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Abstract1

Rich ecosystems harbor thousands of species interacting in tangled networks encom-2

passing predation, mutualism and competition. Such widespread biodiversity is puzzling3

because in ecological models it is exceedingly improbable to obtain the stable coexistence4

of large communities. One aspect rarely considered in these models, however, is that5

coexisting species in natural communities are a selected portion of a much larger pool,6

which has been pruned by population dynamics.7

Here we compute the distribution of the number of species that can coexist when we8

start from a pool of species interacting randomly, and show that even in this case we9

can observe rich, stable communities. Interestingly, our results show that, once stability10

conditions are met, network structure has very little influence on the level of biodiversity11

attained.12

Our results identify the main drivers responsible for widespread coexistence in natural13

communities, providing a baseline for determining which structural aspects of empirical14

communities promote or hinder coexistence.15

Lotka1 and Volterra2 first attempted to mathematize the population dynamics of in-16

teracting species, and their model has been eviscerated and refined by countless studies3.17

Analyzing models that include more than a handful of interacting populations has however18
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proven remarkably difficult, despite the fact that ecosystems harbor hundreds of populations,19

interacting through complex networks encompassing consumption, competition, and mutual-20

ism4.21

In Lotka-Volterra and similar models, it is exceedingly improbable to obtain the coex-22

istence of all species in a large community without fine-tuning the parameters5–9, and such23

fine-tuning is questionable at best for biological systems10. Consider however that in natu-24

ral communities the extant species we observe are a selected portion of a much larger pool,25

which has then been pruned by population dynamics7,11. Therefore, to understand the estab-26

lishment and maintenance of natural communities we need to change our focus: rather than27

asking what is the probability that all species in a community coexist, here we attempt to28

predict the number of extant species we obtain when starting from a species pool of n species,29

and let the dynamics unfold. As a limiting case, we study the behavior of ecological models30

in which the parameters are randomly drawn from fixed distributions, meaning that species31

have not had time to co-adapt or co-evolve. While many studies have investigated, numeri-32

cally12–19 or analytically20, the effect of particular parameterizations and network structure33

on the average number of coexisting species, here we derive the full distribution.34

We start by studying coexistence in random ecological communities, and, having derived35

the behavior of random networks of interacting species, we probe the effect of particular36

network structures on coexistence. We find that network structure, which has been shown to37

have strong influence on the stability properties of ecological communities4,8,21–24, has instead38

very little effect on coexistence, once stability conditions are met.39

The idea of studying random ecological communities was pioneered by May5, who de-40

termined the local stability properties of large ecosystems through an application of random41

matrix theory. His work was generalized and refined25,26, so that we can now characterize the42

stability of ecological networks displaying hierarchical22 or modular23 structure. Similarly,43

“structural stability” (i.e., the range of conditions leading to positive equilibria in ecological44

systems) has been investigated by letting the growth rate of the species8,9, or the interactions45

between species27 vary randomly. Clearly, to have robust coexistence we need a combination46

of the two: species densities must be positive, while a stable attractor is needed to allow47

densities to rebound when perturbed.48
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Results49

Our goal is to compute the probability of observing k species stably coexisting when starting50

with a pool of n interacting populations and random parameters. For example, take the51

generalized Lotka-Volterra (GLV) system52

dXi(t)
dt

= Xi(t)

ri +
∑
j

AijXj(t)

 , (1)

and sample parameters at random: how many species coexist once the dynamics have elapsed?53

We first analyze the case closest to the spirit of May’s contribution, which can be taught54

of as a caricature of a food web: some species can grow in isolation (e.g., producers, with55

positive intrinsic growth rates), while other species can grow only thanks to their interactions56

(e.g., consumers, with negative growth rates); all species establish random interactions with57

each other. More specifically, we sample the intrinsic growth (death) rates (ri) and the58

inter-specific interactions (Aij , i 6= j) from distributions (not necessarily the same) that are59

symmetric around zero (such that P (x) = P (−x)). For example, we could sample all these60

entries from a Normal distribution with mean zero. We set the intra-specific interactions (Aii)61

by summing a mean-zero symmetric random variable and a constant di (not necessarily the62

same for all i). Note that in this way, about half of the species would grow in isolation, while63

the rest rely on “consumption” for their survival.64

We start by presenting a result on the feasibility of equilibria. Under the conditions65

outlined above, the probability that a system composed of n species has a completely positive66

equilibrium point (i.e., in which all species have positive density) is 1/2n, irrespective of67

the choice of di, and the exact shapes of the distributions (Supplementary Information S2).68

Our proof extends previously known mathematical results28, confirming the conjecture put69

forward by Goh & Jennings forty years ago13.70

Clearly, feasibility is only necessary, but not sufficient for coexistence. To study coexis-71

tence, we make the stronger assumption that the matrix A + AT is negative definite. This72

property implies Lyapunov diagonal stability, and is a strong form of stability routinely as-73

sumed in studies of feasibility8,9 that can be always attained by choosing suitable large and74

negative di. Under these conditions, a GLV model has a single, globally attractive equilibrium,75
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called the non-invasible solution (also called saturated rest point29): k species have positive76

density at equilibrium, while all the other n − k species cannot invade this community, and77

will go extinct irrespective of initial conditions. Surprisingly when we sample the parameters78

at random as specified above, the non-invasibility and feasibility conditions for each subset79

of species balance out, such that each species has probability 1/2 of being included in the80

non-invasible, globally attractive solution. Hence, the probability P (k|n) of finding k species81

coexisting when we start with n follows the binomial distribution B(n, 1/2) (Fig. 1 and Sup-82

plementary Information S2). This beautifully simple result means that if we were to start83

with a strongly stable (i.e., with A+AT negative definite) random matrix of interactions and84

random growth rates, about half of the species would coexist, irrespective of the choice of n.85

Remarkably, this is exactly what we would expect if species were not to interact with each86

other at all (i.e., di < 0 for all i and Aij = 0 for all i 6= j).87

Extending May’s results, Allesina & Tang25 showed how stability is strongly influenced88

by the correlation between the inter-specific interactions: if we sample interactions in pairs89

