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MOMENTS OF ZETA AND CORRELATIONS OF DIVISOR-SUMS: II

BRIAN CONREY AND JONATHAN P. KEATING

Abstract. This is part II of our examination of the second and fourth moments and shifted
moments of the Riemann zeta-function on the critical line using long Dirichlet polynomials
and divisor correlations.

1. Introduction

In part I, see [CK], we completed the analysis of the second moment of the Riemann
zeta-function using the long Dirichlet polynomial method of Goldston and Gonek [GG] and
we initiated the study of the fourth moment by this approach. In particular we calculated
the contributions from the off-diagonal terms arising from coefficient correlations of the form
∑

n≤X d(n)d(n+ h) and identified the terms that are missed in this approach. In this paper
we show how to evaluate these new terms that were missing and in doing so we introduce a
new technique that is a discrete analog of the circle method. This analysis gives a concrete
introduction to how we will approach higher moments through this circle method approach.
In a subsequent paper we will show how to obtain the “full-moment” conjecture for the 2kth
moment of ζ(s) on the critical line, i.e. the full polynomial of degree k2 which comprises the
main term. The idea for this method originates in the work of Bogomolny and Keating; see
[BK].
Thus, we will calculate the contribution of what we call the type II sums (after [BK])

which arise in the evaluation of
∫ ∞

0

ψ

(

t

T

)

∑

m≤X

τα,β(m)

ms

∑

m≤X

τγ,δ(n)

n1−s
dt

where s = 1/2 + it and τα,β(n) =
∑

de=n d
−αe−β . (See [CK] for further notation and intro-

duction.) To describe the type II sums we observe that integrating term-by-term we find
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that the above is

T
∑

m,n≤X

τα,β(m)τγ,δ(n)√
mn

ψ̂(
T

2π
log(m/n)) = TD + TO + E

where D is the diagonal

D = ψ̂(0)
∑

n≤X

τα,β(n)τγ,δ(n)

n
;

O is the off-diagonal

O =
∑

m6=n
0<|m−n|<m/τ

τα,β(m)τγ,δ(n)√
mn

ψ̂(
T

2π
log(m/n));

and E ≪ T ǫ is an error term; here τ = T 1−ǫ and the Fourier transform is defined by

ψ̂(v) =

∫

R

ψ(u)e(uv) du

where e(x) = exp(2πix).
If we evaluate O here in the traditional manner, eg. as in [GG], we would now solve the

shifted convolution problem which consists of evaluating
∑

n≤x

τα,β(n)τγ,δ(n+ h)

and summing by parts. This analysis was carried out in I. Here we use a new approach. We
first make use of the fact that τα,β and τγ,δ are convolutions to write

O =
∑

m1m2,n1n2≤X
0<|m1m2−n1n2|<m1m2/τ

m−α
1 m−β

2 n−γ
1 n−δ

2

m1m2
ψ̂(

T

2π
log((n1n2)/(m1m2)).

Now we embark on a discrete analog of the circle method which basically consists of approx-
imating a ratio, say m1/n1 by a rational number with a small denominator, say M/N , and
then sum all of the terms with m1/n1 close to M/N .
To this end we introduce a parameterQ and subdivide the interval [0, 1] into Farey intervals

associated with the fractions M/N with 1 ≤ M ≤ N ≤ Q and (M,N) = 1 from the Farey
sequence FQ. The Farey interval MM,N determined by the fraction M/N is defined to be

