR < 45 T (log T)
tr|ST L<B<1

where the implied constant depends only on c in (3.1), (2.4) and (2.2).

We begin the proof of (3.2) by introducing very short sums of the coefficients of
- Q(s);

(33 V)= am)g(>), ©>0,
_ _ 1

where g(u) is a smooth bump function supported on 1 < u < 1+ -%— We assume
that 0 < g(u) € 2,¢'(uv) < T,¢"(u) € T? and

1 2
>1 if 1+ — —.
glu) > 1 i +3T<u<1+3T
Note that if 0 < £ < T the series (3.3) has at most one non-zero term.
The Mellin transform

_ o0
(3.4) h(s) = /g(u)us"ldu
Y
satisfies the following estimates
h(s) < —;-,- (1+ l—;,-l-)“z,
hs)| = =, if [ <T
T

h(s") — h(s)| < |s' — 8| T

Our goal is to evaluate the integral

- (3.5) I(v) = /000 ¥ (x) G(z)z” ldx _

on the line Rev = 0, where G(x) is a nice continuous function. There are many

interesting choices of G(z) which would lead to equivalent results. We take G(z)
depending on a parameter k:
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1

(3.6) " G(z) = 0

(log — )"’1 if O<zx<T

and G(z) =0if x > T. Here k > 2 is any real number, not necessarily an integer.

We have

(3.7) G(z) =

27Tz( ) \
“ K

(3.8) ] G(z)z* tdx =T%s™".
0

- Hence by Mellin’s inversion

Note that G* is of type (3.6) so (3.8) becomes (by re-scaling)

/ G%(z)z* ldx = -—————————-—-—P(Zk - 1)
0

I'(k)
Introducing (3.3) and (3.7) to (3.5) we get

TS Sl-—-.2k

1.

2m
(2)

I(v) = TS*”Q( )h(s)(s +v)™"ds.

Next we move the line of integration to the curve € described in (2.6) and (2.7)
getting

I(v) = mh()T(1+v) "% = > h(p)TP*(p+v)* + Ig(v),

where p runs over the poles of Q)(s) (the zeros of L(s) counted with multiplicities)
to the right of ¥ and I¢(v) is the contour integral along the curve €. By (2.8) we
estimate this integral as follows

2k -2 ] T
(V) <K —7= \/— (1 + |3|) ———-————————-Ogls(E'V—;—z ) ds| <K ok T3 log2 T

We can extend the sum over p to all poles with Rep > -%- up to the same error

term as the above estimate for the contour integral. Indeed, the residues of poles p’

lying between the critical line and the curve € which were not previously captured
contribute

/ - 9k !
Z h(p TP (p +v) " < -\7: z 1+ — Ip ‘ ~21p + 7% <« 2F T3 logT.
p’ p’

Hence
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I(v) =mh()T™* (1 +v)™* = Y k()T (p+v)™F+ 02T~ 7 10g T).
L <p<1

Here we can replace h(p) by h(—v) up to the correcting terms

(h(p) = (—=v))T** (p+v)™* < |p+v|' TP 2,

These correcting terms contribute to I(v) much less than the existing error term
(use (2.4)). Therefore, we conclude the following formula

(3.9) ‘I(V) = mh(l)T1+"(1 4+ v)7F — h(—v)T"W (—v) + O(2kT"'% log2 T).

for any v with Rev = 0. Hence

- (3.10) W (it)| < T|I(it)| + T(1 + [t|)~* + 2573 log? T

for any real ¢t with |t| < T. We use this estimate at the points ¢ = ¢, of the set 9
By our assumption (3.1) we get

/

S W(it)2 < T2 Y |I(it,)? + 4 T2(log T)®.
1t |<T tr |ST

(3.11)

On the right side we estimate the sum over the set 7 using the or%:hogonality
of z''. First we smooth out the summation by the Sobolev-Gallagher inequality

(c.£.[G])

Z |I(’5tv~)|2 | ] "’t"’_lda:IQ L (L (T)+ #1(T))logT
It |<T ¢, |<T
where
| T+§
/(T)z/T__i/ Tt 1dar:| dt
T+1
AT= [ / ()G () (log z)z*~dadt.

T-1%

By the Fourier transform

[: (1+ T2’ (y) dt = 7T exp(—T| logg-l)

we get

T d:::dy
LY

s <s [ g Pa=er [ s@ewoEscw (Z)

1<z<y<T

Here we have
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V()¥(y) < D> a(m)g(n),

r<m<z(1+1/T)
. y<n<y(1+1/T)
2<m <T+1,Gx) < G(Q’I‘_ﬂ) G(y) < G(%‘%—), (%)T < e(%"—)T, because
G(z) is decrea.smg, getting
o 6 md’ nl ., m 1
T) < greT . )T log?(1 + =
Jd #(T) / zn;;qm)qn/TH)G(TH)(n) l0g*(1 + )
' é = g, M’ m.r
\_} _ /ecT log(T + 1) log?(1 + )qu)G(T_I_l)T;(n)
! ‘ éwecT log(T + 1) log?(1 + —) Z (m) G* (= ml — (1 + ——T—-)
° > ! T+1" ' T-

y 1 - e

T_l(chog(T+1)log l—l-——)) ZG2 T—I—l

where c is the constant in (2.2). By (3.8) we derive

o, MmT 0 a:T T+1/ 2(., I'(2k - 1)
ZG 737 / Clpry)d G T LT

From the above estimates we conclude that

Z(T) < 4"(log T)*.