(Aij , Aji) from a bivariate distribution with mean zero and correlation ρ, then stability is90

enhanced by choosing a negative correlation. When analyzing coexistence, breaking the in-91

dependence among the inter-specific effects by sampling them in pairs from a bivariate distri-92

bution has no effect: we recover the same condition for feasibility, and the same distribution93

for the number of coexisting species (Fig. 1 and Supplementary Information S2).94

So far, we have assumed that every species interacts with every other. To study the effect95

of network structure, we set most of the interactions to zero, and choose the position of the96

nonzero coefficients according to the adjacency matrix of a) an Erdős-Rényi random graph,97

b) a random graph with power-law degree distribution, c) a graph displaying modular, or d)98

bipartite structure. Irrespective of the choice of network structure, we always recover the same99

distribution for the number of coexisting species k (Fig. 1 and Supplementary Information S2).100

This is interesting, because network structure strongly influences stability22–25. However,101

because in our analysis stability is assumed, we find that the exact location of the nonzero102

interactions has no effect on coexistence.103

The results above hold when we sample the growth rates and the inter-specific effects from104

symmetric distributions with mean zero, meaning that positive effects (e.g., contribution of105

prey to the growth of predators) on average counterbalance negative ones (e.g., effects of106
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predators on prey). Of course this needs not to be the case in natural communities, and107

therefore we examine the mathematically much more challenging case in which the entries108

have mean nonzero.109

To this end, we consider a simple model of interacting competitors: we set all inter- and110

intra-specific interactions to be negative, and consider the case of random growth rates. In this111

case we assume that all species in the pool are sampled from a common habitat, and therefore112

have growth rates with a well-defined average value. In particular, we sample the intrinsic113

growth rates from a Normal distribution with mean γ, and, for simplicity, we construct A114

by setting all inter-specific interaction to be competitive, Aij = µ = µ̂/n < 0, and all intra-115

specific effects to Aii = di = α < 0. Numerical simulations presented below show that our116

results well-approximate the case in which the elements of A are variable (e.g., when the117

nonzero elements are arranged in a network).118

Again, we consider matrices for which α is sufficiently strong to yield Lyapunov diagonal119

stability (α < µ < 0). When we sample the growth rates from a Normal distribution, then the120

equilibrium point X = −A−1r is described by a multivariate Normal distribution. Exploiting121

this fact, we are able to express the probability that k species form a non-invasible and122

feasible subset as a double integral that can be used to compute the size of the non-invasible123

community (see Supplement). The double integral can be approximated, for large n, via a124

saddle-point technique to obtain an accurate analytical approximation for the distribution125

P (k|n;α, µ̂, γ). Note that in this setting, growth rates need to be positive for species to126

survive, and therefore we only consider the case of γ ≥ 0. We also show (Supplementary127

Information S7) that the results remain qualitatively unchanged when rates are drawn from128

a truncated Gaussian distribution, which forces all rates to remain strictly positive.129

The results (Fig. 2) show that a nonzero mean γ in growth rates can yield a larger (red130

area of parameter space) or smaller (blue) number of coexisting species, compared to the131

mean-zero case. If132

αγ

µ̂
>

1√
2π
, (2)

averages are larger than expected in the mean-zero case (and conversely). The distribution133

P (k|n;α, µ̂, γ) is not binomial anymore, but still retains a strong central tendency. Impor-134
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tantly, the mode of the number of species can be estimated analytically (Supplementary135

Information S6).136

When we repeat the calculation but position the nonzero elements according to a network137

structure, we find results that are quite similar to the mean-zero case: though not all network138

structures yield the same exact distribution, the effect is very modest, such that our analytical139

approximation well-describes coexistence in all cases (Fig. 3).140

In summary, we have computed the distribution of the number of coexisting species under141

the assumptions of random parameters and strong stability. We have two cases: a) when inter-142

specific interactions have mean zero, the number of coexisting species follows the binomial143

distribution with probability 1/2, and network structure has no influence whatsoever—in fact,144

we would recover the same result if species were not to interact at all; b) when the inter-specific145

interactions have mean nonzero, the distribution is not binomial anymore, and we can expect146

either a larger or smaller proportion of populations to survive, depending on the choice of147

parameters. Also in this case, however, network structure has a very modest effect.148

Discussion149

Our results show that large communities can stably coexist thanks to the selection imposed150

by the dynamical pruning of a large species pool. In practice, we can attain communities of151

any size (with no saturation) even when setting parameters at random—all we need is to start152

with a much larger species pool.153

The study of the stability of large ecological communities started by considering completely154

random matrices of interactions5; further studies included more realistic models in which155

interactions were paired25 and organized in patterns22,23. We believe that our results can be156

similarly extended, and we see three main directions that need to be explored.157

First, we have considered here a “weak” form of network structure: the location of the158

nonzero elements of the matrix is specified, but other than that the coefficient values are159

randomly determined. A stronger form of network structure would be one in which also160

the values of the nonzero coefficients are organized in a pattern. For example, a “cascade”161

structure in which all the positive (negative) elements of the matrix A are confined to the162

upper (lower) triangular part has been shown to have a strong stabilizing (or destabilizing)163
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effect22. Similarly, arranging the strong/weak competitive interactions in modules or in a164

nested fashion can greatly influence stability24. It would therefore be important to determine165

whether this “strong” formulation of network structure can indeed influence coexistence as166

well as stability.167

Second, we have determined coexistence under the assumption of strong stability (Lya-168

punov diagonal stability). Relaxing this constraint will be challenging, but could however shed169

light on mechanisms of coexistence involving for example limit cycles or chaotic attractors.170

Recently, Bunin20 studied coexistence in species pools with random (weak) interactions and171

identical growth rates, identifying the transitions between systems characterized by a single172

stable equilibrium, and those displaying multiple attractors. Though this study disregards173

other types of attractors, it shows that analytical progress in this area is possible.174