MM,N =

[

M

N
− M +M ′′

N +N ′′
,
M

N
+
M +M ′

N +N ′

)

where M ′′

N ′′ ,
M
N
, M

′

N ′ are three consecutive terms in the Farey sequence FQ. Now given such an
M and N we sum over the terms m1 and n1 for which m1/n1 ∈ MM,N ; for such a pair we
define

h1 := m1N − n1M.
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The possible range of h1 may be computed by

|h1| =
∣

∣

∣

∣

m1

n1
− M

N

∣

∣

∣

∣

n1N ≤
(

M

N
− M +M ′′

N +N ′′

)

n1N =
n1

N +N ′′
≈ n1

Q

since adjacent denominators satisfy Q < N + N ′′ < 2Q. In general, the rapid decay of ψ̂
governs the range of h1 and h2 defined below.
Also, we note that if Q is not too large then m1/n1 ∈ MM,N implies that n2/m2 ∈ MM,N

as well. This is because the distance from m1/n1 to n2/m2 is

∣

∣

∣

∣

m1

n1
− n2

m2

∣

∣

∣

∣

=
|m1m2 − n1n2|

n1m2
≤ m1m2

τn1m2
≤ 1

τ
.

On the other hand
∣

∣

∣

∣

M

N
− M ′

N ′

∣

∣

∣

∣

≫ 1

Q2

so if Q2 = o(τ) then our assertion follows.
Now we define

h2 := m2M − n2N.

We have

m1m2MN − n1n2MN = h1m2M + h2m1N − h1h2

so that

m1m2 − n1n2

m1m2
=

h1
m1N

+
h2

m2M
− h1h2
m1m2MN

and

log
n1n2

m1m2
=

h1
m1N

+
h2

m2M
+O

( h1h2
m1m2MN

)

.

The error term is negligible so we have now arranged the sum as

∑

M≤N≤Q
(M,N)=1

∑

h1,h2

∑

m1m2≤X
(∗1),(∗2)

m−α
1 m−β

2 n−γ
1 n−δ

2

m1m2
ψ̂

(

Th1
2πm1N

+
Th2

2πm2M

)

where

(∗1) : m1N − n1M = h1 and (∗2) : m2M − n2N = h2

Note that for a given m1, n1 and h1 the condition (∗1) implies that m1/n1 ∈ MM,N so we
don’t need to write that condition.
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2. Smoothing the sums over M and N

We introduce another smooth weight function φ(y), which is an approximation to the
characteristic function χ(0,1](y) to help with the summation over M and N . We will then
have sums of the form

SQ(ξ, η) :=
∑

1≤M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

M−1−ξN−1−η

for a finite set of choices of ξ and η which are of the form

ǫ1α + ǫ2β + ǫ3γ + ǫ4δ

where the ǫi ∈ {1, 0, 1}. We require that

φ(y) =
1

2πi

∫

(1)

φ̃(s)y−s ds

where φ̃(s) has the properties that

Res
s=0

φ̃(s) = 1 and φ̃(ξ) = 0

for all of the eligible values of ξ that arise, and that φ̃(s) is analytic in ℜs ≥ −1/2 and has
rapid decay vertically in this region. In practice SQ(ξ, η) will be combined with SQ(η, ξ) to
obtain

SQ(ξ, η) + SQ(η, ξ) = φ

(

1

Q

)2

+
∑

(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

M−1−ξN−1−η

The second term is

∑

d

µ(d)

d2+ξ+η

∑

M

φ

(

Md

Q

)

M−1−ξ
∑

N

φ

(

Nd

Q

)

M−1−η

=
∑

d

µ(d)

d2+ξ+η

(

1

2πi

∫

(1)

φ̃(w)ζ(w + 1 + ξ)

(

Q

d

)w

dw

)(

1

2πi

∫

(1)

φ̃(z)ζ(z + 1 + η)

(

Q

d

)z

dz

)

.

The first integral is = ζ(1+ξ)+O((Q/d)−1/3) as can be seen by moving the path of integration
to the left to ℜw = −1/3 and accounting for the residue at the pole w = 0; note that since

φ̃(−ξ) = 0, there is no pole at w = −ξ. Thus, altogether we have

SQ(ξ, η) + SQ(η, ξ) = φ

(

1

Q

)2

+
ζ(1 + ξ)ζ(1 + η)

ζ(2 + ξ + η)
+O(Q−1/3).(1)
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3. The case of h2 = 0

