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Circulant matrices of size n are those whose i, j entry is a function of (i− j) mod n. That is,

there are n numbers c0, c1, . . . , cn−1 and the i, j entry of the matrix is c(i−j) mod n. Each row is a

cyclic permutation of the row above and likewise for the columns–hence the name “circulant.”

(Toeplitz matrices have the form [ci−j ] and Hankel matrices have the form [ci+j ].)

Now modify the previous definition to use the operation of “dyadic” subtraction rather than

ordinary subtraction. This gives a new class of matrices with interesting properties. Dyadic

addition is defined for any two natural numbers i and j by adding their binary representations

bit by bit without carries. For example, 5 = 1012 and 7 = 1112. Adding them without carries

gives 0102 = 2. Thus the dyadic sum of 5 and 7 is 2. We denote this operation by ⊕, not to be

confused with the direct sum of algebraic objects in other contexts. Dyadic addition makes the

natural numbers into an abelian group with 0 as the identity element and each element as its

own inverse. The numbers from 0 to 2n − 1 form a subgroup isomorphic to the n-fold product

of Z2. Since addition and subtraction are the same here, we can use them interchangeably.

Define a square matrix to be a “Walsh” matrix if its i, j entry is a function of the dyadic

sum i⊕ j. The name is chosen because of a connection with the system of Walsh functions. An

8 by 8 Walsh matrix has this form:

a0 a1 a2 a3 a4 a5 a6 a7

a1 a0 a3 a2 a5 a4 a7 a6

a2 a3 a0 a1 a6 a7 a4 a5

a3 a2 a1 a0 a7 a6 a5 a4

a4 a5 a6 a7 a0 a1 a2 a3

a5 a4 a7 a6 a1 a0 a3 a2

a6 a7 a4 a5 a2 a3 a0 a1

a7 a6 a5 a4 a3 a2 a1 a0


(1)

A Walsh matrix of size 2n is defined by 2n numbers ak, for 0 ≤ k ≤ 2n − 1. If the size is
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not a power of 2, say m where 2n−1 < m < 2n, then there are still 2n independent entries ak,

0 ≤ k ≤ 2n−1. We will only consider Walsh matrices of size 2n. For them there is an alternative

description.

Define W to be the smallest set of square matrices satisfying these properties.

W1. W contains all 1 by 1 matrices.

W2. If A,B ∈ W, then

[
A B

B A

]
∈ W.

Theorem 1. W is the set of Walsh matrices whose sizes are powers of 2.

Proof. First, suppose that C = [ci⊕j ] is a Walsh matrix of size 2n. Break C into 2 by 2

block form with submatrices of size 2n−1. The upper left corner is identical to the lower right

corner, because i ⊕ j = (i + 2n−1) ⊕ (j + 2n−1). Similarly, the lower left corner is identical

to the upper right corner, because for 2n−1 ≤ i ≤ 2n − 1 and 0 ≤ j ≤ 2n−1 − 1, we see that

i⊕j = (i−2n−1)⊕(j+2n−1). Thus, C has the correct block form, and we can proceed recursively

on the smaller submatrices.

For the reverse inclusion we use induction. Clearly, all 1 by 1 matrices in W are Walsh

matrices. Suppose that the matrices of size less than 2n in W are Walsh matrices and consider

a matrix of size 2n

C =

[
A B

B A

]
∈ W.

Thus, for 0 ≤ i, j ≤ 2n−1 − 1

cij = ci+2n−1,j = aij

ci+2n−1,j = ci,j+2n−1 = bij

from which it is straightforward to check that cij is a function of i⊕ j.
Using the recursive block characterization of Walsh matrices enables us to quickly determine

the eigenvalues and eigenvectors. First we note that if A and B are Walsh matrices of the same

size, then AB = BA. The proof is easy by induction and is left to the reader.

The fundamental result needed to compute the eigenvalues and eigenvectors is the next

theorem.

Theorem 2. If A and B are commuting matrices and v is an eigenvector of both A and B with

eigenvalues λ and µ, respectively, then (v, v) and (v,−v) are eigenvectors of

[
A B

B A

]
with

eigenvalues λ+ µ and λ− µ, respectively.