Third, as pointed out by Sigmund7, “Mother Nature does not assemble her networks by175

throwing n species together in one go”. Understanding the process of assembly in which com-176

munities are built one species at a time is perhaps the greatest challenge ahead for theoretical177

community ecology30. In the Supplementary Information (S9) we show that, although some178

of our non-invasible communities cannot be built by a sequential assembly, the probability179

of finding such cases decreases rapidly with the size of the community. We conjecture that,180

asymptotically, the probability of finding an assembly sequence for communities built in this181

way converges to one.182

In the last few decades, ecologists have compiled ever more detailed interaction networks31,183

documenting the intricate relationships occurring in ecosystems32,33. These networks display184

interesting patterns, such as broad degree distributions34, modular organization of interac-185

tions35, hierarchical structure36, and nestedness37,38. One of the main questions in community186

ecology is therefore to determine whether these network properties have some bearing for the187

robust coexistence of ecological communities. In this context, our results provide a baseline188

for species coexistence under Lotka-Volterra dynamics—one can use these reference points to189

prove that certain features of empirical communities promote or hinder coexistence.190
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Figure 1. Number of coexisting species when interactions and intrinsic growth296

rates are randomly sampled from the standard Normal distribution. For each panel,297

histograms show the number of coexisting species out of 2·105 simulations, when starting from298

a different number of species n (colors) and interaction matrices A that are strongly stable.299

Binomial distributions B(n, 1/2) are reported as crosses. In the three rows, different network300

structures are used to set the positions of the nonzero coefficients (as exemplified by the301

adjacency matrices on the right); top: complete graphs, middle: Erdős-Rényi graphs; bottom:302

Power-law graphs; the results for other network structures are presented in Fig. S1. Sampling303

the off-diagonal coefficients of matrix A independently (ρ = 0, center), or in correlated pairs304

(Aij , Aji) (ρ 6= 0), has no effect on the expected number of coexisting species.305
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Figure 2. Number of coexisting species for competitive interactions. When species306

interact competitively, the histograms deviate from the binomial distribution, but can still307

be computed using a double integral (crosses, see Eq. S38). Here the interactions are set to308

Aij = µ̂/n < 0, intra-specific competition to Aii = α, and intrinsic growth rates are normally-309

distributed with mean γ. The expected value of the ratio k/n, E(k/n), is drawn on the left310

in the relevant parameter space: we chose two points (A, C) for which predictions in the311

nonzero mean case match closely those for mean zero (E(k/n) = 1/2); in case B the number312

of species coexisting exceeds that for the mean-zero case; for point D the expectation is lower.313

The analytical prediction in equation (2) is also shown (line).314
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Figure 3. Effect of network structure on coexistence for the case of nonzero315

means. The position of the nonzero coefficients is chosen according to one of four structures316

(shape), and for two levels of connectance (proportion of nonzero coefficients, colors). Because317

most of the coefficients are zero, one needs to calculate a “rescaled” µ̂ (x-axis in upper panels,318

see Supplement) in order to contrast the results of the simulations (point) with our analytical319

approximation for the fully-connected case (line, see Supplement, Eq. (S87)). The four panels320

show that, although both the interaction strength µ̂ and the mean intrinsic growth rate γ321

interacts with connectance and network structure in nontrivial ways, the overall effect is very322

modest.323
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Supplementary Information324

S1 Problem statement325

We consider n interacting populations, whose dynamics are defined by a system of Generalized326

Lotka-Volterra (GLV) equations:327

dXi(t)
dt

= Xi(t)

ri +
∑
j

AijXj(t)

 , (S1)

where Xi(t) is the abundance of population i at time t, ri is the intrinsic growth rate of species328

i, and Aij is the per-capita effect of species j on the growth rate of species i. For notational329

convenience, we collect the coefficients Aij into the interaction matrix A, and Xi and ri into330

the (column) vectors X and r, respectively.331

A vector x? is a fixed point (equilibrium) of the system if332

0 = x?i

ri +
∑
j

Aijx
?
j

 for i = 1, 2, ..., n. (S2)

Since x?i = 0 is always a possible solution, the system admits up to 2n fixed points, corre-333

sponding to all the combinations of presence and absence of each species.334

A fixed point is feasible if x?i > 0 for all i. If a feasible fixed point exists, it is the solution335

of336

r = −Ax?. (S3)

If A is invertible, then337

x? = −A−1r. (S4)

S1.1 Global stability and non-invasible fixed points.338

In the following, we assume that A is negative definite, and in particular that the matrix A+339

AT has only negative eigenvalues39. A matrix A is Lyapunov diagonally stable if there exists340

a positive diagonal matrix D such that DA +ATD is negative definite40. Our assumption341

therefore implies Lyapunov diagonal stability (corresponding to choosing D as the identity342

matrix).343
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If A is diagonally stable, then there exists a fixed point of equation (S1) that is globally344

attractive: irrespective of the (positive) initial conditions, dynamics always converge to the345

same fixed point41. This globally stable fixed point has k positive entries and n − k entries346

equal to zero. We define the support {S}k as the set of k persistent species (i.e., those for347

which at equilibrium x?i > 0) and {N}n−k = {S}n \ {S}k as the set of n− k species with zero348

abundance. The ith entry of the globally stable fixed point x? is equal to zero if i ∈ {N}n−k349

and equal to xi > 0 if i ∈ {S}k, where x = (xi) is a k-dimensional (column) vector with350

positive components. We define the k × k matrix A(s) as the submatrix of A obtained by351

considering only rows and columns belonging to {S}k. Similarly, we define the (n−k)×(n−k)352

matrix A(n) by considering rows and columns in {N}n−k, the k × (n − k) matrix A(sn) by353

considering rows in {S}k and columns in {N}n−k, and the (n − k) × k matrix A(ns) by354

considering rows in {N}n−k and columns in {S}k. Finally, the entries of the intrinsic growth355

rate vector can be split into two subvectors r(s), a k−dimensional (column) vector with same356

components of r for the entries in {S}k, and r(n), a (n − k)−dimensional (column) vector357

with entries corresponding to {N}n−k.358

If we rearrange the indices of the vectors such that the k persistent species occupy the359

first k entries, the globally stable fixed point x? can be written as the vector
(

x

0n−k

)
,360

where 0n−k denotes a (column) vector with n−k zero entries, the intrinsic growth rate vector361

becomes r =
(
r(s)

r(n)

)
, and the interaction matrix reads362

A =

 A(s) A(sn)

A(ns) A(n)

 . (S5)

The abundance of the k persistent species is therefore a solution of the equation363

A(s)x = −r(s) . (S6)