We remark first of all that the terms with h1 = h2 = 0 are precisely the diagonal terms.
Now we consider what happens if h2 = 0 and h1 6= 0. We call this a “semi-diagonal” term
after [BK].
If h2 = 0 then m2M = n2N . Since (M,N) = 1 it follows that m2 = Nℓ and n2 =Mℓ for

some ℓ. Thus we have
∑

M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

∑

h1

∑

m1,n1,ℓ
(∗1)

n1≥|h1|Q

m−α
1 (Nℓ)−βn−γ

1 (Mℓ)−δ

m1m2
ψ̂

(

Th1
2πm1N

)

where
(∗1) : m1N − n1M = h1.

We replace m1 by a smooth variable u1 and n1 by m1N/M . We have u1ℓN = m1m2 ≤ X
and so our sum is

∑

M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

M−δ+γ−1N−β−γ−1
∑

h1

∑

ℓ

ℓ−1−β−δ

∫

u1ℓ≤
X
N

u−1−α−γ
1 ψ̂

(

Th1
2πu1N

)

du1

We save the term with h1 = 0 for later and we group the terms with h1 and −h1 together

and use ψ̂(−v) = ψ̂(v). We make the substitution v1 =
Th1

2πu1N
in the integral and switch the

integral over v1 with the sum over h1 and ℓ. Then (with h1 > 0) we have that

ℓNTh1
2πv1N

= u1ℓN ≤ X

implies that

ℓh1 ≤
2πXv1
T

.

Thus we have
∑

M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

M−δ+γ−1Nα−β−1

∫ ∞

0

v−1+α+γ
1 (2ℜψ̂(v1))

∑

h1ℓ≤
2πXv1

T

h−α−γ
1 ℓ−1−β−δ dv1.

The sum over h1 and ℓ is

1

2πi

∫

(2)

ζ(s+ 1 + β + δ)ζ(s+ α + γ)

(

2πv1X

T

)s
ds

s

Together with the integral over v1 this is
∫ ∞

0

v−1+α+γ
1 ψ̂(v1)

2

2πi

∫

(2)

ζ(s+ 1 + β + δ)ζ(s+ α + γ)

(

2πv1X

T

)s
ds

s
dv1.

Now, as we’ve seen before, if ℜs > 0 then
∫ ∞

0

(2ℜψ̂(v))vs dv = χ(1− s)

∫ ∞

0

ψ(t)t−s dt.
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Thus, the above is

∫ ∞

0

t−1−α−γψ(t)
2

2πi

∫

(2)

ζ(s+ 1 + β + δ)ζ(1− s− α− γ)

(

2πX

tT

)s
ds

s
dt

We move the s-path left to ℜs = −1/2, thus crossing the poles at s = 0, s = −α − γ and
s = −β − δ. Thus the above is

∫ ∞

0

t−1−α−γψ(t)

(

ζ(1 + β + δ)ζ(1− α− γ)− ζ(1− α + β − γ + δ)
(

2πX
tT

)−β−δ

β + δ

+
ζ(1− α + β − γ + δ)

(

2πX
tT

)−α−γ

α + γ

)

dt

and altogether we have

∑

M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

M−δ+γ−1Nα−β−1

×
∫ ∞

0

t−1−α−γψ(t)

(

ζ(1 + β + δ)ζ(1− α− γ)− ζ(1− α + β − γ + δ)
(

2πX
tT

)−β−δ

β + δ

+
ζ(1− α + β − γ + δ)

(

2πX
tT

)−α−γ

α + γ

)

dt

All of the above is predicated on m1/n1 < 1. The contribution from the terms where
n1 < m1 will be exactly as above but with the quadruple (α, β, γ, δ) replaced with (γ, δ, α, β).
In particular, α + γ will be replaced by β + γ prior to summing over M and N . This will
give another term

∑

M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

Mα−β−1N−δ+γ−1

×
∫ ∞

0

t−1−β−δψ(t)

