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Imagine a gambling device that randomly generates a 10 by 10 matrix whose square is the

identity with entries in the field F3. There are 1.55967×1024 such matrices, a small fraction of the

more than 1047 matrices of that size but still a sizeable number to draw from. Each of these square

roots of the identity is diagonalizable with eigenvalues ±1. The device computes the eigenvalues

and drops 10 tokens into a closed box. For each eigenvalue equal to 1 it puts into the box a red

token, and for each eigenvalue equal to −1 it puts into the box a blue token. The tokens are in

the box but no one knows what they are. At this point the “croupier” takes the box in his hands

and shakes it several times. He then begins to remove the tokens, one at a time, without revealing

those that remain in the box. The first token removed is red. The second is also red, as is the

third, the fourth, and the fifth. Now the croupier asks you, the player: “Would you care to place

a bet at even odds that there is another red token in the box?”

Should you place such a bet?

We shall return to this question after analyzing a similar but simpler game. In this case the

gambling device flips a coin ten times internally and places into the closed box a red token for each

heads and a blue token for each tails. Again suppose that five tokens are removed and that they are
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all red. Would you care to bet that there is still another red token in the box? At even odds? You

bet! In fact, the probability that there is at least one more red token is 31/32. The computation

is an exercise with Bayes’s Theorem of elementary probability. Here is how it goes.

Let Hk, 0 ≤ k ≤ 10 be the event that k heads occur in the 10 coin tosses, and hence that k

red tokens are in the closed box. Let R5 be the event that five tokens are removed from the box

and that they are all red. Then the conditional probability P(H5|R5) is the probability that no red

token remains in the box when you are asked whether you want to bet.

P(H5|R5) =
P(H5 ∩R5)

P(R5)

=
P(H5 ∩ R5)∑10
k=0 P(Hk ∩ R5)

since the Hk are disjoint events partitioning the sample space. Then

P(H5|R5) =
P(R5|H5)P(H5)∑10
k=0 P(R5|Hk)P(Hk)

(1)

This last equation is the statement of Bayes’s Theorem. At this point we invite the reader to pause

for a few minutes to evaluate the right side of the equation in order to see that P(H5|R5) = 1/32.

Back to the eigenvalue game: let Ek, 0 ≤ k ≤ 10 be the event that the random matrix has

eigenvalue 1 with multiplicity k. We need to compute the right side of

P(E5|R5) =
P(R5|E5)P(E5)∑10
k=0 P(R5|Ek)P(Ek)

(2)

The conditional probabilities are the same as those for the coins: P(R5|Ek) = P(R5|Hk). For k ≥ 5

these probabilities are equal to k(k−1)(k−2)(k−3)(k−4)
10·9·8·7·6 , and for k ≤ 4 they are 0.

Claim Let A be an n×n matrix satisfying A2 = I . Then A is similar to a diagonal matrix having

diagonal entries 1 or −1.

Proof If λ is an eigenvalue of A, then λ = ±1. Now, let E1 and E−1 be the corresponding

eigenspaces. We know E1 ∩ E−1 = {0} because eigenvectors of distinct eigenvalues are linearly
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independent. Suppose E1 ⊕E−1 6= V . Then there exists x ∈ V and not in E1 ⊕ E−1. Let y = Ax.

Since x is not an eigenvector of A, x and y are linearly independent. Furthermore, y is not in

E1⊕E−1, for otherwise x = Ay would be in E1⊕E−1. Thus, x and y are linearly independent and

not in E1 ⊕ E−1. Now, A(x+ y) = y + x, and so x+ y ∈ E1, which is impossible. It must be the

case that E1 ⊕ E−1 = V , and hence A is diagonalizable. 2

Let Dk be the diagonal matrix with k repetitions of 1 and n−k repetitions of −1. The matrices

in the similarity class of Dk have the form PDkP
−1 where P is an element of the group of invertible

matrices GLn(q). Hence the cardinality of the similarity class is the quotient of |GLn(q)| by the

order of the subgroup of P such that PDkP
−1 = Dk. This subgroup consists of matrices in block

form  A 0

0 B


where A ∈ GLk(q) and B ∈ GLn−k(q). Thus, the number of matrices similar to Dk is

|GLn(q)|
|GLk(q)||GLn−k(q)|

The entire sample space of n× n matrices whose square is the identity has cardinality

n∑
k=0

|GLn(q)|
|GLk(q)||GLn−k(q)|

As is well-known, |GLn(q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1). The reason is that an

invertible matrix has any non-zero vector in the first column and the jth column has any vector

not in the span of the j − 1 columns to the left, giving qn − qj−1 choices for that column.

With this we have the probabilities for the Ek

P(Ek) =
|GLn(q)|

|GLk(q)||GLn−k(q)|

(
n∑

m=0

|GLn(q)|
|GLm(q)||GLn−m(q)|

)−1

Now we can answer the croupier’s question: would you like to bet at even odds that there is still

a red token remaining inside the box? With a bit of electronic help we calculate the conditional
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probability P(E5|R5) = 0.5995 . . . , which is the probability that all the remaining tokens are blue.

We can understand why this might be so when we examine the probabilities P(Ek) and see that

P(E0) = P(E10) ≈ 6.4× 10−25

P(E1) = P(E9) ≈ 3.7× 10−16

P(E2) = P(E8) ≈ 2.0× 10−9

P(E3) = P(E7) ≈ 1.2× 10−4

P(E4) = P(E6) ≈ .09

P(E5) ≈ .82

Finally, we note that the binomial probabilities for the coin tossing game bear a formal similarity

to those of the eigenvalue game. The number of ways to get k heads in n tosses is
(
n
k

)
, which is

|Sn|
|Sk||Sn−k | , where Sn is the symmetric group on n letters, and we have seen that the cardinality

of the set Ek is |GLn(q)|
|GLk(q)||GLn−k(q)| . The sample space of matrices whose square is the identity is

bijective with the space of ordered splittings of an n-dimensional vector space V . The matrix A

corresponds to the pair (V1, V−1) where V±1 are the ±1 eigenspaces and V1 ⊕ V−1 = V . Likewise,

the coin tossing sample space corresponds to the ordered splittings of an n element set into two

disjoint subsets with the first subset corresponding to the tosses in which heads occur. (In both

cases we count the trivial splittings by allowing the zero subspace or the empty subset.) Of course,

we have a simple expression for the cardinality of the sample space and the identity
∑n

k=0

(
n
k

)
= 2n,

while we have no simple expression for the total number of splittings of a vector space of dimension

n.

The number of heads in n coin tosses is a binomial random variable. The number of 1’s in

n rolls of an m sided die is a multinomial random variable. An analog of a multinomial random

variable is the number of 1’s among the eigenvalues of a random n × n matrix over a finite field
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that satisfies the equation Am = I . We should require that the field contains m distinct roots of

unity in order that all these matrices are diagonalizable.
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