Since we are considering only diagonally stable matrices, this point is also not invasible364

by any of the remaining n − k species (i.e., none of the species in {N}n−k can invade when365

the system is resting at the equilibrium point)41. The condition of non-invasibility can be366
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written by imposing that the growth rate of each of the n − k species is negative for small367

densities. In the limit of small densities, the per-capita growth rates of the invaders become368

independent of their densities, and one obtains the following n− k conditions369

r(n) +A(ns)x < 0 . (S7)

In the case of diagonally stable matrices, the combination of {S}k and x is unique. It is370

the only one for which the solution x of equation (S6) has positive components and, simulta-371

neously, equation (S7) holds.372

S1.2 Distribution of non invasible fixed points373

Provided that A is diagonally stable, the number of coexisting species k is fully and uniquely374

determined by the vector of intrinsic growth rates r. More precisely, only the direction of375

the vector r, and not its norm, determines coexistence. Our goal is to determine P (k|n), the376

probability of observing k coexisting species out of n, given a distribution for the entries of the377

matrix A and a distribution for the intrinsic growth rates r. In particular, we parameterize378

the entries of A as the sum of a deterministic and a random matrix:379

Aij = (α− µ)δij + µ+Bij , (S8)

where B is a random matrix, whose entries are random variables with mean zero, and δij = 1380

if i = j and 0 otherwise. As such, the entry Aii (self-interaction) has mean α, while the381

off-diagonal entries have mean µ. Similarly, we consider382

ri = γ + bi , (S9)

where the entries of vector b are random variables with mean zero.383

We define P({S}k|A) as the probability (calculated over the growth rate vectors r) that384

the support of the globally stable fixed points is {S}k. By averaging this quantity over the385

distribution of A, we obtain386

P({S}k|n) := E(P({S}k|A)) . (S10)

18



The probability that the support has cardinality k is simply387

P (k|n) :=
∑
{S}k

P({S}k|n) . (S11)

In section (S2) we focus on the case µ = 0 and γ = 0, showing that if the distributions of388

the entries B and b are symmetric around zero389

P (k|n) =
(
n

k

)
1
2n . (S12)

In section (S3) we provide an integral formula for P({S}k|A) in case of a arbitrary matrix A390

and in section (S4) we exploit this results to compute explicitly P (k|n) in the case of µ 6= 0,391

γ 6= 0, B = 0 and normally distributed entries of b.392

S2 Mean zero393

S2.1 Toy model: uncoupled logistic equations394

Suppose that A is a diagonal matrix, and therefore that species do not interact with each395

other. For stability, we need Aii < 0 for all i (self-regulation). Let pi be the probability of396

ri > 0. Then, the probability that a solution x with k positive components {S}k is non-397

invasible is
∏
i∈{S}k pi

∏
i/∈{S}k(1− pi).398

When the distribution of ri is symmetric around zero, pi = 1
2 irrespective of the distribution399

of Aii < 0, and thus the probability of non-invasibility is 1
2n for any particular subsystem.400

Therefore, the binomial distribution with parameters n and 1
2 describes the the number of401

persistent species.402

S2.2 Feasibility403

In this and the following section, we show that when the entries of matrix B and vector r are404

random variables whose distribution is symmetric around 0, and that any n element subset of405

the columns of B and r are linearly independent (which holds almost surely if the entries of B406

and r are sampled from a continuous probability distribution function and are independent407

of each other), then the probability P (k|n) is still described by the binomial distributions408
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with parameters n and 1
2—exactly what we found for non-interacting species. Note that this409

holds true both for the case in which the coefficients Bij are sampled independently, and for410

the case in which these coefficients are sampled in pairs (Bij , Bji), and the pairs are sampled411

independently from a bivariate distribution symmetric around (0, 0).412

First we show that P (n|n) = 1
2n . The proof amounts to showing that, of all the possible413

2n sign (+, −) patterns for the entries of a solution to equation (S4), each of them is equally414

probable.415

Let x? be an arbitrary solution of equation (S4), and define the matrix Dk = ((−1)δikδij).416

Then, Dkx
? satisfies (DkADk)Dkx

? = −Dkr. Because of the symmetry assumption, we417

have that DkADk has the same distribution1 as A, and similarly for Dkr and r. Since Dk418

just flips the sign of the kth component of x?, by repeating this operation a sufficient number419

of times we can connect any two sign patterns of solutions to equation (S4), and thus the420

conclusion follows.421

S2.3 Persistent species422

As noted before, in the regime of diagonally stable matrices, the final state of the system is the423

non-invasible (also called saturated) fixed point of the system41. With the same assumptions424

of the previous section the distribution for the number of persistent species follows naturally:425

the probability of having a non-invasible solution x with k positive components (with support426

{S}k) is the joint probability of the conditions expressed in equations (S6) and (S7), which427

can be written as P({S}k|n) = P (k|k)[1 − Pinv({S}n \ {S}k|{S}k)], where Pinv denotes the428

probability of being invasible by any of the remaining species given that x > 0. Let z =429

r(n) +A(ns)x. By following the same procedure illustrated in the previous section (applying430

the appropriate change of signs to A and r), one can show that any sign pattern for z is431

equally likely, therefore 1−Pinv({S}n\{S}k|{S}k) = 1
2n−k . As a consequence, P({S}k|n) = 1

2n .432

Because of the uniqueness of this type of solution for a given interaction matrixA and a vector433

of rates r, the binomial distribution with parameters n and 1
2 describes the distribution of434

the number of species having positive density at the globally stable equilibrium.435

1This transformation also has the property of preserving the eigenvalues of the matrix, which allows this
argument to hold also if we condition on Lyapunov diagonally stable matrices.
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S2.4 Adding Structure436

Let G be the adjacency matrix of an undirected graph, and consider the matrix M = G ◦A,437

where ◦ represents the Hadamard (entry-wise) product between G and A. Because this438

type of product is commutative with respect to the multiplication by a diagonal matrix, i.e.,439