(

ζ(1 + β + δ)ζ(1− α− γ)− ζ(1− α + β − γ + δ)
(

2πX
tT

)−β−δ

β + δ

+
ζ(1− α + β − γ + δ)

(

2πX
tT

)−α−γ

α+ γ

)

dt

Now we consider what happens when h1 = 0 and h2 6= 0. These terms will contribute the
“complements” to the above two expressions so that we will be in the situation described in
(1) and so we can execute the sums over M and N as described there, replacing the sums
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over M and N by ratios of zeta functions with small error terms. Thus, we obtain
∫ ∞

0

t−1−α−γψ(t)

(

ζ(1 + β + δ)ζ(1− α− γ)ζ(1− γ + δ)ζ(1− α + β)

ζ(2− α + β − γ + δ)

−
(

2πX

tT

)−β−δ
ζ(1− α + β − γ + δ)ζ(1− α + β)ζ(1− γ + δ)

(β + δ) ζ(2− α + β − γ + δ)

+

(

2πX

tT

)−α−γ
ζ(1− α + β − γ + δ)ζ(1− α + β)ζ(1− γ + δ)

(α + γ) ζ(2− α + β − γ + δ)

)

dt

and the complimentary term with α + γ replaced by β + δ and vice-versa.
This is identical with one of the one-swap terms identified by descending as previously

described.
There are further semi-diagonal terms. If we do the exact same analysis as throughout

this entire section but now focusing on the ratio m1/n2 instead of m1/n1 then the effect will
be to switch the roles of γ and δ in the expression above. Then we end up with two more
terms and a total of four terms. These terms are identical with the four terms obtained by
the “descent” method described in section 8 of [CK].
A question of whether we have over-counted some terms may arise. But the “duplicate”

terms for which m1/n1 ∈ MM,N and simultaneously m1/n2 ∈ MM ′,N ′ with N ≤ Q and
N ′ ≤ Q contribute an insignificant amount to the total and so may be regarded as part of
the error term.

4. The case of h1h2 6= 0

Now we consider

∑

M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

∑

h1h2 6=0

∑

m1m2≤X
(∗1),(∗2)

m−α
1 m−β

2 n−γ
1 n−δ

2

m1m2

ψ̂

(

Th1
2πm1N

+
Th2

2πm2M

)

.

In this case we have a bound for h2 similar to that for h1:

|h2| ≪
m2

Q
≪ n2M

QN
.

In particular, we have

|h1h2| ≪
n1n2M

Q2N
≪ X

Q2
.

Now we replace the sums over m1, m2, n1, n2 subject to (∗1) and (∗2) by their averages. As
before, we replace m1 by u1 and now we replace m2 by u2. We replace n1 and n2 by u1N/M
and u2M/N respectively. We then have

∑

M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

Mγ−δ−1N δ−γ−1
∑

h1h2 6=0

∫

u1u2≤X

u−α−γ−1
1 u−β−δ−1

2 ψ̂

(

Th1
2πu1N

+
Th2

2πu2M

)

du1 du2.



8 BRIAN CONREY AND JONATHAN P. KEATING

Now there are four cases to consider according to the four sign choices of h1 and h2. We
make the substitutions

v1 =
T |h1|
2πu1N

and v2 =
T |h2|
2πu2M

and move the sums over h1 and h2 to the inside. The condition u1u2 ≤ X implies that

T 2|h1h2|
4π2v1v2MN

= u1u2 ≤ X

or

|h1h2| ≤
4π2XMNv1v2

T 2
.

We get

( T

2π

)−α−β−γ−δ
∑

M≤N
(M,N)=1

φ

(

M

Q

)

φ

(

N

Q

)

Mγ+β−1N δ+α−1

∫∫

v1,v2

vα+γ−1
1 vβ+δ−1

2

∑

0<|h1h2|≤
4π2XMNv1v2

T2

×h−α−γ
1 h−β−δ

2

(

ψ̂(v1 + v2) + ψ̂(v1 − v2) + ψ̂(−v1 + v2) + ψ̂(−v1 − v2)
)

dv1 dv2.