Proof. Left to the reader.

Consider the 4 by 4 Walsh matrix
a0 a1 a2 a3

a1 a0 a3 a2

a2 a3 a0 a1

a3 a2 a1 a0


2



a0      a1 a2 a3 a4 a5 a6 a7

a0 – a1 a4 
– a5 a6 

– a7a2 
– a3

a0 – a1 + a2 
– a3 a4 – a5 + a6 

– a7

a0 – a1 + a2 
– a3 

– (a4 – a5 + a6 
– a7)

s0 
= –1

s1 
= 1

s2  
= –1

Figure 1: Constructing an eigenvalue.

The eigenvalues of the 2 by 2 submatrices are a0 + a1, a0 − a1 and a2 + a3, a2 − a3. The sums

go with eigenvector (1, 1) and the differences go with (1,−1). Therefore, letting v = (1, 1), we

get the following eigenvectors with associated eigenvalues

(1, 1, 1, 1) a0 + a1 + a2 + a3

(1, 1,−1,−1) a0 + a1 − a2 − a3)
(1,−1, 1,−1) a0 − a1 + a2 − a3
(1,−1,−1, 1) a0 − a1 − a2 + a3)

The construction of the eigenvalues and eigenvectors from the coefficients ai can be visualized

by constructing a complete binary tree of depth n with the 2n coefficients a0, . . . , a2n−1 at the

leaves (at the top). Considering the branches at the top as level 0, label the right branches of

level i with a sign si = ±1, for i = 0, . . . , n − 1. For each of the 2n labelings construct the

eigenvalue by adding from the leaves to the root with the correct sign.

In order to construct the corresponding eigenvector, do exactly the same thing with the

standard basis vector ei in place of the coefficient ai.

We illustrate the process for an 8 by 8 matrix with the sign labeling given by s = (s0, s1, s2) =

(−1, 1,−1).

The corresponding eigenvector in this example is

e0 − e1 + e2 − e3 − (e4 − e5 + e6 − e7) = (1,−1, 1,−1,−1, 1,−1, 1).

The eigenvectors for a Walsh matrix are orthogonal since the matrices are symmetric. When

constructed by the algorithm just described the eigenvectors contain entries of 1 and −1. Let us

interpret each eigenvector as a piecewise constant function on the interval [0, 1] where the ith

component of the vector gives the value (1 or −1) of the function on the ith subinterval of length

2−n. We have arrived at the orthogonal basis of Walsh functions, a countable orthogonal basis

of the Hilbert space of square integrable functions (real or complex) on [0, 1]. See, for example,

[1, 3, 4].
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The algorithm described by the tree can be implemented by a short piece of code. This is

True Basic, but it can be read as pseudo-code by users of other languages.

SUB eigenvalues_Walsh(a(),v())

! The input vector a() gives the coefficients of the matrix.

! The eigenvalues are written into the vector v().

! The length of a must be a power of 2 and indexed from 0.

LET nn = ubound(a) - lbound(a) + 1 !length of a

LET ss = 1

DIM temp(0 to 1) !vector for temporary storage

MAT temp = a !correct size of temp is set here

DO

FOR bb = 0 to nn-ss step 2*ss

FOR j = 0 to ss-1 step 1

LET v(bb + 2*j) = temp(bb + j) + temp(bb + j + ss)

LET v(bb + 2*j + 1) = temp(bb + j) - temp(bb + j + ss)

NEXT j

NEXT bb

LET ss = 2*ss

MAT temp = v

LOOP while ss < nn

END SUB

Remarks: For circulant matrices the algorithm to compute the eigenvalues from the coeffi-

cients is none other than the discrete Fourier transform. The algorithm here for Walsh matrices

is the finite Walsh transform. Like the finite Fourier transform it can be seen as the product

of a matrix and a vector, but it can be done with the number of steps on the order of 2nn for

matrices of size 2n. (This is m log2m for m×m matrices.) In fact, the code presented is a “fast”

version of the Walsh transform.

George Miminis [5] has considered another class of matrices with similar properties. Define

the set M of square matrices by these two properties.