Similarly

71(T) < 4%(log T)°.
Hence
(3.12) > I(it)]? < 45(log T)".

tr|ST

Finally, introducing (3.12) to (3.11) we complete the proof of Proposition 3.1.
Corollary 3.2. Let 1 < K <k < 2K andT > 2. Then we have

31) S| TK (e it)H < 4T (1og T
t-|<T 1<pB<1

Proof. Apply (3.2) for T changed to T*/X. ]
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§ 4. DENSITY OF DOMINANT ZEROS

We shall use Proposition 3.1 for the series W (it,.) given by (2.11) at the points
t. = v, which are the heights of certain zeros p, = 3, + 17, with -%— < B, <1 and

7| <K T. Let 0 < € < %— We say that p, is “dominant” if

(4.1) ' W (iv,)] > T# .
Let 2 < k< elogT. Then (3.2) yields

(4.2)

S 126 2t ,
p

where the # restricts the summation to the dominant zeros of height up to T'. Hence
the number of dominant zeros with 3, > «a, say N#(a,T), satisfies the estimate of
the Density Conjecture

(4.3) N#*(a,T) « T?1-a)t+de

Our condition (4.1) for a zero p, to be dominant is quite reasonable, and it seems
to hold for every zero of any natural L-function. Recall that the single term p =
pr in the series (2.11) contributes (2.12) which is larger than the required lower
bound (4.1). A problem may occur with the surrounding zeros which could cause
a considerable cancellation of terms in (2.11) and ruin the bound (4.1). However,
this scenario is improbable for judiciously chosen k as it can be ruled out by an

appeal to the Lindelof Hypothesis. In the next sections we shall select some zeros
which do satisfy (4.1).
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§ 5. SOLITARY ZEROS

Let p, = B, + iy, be an extremal zero, which means %— < Br <1,|7| £T and
every other zero p = (3 + 17 satisfies either

ﬁ‘<\ﬁT+1/logT OI |'7_7'r‘ ,>,logT.

First we are going to remove from the series

W (iy,) = Z T*(p — i'Yr)_k

. = <f<1

the zeros p which are quite distant from p,. by estimating trivially their contribution.
Throughout we assume 2 < k < -21-10g T.

Let 0 < a < % Note that the function T”|8 + i7|~* is increasing in 8 > %—
Hence a zero p = 3 + 1y with -% < 8 £ Br — a contributes to W (iv,) at most

7026, = @) 4B +ily =)l 2 ST (B, — a) 5+ (= )
‘ <TGk~ 20) (3 + (- )

Let b > 0. Then a zero p = B+1y with 8 < 8,.4+1/logT and |y—"~,| = b contributes
to W(iv,) at most |

-~ Any zero p = @ + iy with |y — | > log T contributes to W (i, ) at most

Tﬁlﬁ + i(7 o 7?)‘_]6 < T(]- + (’7 o 7?)2)_k/2 < T( log T)Z_k(l + (7 o '77')2)_1
< TP ,6;"“ %(log T)z“k(l + (v — %)2)-—-1_

Now we are left with the zeros p = 3 + iv in the box

(5.1) —a<fB-0<1/logT

(9.2) ” Y=l <b.

Let Wb(i'f,») denote the partial sum of W (iv,.) over the zeros restricted by (5.1) -
(5.2). The above inequalities yield the following estimate

W (i7e) = W* (i,)| < 4V (T™(1-20) " *+(14+6%) 724 T3 (log T)*F) 3~ (14+(r—)H) "

3<B<1

The last sum is bounded by O(log 7). Hence we conclude
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Proposition 9.1. Let2 < k < %log I''0<a< %— and b > 0. Then for the extremal
zero pr = By + 17y, we have '

(5.3) W (i) = W(iv,) + E(ine)
with

(5.4)  E(ivy) K Vo(T™%(1=2a)%+ (1 +6)1%2 + T2 (logT)?> *)log T

where the implied constant depends on c in (2.4).