Using

ψ̂(v1 + v2) =

∫ ∞

0

ψ(t)e(t(v1 + v2)) dt

we see that

ψ̂(v1+v2)+ψ̂(v1−v2)+ψ̂(−v1+v2)+ψ̂(−v1−v2) =
∫ ∞

0

ψ(t)
(

e(tv1)+e(−tv1)
)(

e(tv2)+e(−tv2)
)

dt;

Also

∑

h1h2≤
4π2XMNv1v2

T2

h−α−γ
1 h−β−δ

2 =
1

2πi

∫

(2)

ζ(s+ α + γ)ζ(s+ β + δ)

(

4π2XMNv1v2
T 2

)s

s
ds

and
∫ ∞

0

vs+α+γ−1
1 (e(tv1) + e(−tv1)) dv1 = t−s−α−γχ(1− s− α− γ),

and similarly for the integral over v2. Incorporating these, we have simplified things to

( T

2π

)−α−β−γ−δ
∑

M≤N≤Q
(M,N)=1

φ(
M

Q
)φ(

N

Q
)Mγ+β−1N δ+α−1

×
∫ ∞

0

ψ(t)t−α−β−γ−δ 1

2πi

∫

(2)

ζ(1− s− α− γ)ζ(1− s− β − δ)
(4π

2XMN
t2T 2 )s

s
ds dt.
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The above expression is unchanged if (α, γ) is interchanged with (β, δ). So the result of
summing terms for which n1/m1 ≤ 1 rather than m1/n1 ≤ 1 allows for summing over M
and N as in Section 9; we obtain

( T

2π

)−α−β−γ−δ 1

(2πi)2

∫

z,w

φ̃(z)φ̃(w)
ζ(1− β − γ − s+ z)ζ(1− α− δ − s+ w)

ζ(2− α− β − γ − δ − 2s+ z + w)

×
∫ ∞

0

ψ(t)t−α−β−γ−δ 1

2πi

∫

(2)

ζ(1− s− α− γ)ζ(1− s− β − δ)
( X
t2T 2 )

sQz+w

s
ds dw dz dt.

Moving the s-path to the right to ∞ and the z and w paths to the left to −1/4, say we
obtain

∫ ∞

0

ψ(t)

((

tT

2π

)−α−β−γ−δ
ζ(1− α− γ)ζ(1− β − δ)ζ(1− β − γ)ζ(1− α− δ)

ζ(2− α− β − γ − δ)

+X−α−γ

(

tT

2π

)α−β+γ−δ
ζ(1 + α− β + γ − δ)ζ(1 + α− β)ζ(1 + γ − δ)

(α + γ) ζ(2 + α− β + γ − δ)

+X−β−δ

(

tT

2π

)−α+β−γ+δ
ζ(1− α + β − γ + δ)ζ(1− α + β)ζ(1− γ + δ)

(β + δ) ζ(2− α + β − γ + δ)

+X−α−δ

(

tT

2π

)α−β−γ+δ
ζ(1− γ + δ)ζ(1 + α− β − γ + δ)ζ(1 + α− β)

(α+ δ)ζ(2 + α− β − γ + δ)

+X−β−γ

(

tT

2π

)−α+β+γ−δ
ζ(1− α + β)ζ(1− α + β + γ − δ)ζ(1 + γ − δ)

(β + γ)ζ(2− α + β + γ − δ)

)

dt

with an error term of O(Q−1/4). This expression is exactly what we were hoping for; it is
identical to the “two-swap” terms found in the descent approach of section 9 of [CK].

5. Conclusion

We have shown how to reproduce the complete conjecture for the shifted fourth moment
of ζ by analyzing the mean square of long Dirichlet polynomials whose coefficients are con-
volutions of two smooth arithmetic functions. In the next paper we will carry this analysis
out for coefficients which are convolutions of an arbitrary number of convolutions and use
this to reproduce the full conjecture for the 2kth moment of ζ for an arbitrary k.
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