M1. M contains all 1 by 1 matrices.

M2. If A,B ∈M, then

[
A −B
B A

]
∈M.

It is possible to characterize matrices in M them in terms of dyadic addition with the

complication of a plus or minus sign. An 8 by 8 example looks like this:
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a0 −a1 −a2 a3 −a4 a5 a6 −a7
a1 a0 −a3 −a2 −a5 −a4 a7 a6

a2 −a3 a0 −a1 −a6 a7 −a4 a5

a3 a2 a1 a0 −a7 −a6 −a5 −a4
a4 −a5 −a6 a7 a0 −a1 −a2 a3

a5 a4 −a7 −a6 a1 a0 −a3 −a2
a6 −a7 a4 −a5 a2 −a3 a0 −a1
a7 a6 a5 a4 a3 a2 a1 a0


(2)

Theorem 3. A square matrix of size 2n is in M if and only if its i, j entry is (−1)σ(i,j)ai⊕j,

where σ(i, j) is the number of locations in the binary representations of i and j in which i has

a 0 and j has a 1.

Proof. If we disregard signs, then we have a Walsh matrix. The sign of an entry is deter-

mined by how many times it falls into the upper right corner of the 2 by 2 block structures as we

proceed from the full matrix down to 1 by 1 matrices. That happens each time the column index

has a 1 and the row index has a 0 in the corresponding binary representation of the indices.

As with Walsh matrices, the matrices of Miminis commute if they have the same size. So,

the following theorem allows us to compute eigenvalues and eigenvectors.

Theorem 4. If A and B are commuting matrices and v is an eigenvector of both A and B with

eigenvalues λ and µ, respectively, then (v, iv) and (v,−iv) are eigenvectors of[
A −B
B A

]

with eigenvalues λ+ iµ and λ− iµ, respectively.

Proof. Left to the reader.

Thus, with minor modifications the algorithm used for Walsh matrices works for those of

Miminis. Use ±i in place of ±1 in the labeling of the signs. Let’s rework the tree in Figure 1.

a0      a1 a2 a3 a4 a5 a6 a7

a0 – ia1 a4 – ia5 a6 – ia7a2 – ia3

a0 – ia1 +i(a2 – ia3) a4 – ia5 + i(a6 – ia7)

a0 – ia1 +i(a2 – ia3) – i(a4 – ia5 + i(a6 – ia7))

s0 = –i

s1 = i

s2  = –i
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The eigenvalue simplifies to

a0 − ia1 + ia2 + a3 − ia4 − a5 + a6 − ia7.

The associated eigenvector is

(1,−i, i, 1,−i,−1, 1,−i).

The code for the eigenvalues of a Walsh matrix can be changed slightly to handle Miminis’s

matrices. Now we assume that the coefficients ak are actually complex and we store them in a

two dimensional array a(k,j), 0 ≤ k ≤ 2n− 1, j = 1, 2, where a(k,1) is the real part of ak and

a(k,2) is the imaginary part.

SUB eigenvalues_Miminis(a(,),v(,))

! The input array a(,) gives the coefficients of the matrix.

! The eigenvalues are written into the vector v(,).

! The first index of a(,) must run from 0 to 2^n - 1.

! a(k,1) and a(k,2) are the real and imaginary parts.

LET nn = (ubound(a) - lbound(a) + 1)/2 !number of coefficients

LET ss = 1

DIM temp(0 to 1,2) !array for temporary storage

MAT temp = a !correct size of temp is set here

DO

FOR bb = 0 to nn-ss step 2*ss

FOR j = 0 to ss-1 step 1

LET v(bb + 2*j,1) = temp(bb + j,1) - temp(bb + j + ss,2)

LET v(bb + 2*j,2) = temp(bb + j,2) + temp(bb + j + ss,1)

LET v(bb + 2*j + 1,1) = temp(bb + j,1) + temp(bb + j + ss,2)

LET v(bb + 2*j + 1,2) = temp(bb + j,2) - temp(bb + j + ss,1)

NEXT j

NEXT bb

LET ss = 2*ss

MAT temp = v

LOOP while ss < nn

END SUB
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