Obviously the zero p, = (3, + 17, satisfies (5.1) - (5.2) and it contributes to
W"(iv,) exactly V,. = TP37%.
We say that an extremal zero

pr = Br + 1y, is “solitary”

if there are no other zeros p = 8 + ¢y in the box (5.1) - (5.2).
Of course, this concept depends on the size of the box (one may say the “back-

yard” of p,) which appears to be quite small; it measures a+1/logT and 2b in the
horizontal and vertical directions, respectively. We shall specify a, b in forthcoming

applications of Proposition 5.1. We could build a small house in the backyard of p,

which accommodate any zero p = 3 + iy with |p — p,| < 1/logT without changing
the results.

By the definition for a solitary zero we have W”(iv,) = V,. and Proposition 5.1
yields ' '

W(ivr) = Vi{l + O(T*(1 = 2a) ™% + (1 + b*)1%/2 + T2 (log T)*~*) log T) }.

Taking k = elogT with 0 < € < -}1'- this yields (4.1) by choosing

- - 2loglogT
(5.5) o= a(T) = og T
- - eloglogT, 1
(5.6) b=b(T) =( g T ) 2.

In our words the solitary zero p, with respect to a = a(T') and b = b(T) given above
1s dominant. Therefore we conclude

Corollary 5.2. The number of solitary zeros with respect to a(T),b(T) given by
(5.5) - (5.6) satisfies the bound of the Density Conjecture;

(9.7) Nsoi(a, T) < THI7)+2,
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§ 6. SMALL POPULATIONS OF ZEROS

An extremal zero p, = (B, + iy, does not need to be solitary in order to be
dominant. Our arguments work if the number of zeros close to p, is relatively
small. To this end we are going to use the following inequality of P. Turan [T)|.

Proposition 6.1. For any complex numbers z1,...,znathere exists an integer k
with K < k < K + N such that

(6.1 ' 12k 1> 2(——————
( ) ‘21—!— +le (86(K+N)

Let 1 < N < K. For any k with K < k£ < K + N we get by Proposition 5.1
(change T to T*/¥) '

S THE (p—i)TF = ) " TP/ K(p—iy,)k
P | - p .
+O(TP-k/K g=k(T—=2(1 — 2a) 7% + (1 + b?)1=%/2 + T(log T)%~%) log T')

where the b restricts the summation over the zeros p = 8 + ¢y in the box (5.1) -
(6.2). Suppose there are at most N such zeros, so (6.1) yields

b N N B.k/K _..k\
'; > 2(s—)" TKp;

- for some k with K < k < K + N. We want this lower bound to be larger than the
above error term. Specifically we require the following conditions

(6.2) ' ‘ T%(1 — 2a)*% > C(lGe%)N log T
' 2\ K 1 K\~
(6.3) (1+b°)2 7" > C(lﬁe-—N—) logT

K—3 K\N

where C' is a sufliciently large constant, three times larger than the implied constant
in the error term. Assuming these conditions we get

N

N mB.k/K a—k
— ) T
16e K ) Br

Y TP R (p—iy,) R > (
for some k with K < k£ < K + N (which may depend on 7, ). Hence

\/ (6.5) . Z l ZTpk/K(p _ ’i’)/r)_k|2 >fe)—2K T2ﬁr_

K<kSK+N p
_ 16

Combining (6.5) with (3.13) we arrive at
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(6.6)

where the sum >N) runs over the extremal zeros o = Br + ¥y, with %— < [, <
1,|v-| < T for which there are at most N zeros p = § + iy in the box (5.1) - (5.2).

Recall that (6.6) holds subject to the conditions (6.2) - (6.4). It remains to
secure these conditions. First we take

(6.7) K =c¢clogT

where € is a small positive number and we assume that T is sufficiently large in
terms of €. We fix N with '

(6.8) 1< N <e®logT.
Then (6.2) holds for |
_ 2N logT’
6.9 = l
6o o= 20 (5
and (6.3) holds for '
- 3N log T’
1 b = 1 .
(6.10) elogT og( N )

Also (6.4) holds because T is large in terms of €. Hence we obtain

Theorem 6.2. Let € be any small positive number and T be any sufficiently large
number in terms of €. Let N,a,b be given by (6.8) - (6.10). Then

' — 1
(6.11) | Z(N) T%Pr « T*+% 1

Pr
We end these notes with the final self-contained statement.

Corollary 6.3. Let L(s) be an L-function having the properties described in (2.1)
- (2.5). Let € be a small positive number, T be a large number in terms of € and

N,a,b be given by (6.8) - (6.10). Let p, = (B, + i7, denote the zeros of L(s) with
= < Br < 1,|v| < T such that there are no zeros p = B + iy of L(s) with

B—08,>1/logT, |y|<logT

and at most N zeros in the bozx

—a<fB-0,<1/logT, |v—1| <b.
Then the number of these zeros p, = B, + iy, with B, = a, say N'(a,T), satisfies

N'(e, T) < T2(1~-2)+¥ — 11

for any -% < a < 1, the itmplied constant depending on € and the constant c in (2.2)
and (2.4).
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