D(G ◦A)D = G ◦ (DAD) for D diagonal, the arguments used in the previous two sections440

still hold. This means that the distribution of M is invariant to DkMDk (even when G is441

also a random matrix) and by restricting ourselves to diagonally stable matrices the linear442

independence assumption is assured (the matrix is invertible). Consequently, adding a network443

structure in this way does not change the probability of feasibility nor the distribution of444

persistent species.445

S3 Calculating the distribution of persistent species446

If we integrate the GLV dynamics starting from an interaction matrix A, a vector of intrinsic447

growth rates r, and an arbitrary (positive) initial condition with n species, we end up with k448

species with density different from zero and n − k species with density equal to zero. If the449

matrix A is diagonally stable, the end point of the dynamics always correspond to a fixed450

point x?, irrespective of the initial conditions.451

The goal of this section is to provide a formula for the probability P (k|n) of finding452

k persisting species out of n, for an arbitrary matrix A, under the assumption that A is453

diagonally stable. We assume that the entries of r are drawn from a Normal distribution454

with mean γ and unit variance. This choice of a variance does not affect the generality of455

out results, since the coexistence properties of the Generalized Lotka-Volterra equations are456

independent of the norm of r: rescaling all growth rates by a constant simply rescales all457

equilibrium abundances by the same constant, with no impact on feasibility or stability.458

We define the vector z with n− k components as459

z := r(n) +A(ns)x. (S13)

On the other hand, we have equation (S6), that defines x. By imposing feasibility and non-460

invasibility —equation (S7)—, it must hold that x > 0 and z < 0.461
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Using the probability density of the growth rates,462

P (r) = 1√
(2π)n

exp
(
−

n∑
i=1

(ri − γ)2

2

)
= 1√

(2π)n
exp

(
−1

2‖r
(s) − γ1k‖2 −

1
2‖r

(n) − γ1n−k‖2
)
,

(S14)

where 1k stands for a k−dimensional column vector whose entries are all equal to one. Intro-463

ducing equation (S6) and (S13), we can write the joint probability density as464

f(x, z|A) = |det Λ|
(2π)n/2

exp
(
−1

2‖A
(s)x+ γ1k‖2 −

1
2‖z −A

(ns)x− γ1n−k‖2
)
, (S15)

where Λ is the Jacobian matrix obtained from the change of variables r → (x, z). According465

to equations (S6) and (S13), it is simple to observe that Λ as the following structure:466

Λ :=

 ∂r(s)

∂x
∂r(s)

∂z

∂r(n)

∂x
∂r(n)

∂z

 =

 A(s) 0

A(ns) In−k

 , (S16)

In−k being the (n− k)−dimensional identity matrix. Therefore |det Λ| = |detA(s)|.467

The first term appearing in the exponential in equation (S15) can be written as468

‖A(s)x+ γ1k‖2 = (x− ξ)TG(x− ξ) , (S17)

where469

ξ = −γ(A(s))−11k , (S18)

and470

G = (A(s))TA(s) . (S19)

We obtain therefore471

f(x, z|A) = | detA(s)|
(2π)n/2

exp
(
−1

2(x− ξ)TG(x− ξ)− 1
2‖z −A

(ns)x− γ1n−k‖2
)
. (S20)

The probability P({S}k|A) of observing the globally stable fixed point with support {S}k,472

can be obtained from the joint probability in equation (S15) by imposing the feasibility con-473

dition for the k species (x > 0) and the non-invasibility condition for the other n− k species474
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(z < 0). The equation reads475

P({S}k|A) ≡
∫
dkx

(
k∏
i=1

Θ(xi)
)∫

dn−kz

 n∏
j=k+1

Θ(−zj)

f(x, z|A) . (S21)

S4 Mean non zero476

In this section we consider a simplified interaction matrix A whose diagonal coefficients are477

all equal to α, and all the off-diagonal elements are set to a fixed value µ:478

A = (α− µ)In + µ1n1Tn . (S22)

Since the matrix A is a deterministic matrix, in this case P({S}k|A) = P({S}k|n). By479

introducing equation (S22) in equation (S20) and using equation (S21), we obtain480

P({S}k|n) = | detA(s)|
(2π)n/2

∫
dkx

k∏
i=1

Θ(xi)
∫
dn−kz

n∏
j=k+1

Θ(−zj)

× exp
{
−1

2
(
x− ξ(k)1k

)T
G
(
x− ξ(k)1k

)
− 1

2‖z − (µ(1Tk x) + γ)1n−k‖2
}
, (S23)

where we used the fact that, with the parameterization of equation (S22), ξ = ξ(k)1k, where481

ξ(k) = − γ

α+ (k − 1)µ . (S24)

Again, using equation (S22) together with equation (S19), we have482

G = (α− µ)2Ik +
[
kµ2 + 2µ(α− µ)

]
1k1Tk . (S25)

We change variables to x′i = xi − ξ(k) to get483

P({S}k|n) = | detA(s)|
(2π)n/2

∫
dkx

k∏
i=1

Θ(xi + ξ(k))e−
1
2x

TGx

×
∫
dn−kz

n∏
j=k+1

Θ(−zj)e−
1
2‖z−[γ+kµξ(k)+µ(1Tk x)]1n−k‖2

. (S26)
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We now write z′j = zj − γ − kµξ(k) and obtain484

P({S}k|n) = |α− µ|
k−1|α+ (k − 1)µ|

(2π)n/2
∫
dkx

k∏
i=1

Θ(xi + ξ(k))e−
1
2x

TGx

×
∫
dn−kz

n∏
j=k+1

Θ(−zj − γ − kµξ(k))e−
1
2‖z−µ(1Tk x)1n−k‖2

, (S27)

where we used485

|detA(s)| = |α− µ|k−1|α+ (k − 1)µ| . (S28)

By introducing the expression for G obtained in equation (S25), we get486

P({S}k|n) = |α− µ|
k−1|α+ (k − 1)µ|

(2π)n/2
∫
dkx

k∏
i=1

Θ(xi + ξ(k))

×
∫
dn−kz

n∏
j=k+1

Θ(−zj − γ − kµξ(k))eg(x,z) (S29)

where487

g(x, z) = −1
2
[
(α− µ)2xTx+

[
nµ2 + 2µ(α− µ)

]
(1Tk x)2 − 2µ(1Tk x)(1Tn−kz) + zTz

]
. (S30)

We can express this probability as a double integral by introducing two new variables488

thanks to a Hubbard-Stratonovich transformation: if b > 0 and c > 0, it holds that489

e−bd
2/c2−de/c = c

2π

∫ ∞
−∞

dy

∫ ∞
−∞

dw e−(by2+ey+idw−icwy). (S31)

for any real d and e numbers. Similarly, for b > 0 and c > 0,490

e−bd
2/c2+de/c = c

2π

∫ ∞
−∞

dy

∫ ∞
−∞

dw e−(by2+ey+idw+icwy). (S32)

In our case [cf. equations (S25) and (S30)], we choose d = 1Tk x and e = 1Tn−kz and identify491

the exponents of the l.h.s. of equations (S31) or (S32) with the terms in (S30). If µ > 0, we492

find 1
c = µ and use equation (S32). If µ < 0, we set 1

c = |µ| and consider equation (S31).493

In both cases, we set b
c2 = 1

2
[
nµ2 + 2µ(α− µ)

]
. In general, we can choose c = 1

|µ| and494

b = 1
2

[
n+ 2

(
α
µ − 1

)]
. To ensure diagonal stability, all the eigenvalues of matrix A must be495
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negative. This implies the conditions α − µ < 0 and α − µ + nµ < 0. If µ > 0, the second496

restriction can be violated for n sufficiently large. Therefore we limit the discussion to the497

µ < 0 case (competitive communities) and use equation (S31). In this case we have α < µ < 0498

(hence |α| > |µ|) and α
µ − 1 +n > 0 (hence b > 0 and we can apply the Hubbard-Stratonovich499

transformation). Therefore500

P({S}k|n) = |α− µ|
k−1|α+ (k − 1)µ|

(2π)n/2+1|µ|

∫ ∞
−∞

dy

∫ ∞
−∞

dw e
− 1

2

[
n+2

(
α
µ
−1
)]
y2+i yw|µ|

∫
dkx

k∏
i=1

Θ(xi+ξ(k))

×
∫
dn−kz

n∏
j=k+1

Θ(−zj − γ − kµξ(k))e−
1
2 (α−µ)2xTx−i(1Tk x)we−

1
2z
T z−

(
1Tn−kz

)
y. (S33)

We complete squares and obtain501

P({S}k|n) = |α− µ|
k−1|α+ (k − 1)µ|

(2π)n/2+1|µ|

∫ ∞
−∞

dy

∫ ∞
−∞

dw e
− 1

2

[
n+2

(
α
µ
−1
)]
y2+i yw|µ| e

− k
2(α−µ)2w

2+ 1
2 (n−k)y2

×

∫ dxΘ(x+ ξ(k))e
− 1

2 (α−µ)2
(
x+ iw

(α−µ)2

)2k[∫ dzΘ(−z − γ − kµξ(k))e−
1
2 (z+y)2

]n−k
. (S34)

Denoting the cumulative distribution function of the standard Normal distribution N(0, 1) as502

Φ(x) = 1
2

[
1 + erf

(
x√
2

)]
we can write503

P({S}k|n) = |α− µ|
k−1|α+ (k − 1)µ|

2π|µ||α− µ|k
∫ ∞
−∞

dy

∫ ∞
−∞

dw e
− 1

2

[
k+2
(
α
µ
−1
)]
y2+i yw|µ|−

k
2(α−µ)2w

2

×
[
1− Φ

(
iw

|α− µ|
− |α− µ|ξ(k)

)]k[
Φ
(
y − γ − kµξ(k)

)]n−k
, (S35)

and therefore we find504

P({S}k|n) = 1
2π

∣∣∣∣k + α

µ
− 1

∣∣∣∣ ∫ ∞
−∞

dy

∫ ∞
−∞

dw e
− 1

2

[
k+2
(
α
µ
−1
)]
y2+i

∣∣α
µ
−1
∣∣yw− 1

2kw
2

×
[
1− Φ

(
iw − |α− µ|ξ(k)

)]k[
Φ
(
y − γ − kµξ(k)

)]n−k
. (S36)
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Note that γ + kµξ(k) = γ
(
1− kµ

α+(k−1)µ

)
= γ(α−µ)

α+(k−1)µ . We define s := α
µ − 1 (which satisfies505

s > 0 to ensure diagonal stability) and506

v := γ(α− µ)
α− µ+ kµ

= γs

k + s
. (S37)

Then, given that α < µ, it holds that |α − µ|ξ(k) = − γ|α−µ|
α+(k−1)µ = v and we can express the507

probability in its final form as508

P({S}k|n) = k + s

2π

∫ ∞
−∞

dy

∫ ∞
−∞

dw e−
1
2 (k+2s)y2+isyw− 1

2kw
2 [1− Φ(iw − v)]k[Φ(y − v)]n−k.

(S38)

In this formula, the integration over w must be performed in the complex plane. An alternative509

way to express it is to consider a path Γ in the complex plane such that Γ = {w′ ∈ C|w′ =510

iw + x0} and then reducing the result to the limit x0 → 0, so that the integral over the511

imaginary axis is well defined. Therefore, an equivalent form of writing this equation is512

P({S}k|n) = k + s

2πi

∫ ∞
−∞

dy

∫
Γ
dw e−

1
2 (k+2s)y2+syw+ 1

2kw
2 [1− Φ(w − v)]k[Φ(y − v)]n−k, (S39)

where the integral in w has to be evaluated over the contour Γ and then take the limit x0 → 0.513

Note that for the case k = 0 the probability density of x = 0 being non-invasible is simply514

f(z) = 1
(2π)n/2

e−
1
2 (z−γ1n)T (x−γ1n) (S40)

and the condition for non-invasibility reduces to515

P(∅|n) = P [z1 < 0, . . . , zn < 0] = 1
(2π)n/2

∫
dnz

n∏
i=1

Θ(−zi)e−
1
2 (z−γ1n)T (x−γ1n) = [Φ(−γ)]n.

(S41)

In addition, for k = 1 the integral over w can be actually calculated. Using that516

∫ ∞
−∞

dw e−
1
2w

2−iaw[1− Φ(iw)] =
√

2πΘ(−a)e−
1
2a

2 (S42)

we get517

P({S}1|n) = s+ 1√
2π

∫ ∞
−∞

dyΘ(sy + v)e−
1
2 (s+1)2y2 [Φ(y − v)]n−1, (S43)
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or, alternatively,518

P({S}1|n) = 1√
2π

∫ ∞
−γ

dy e−
1
2y

2
[
Φ
(
µy

α
− v

)]n−1
. (S44)

S4.1 Numerical evaluation of the double integral519

Equation (S38) can be evaluated numerically via a Fast Fourier Transform (FFT). We can520

express it as521

P({S}k|n) = k + s

2π

∫ ∞
−∞

dy e−
1
2 (k+2s)(y2+2vy)+svy[Φ(y)]n−kF̂ (−s(y + v)− kv; k) (S45)

where F̂ (x; k) is the Fourier transform over w of the complex function522

F (w; k) = e−
1
2kw

2 [1− Φ(iw)]k (S46)

and the Fourier Transform of the function F (t; k) is defined as F̂ (x; k) :=
∫∞
−∞ dt f(t; k)e−itx.523

Then we first calculate F̂ (x; k) via a FFT algorithm. For that purpose, we assume that f(t)524

is approximately equal to zero outside the interval (−T/2, T/2) and sample t at m equally525

spaced points separated a distance δ = T/m (m is even), so that tj = (j−m/2)δ, 0 ≤ j < m.526

Then527

F̂ (x`; k) =
∫ ∞
−∞

dt F (t; k)e−itx` ≈
∫ T/2

−T/2
dt F (t; k)e−itx` ≈ δ

m−1∑
j=0

F (tj ; k)e−itx` . (S47)

If x` = 2π(` −m/2)/T = 2π(` −m/2)/(mδ), the last expression can be written in terms of528

the Discrete Fourier Transform, D`({zj}) =
∑m−1
j=0 zje

−2πij`/m, as529

F̂ (x`; k) = δeiπ(`−m/2)
m−1∑
j=0

F (tj ; k)eiπj(1−2`/m) = (−1)`−m/2δD`

[
{(−1)jF (tj ; k)}

]
(S48)

where 0 ≤ ` < m. Once we have calculated F̂ (x`; k) over the set of sampling points, we530

interpolate to evaluate numerically the transform at an arbitrary point [see equation (S45)].531

For numerical evaluation over a finite interval, equation (S45) is more conveniently expressed532
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by changing to the variable z = Φ(y) as533

P({S}k|n) = k + s√
2π

∫ 1

0
dz F̂

(
−s
[
Φ−1(z) + v

]
− kv; k

)
e−

1
2 [Φ−1(z)]{2v(k+s)+[Φ−1(z)](k−1+2s)}+(n−k) log z.

(S49)

For k = 1 from (S44) we derive the expression534

P({S}1|n) = (s+ 1)
∫ 1

Φ(−γ)
dz e−

1
2 (s+1)2[Φ−1(z)+v]2+ 1

2 [Φ−1(z)]2+(n−1) log z. (S50)

S4.2 Probability of coexistence535

Assuming diagonal stability, the probability of observing k species in stable coexistence out536

of a pool of n species is given by537

P (k|n) =
(
n

k

)
P({S}k|n), (S51)

with P({S}k|n) given by equation (S39). We now approximate P({S}k|n) for large n in order538

to obtain an analytical formula for the distribution, as well as the mode of the distribution539

k?.540

We use the saddle point technique from statistical mechanics to evaluate integrals of the541

form
∫
dnue−nh(u)k(u) for n large. We define q through k = qn and regard q as a continuous,542

finite variable such that 0 ≤ q ≤ 1. Then equation (S39) can be written as543

P({S}k|n) = k + s

2πi

∫ ∞
−∞

dy

∫
Γ
dw e−sy

2+sywe−nĥ(y,w;q,v), (S52)

where544

ĥ(y, w; q) = q

2
(
y2 − w2

)
− q log[1− Φ(w − v)]− (1− q) log Φ(y − v). (S53)

In the limit n → ∞, we assume q to take a fixed value (which will be associated to any545

possible value that k can take in the range 0 ≤ k ≤ n). To calculate the limit correctly,546

at this point we assume that interactions scale with n as µ = µ̂/n. In this way, the total547

interaction strength for any species is independent of n. Otherwise, since µ only enters in548

equation (S52) through the combination s = α
µ − 1, if we do not assume the scaling in the549

limit for n → ∞ any dependence on interaction strengths will be lost for n large. Therefore550
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we write s = nu− 1, where u := α/µ̂ and equation (S52) becomes551

P({S}k|n) = k + nu− 1
2πi

∫ ∞
−∞

dy

∫
Γ
dw ey

2−ywe−nh(y,w;σ), (S54)

where we use the shorthand σ := (q, u, v) and552

h(y, w;σ) = q

2
(
y2 − w2

)
− q log[1− Φ(w − v)]− (1− q) log Φ(y − v) + uy2 − uyw. (S55)

In this limit of large n, the exponential function e−nh(y,w;σ) is very peaked around the global553

minimum of the real part of h(y, w;σ). Then we can evaluate the integral by approximating554

the exponent up to second order around the minimum. Note also that w is a complex variable555

and h is an analytic function of w. Then the Cauchy-Riemann condition holds (i.e., the556

real part of h satisfies the Laplace equation) and the minimum of <(h) calculated along the557

integration path Γ is given by the maximum of <(h) when w is regarded as a real variable.558

Then we expect a saddle point in the real (y, w) plane.559

The conditions for the critical point form a coupled system of non-linear equations for y560

and w as functions of σ:561

∂h

∂y
= qy − (1− q)Φ′(y − v)

Φ(y − v) + 2uy − uw = qy − (1− q) e−(y−v)2/2
√

2πΦ(y − v)
+ 2uy − uw = 0,

∂h

∂w
= −qw + q

Φ′(w − v)
1− Φ(w − v) − uy = −qw + q

e−(w−v)2/2
√

2π[1− Φ(w − v)]
− uy = 0.

(S56)

This system can be solved numerically for each tuple σ = (q, u, v), yielding the functions562

y?(σ) and w?(σ) as the coordinates of the critical point. We now expand h(y, w;σ) around563

these coordinates point up to second order. Using that Φ′′(y − v) = −(y − v)Φ′(y − v) and564
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the conditions (S56), we find565

∂2h

∂y2

∣∣∣∣∣ y=y?
w=w?

= 2u+ q + (1− q)
[
y − v + Φ′(y − v)

Φ(y − v)

]Φ′(y − v)
Φ(y − v)

∣∣∣∣
y=y?
w=w?

= 2u+ q + (2uy? + qy? − uw?)
(
−v + y? − u(w? − 2y?)

1− q

)
,

∂2h

∂w2

∣∣∣∣∣ y=y?
w=w?

= −q + q

[
−w + v + Φ′(w − v)

1− Φ(w − v)

] Φ′(w − v)
1− Φ(w − v)

∣∣∣∣
y=y?
w=w?

= −q + (uy? + qw?)
(
v + uy?

q

)
,

∂2h

∂y∂w

∣∣∣∣∣ y=y?
w=w?

= −u.

(S57)

In Section S5 we show that the critical point obtained by solving the coupled system (S56)566

is precisely a saddle point, as stated above. Therefore, up to second order around the saddle567

point,568

h(y, w;σ) ≈ h(y?, w?;σ)+1
2
∂2h

∂y2

∣∣∣∣∣ y=y?
w=w?

(y−y?)2+1
2
∂2h

∂w2

∣∣∣∣∣ y=y?
w=w?

(w−w?)2+ ∂2h

∂y∂w

∣∣∣∣∣ y=y?
w=w?

(y−y?)(w−w?).

(S58)

Substituting the expansion into equation (S54) and transforming the integral over Γ back into569

an integral over a real variable yields, up to first order in the asymptotic expansion of the570

exponent in powers of 1/n, the following approximation for the probability P({S}k|n) that571

the support of the globally stable fixed point is {S}k:572

P({S}k|n) = n(q + u)− 1√
K(σ, n)

e−nh(y?,w?;σ)+y?(y?−w?), (S59)

with573

K(σ, n) := (nu− 1)2 + n2
[
−q + (uy? + qw?)

(
v + uy?

q

)]
×
[ 2
n
− 2u− q − (2uy? + qy? − uw?)

(
−v + y? − u(w? − 2y?)

1− q

)]
. (S60)
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We can write equation (S59) as574

P({S}k|n) = n(q + u)− 1√
K(σ, n)

enH(σ)+G(σ) (S61)

where575

H(σ) := q

2
(
w?2 − y?2

)
+ (1− q) log[Φ(y? − v)] + q log[1− Φ(w? − v)]− uy?2 + uy?w?,

G(σ) := y?(y? − w?).
(S62)

We now use the Stirling approximation to get576

(
n

qn

)
≈ e−n[q log q+(1−q) log(1−q)]√

2πq(1− q)
. (S63)

According to equation (S51), our approximation for the probability of coexistence is577

P (k|n) = n(q + u)− 1√
2πq(1− q)K(σ, n)

enF (σ)+G(σ), (S64)

where578

F (σ) := q

2
(
w?2 − y?2

)
+ (1− q) log[Φ(y? − v)] + q log[1− Φ(w? − v)]

− uy?2 + uy?w? − q log q − (1− q) log(1− q), (S65)

In the discrete distribution given by equation (S64) we have to set k = qn for 0 ≤ q ≤ 1 (i.e.,579

0 ≤ k ≤ n). We can reproduce the original parameterization with non-scaled interspecific580

interactions (µ) by changing µ̂ back to nµ, i.e, replacing the constant u by α
nµ .581

S5 Classification of the critical point582

In order to prove that the critical point (y?, w?) obtained as the solution of Eq. (S56) is a583

saddle point, we only have to show that the discriminant satisfies584

D(y?, w?) =
(
∂2h

∂y2

)(
∂2h

∂w2

)
−
(
∂2h

∂y∂w

)2

< 0, (S66)
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where all the derivatives are evaluated at the critical point. From Eq. (S57) we observe that585

D(y?, w?) =
(
∂2h

∂y2

)(
∂2h

∂w2

)
− u2. (S67)

We now show that ∂2h
∂y2 ≥ 0 and ∂2h

∂w2 ≤ 0 at the critical point for any combination of parameters586

σ = (q, u, v). This will complete the proof.587

First, consider the expression in (S57) for ∂2h
∂y2 . Since u > 0 (recall that we study the case588

α < µ < 0 and u = α/µ̂ = α/(nµ) > 0) and 0 ≤ q ≤ 1, we can write589

∂2h

∂y2

∣∣∣∣∣ y=y?
w=w?

≥ (2uy? + qy? − uw?)
(
−v + y? − u(w? − 2y?)

1− q

)
. (S68)

This product is positive or zero. On the one hand, according to (S56),590

2uy? + qy? − uw? = 1− q√
2π

e−(y?−v)2/2

Φ(y? − v) , (S69)

which is obviously a non-negative quantity. On the other hand, y?−u(w?−2y?) = (1−q)y?+591

2uy? + qy? − uw?, hence592

−v + y? − u(w? − 2y?)
1− q = y? − v + e−(y?−v)2/2

√
2πΦ(y? − v)

= f1(y? − v), (S70)

where we have defined the function f1(x) = x + e−x
2/2

√
2πΦ(x) . It increases monotonically and, as593

x→ −∞, f1(x) ≈ − 1
x > 0. Therefore f1(x) > 0 for all x and we have shown that ∂2h

∂y2 ≥ 0.594

Now, from (S56) we obtain595

uy? + qw? = q√
2π

e−(w?−v)2/2

1− Φ(w? − v) . (S71)

Therefore we can express the term v + uy?/q that appears in Eq. (S57) as596

v + uy?

q
= −(w? − v) + e−(w?−v)2/2

√
2π[1− Φ(w? − v)]

. (S72)
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Let us define the function597

f2(x) = e−x
2/2

√
2π[1− Φ(x)]

. (S73)

Using the three equations above into (S57) we find598

∂2h

∂w2

∣∣∣∣∣ y=y?
w=w?

= −q{1 + f2(w? − v)[w? − v − f2(w? − v)]}. (S74)

Now we observe that the function599

f3(x) := 1 + f2(x)[x− f2(x)] (S75)

is equal to the derivative of f4(x) = x − f2(x) with respect to x, f3(x) = f ′4(x). Therefore,600

to show that ∂2h
∂w2 ≤ 0 it is sufficient to see that f4(x) is a monotonically increasing function601

(hence f3(x) > 0 and ∂2h
∂w2 = −qf3(w? − v) < 0). A simple graphical analysis for f4(x) proves602

that this is indeed the case. As a consequence,603

D(y?, w?) =
(
∂2h

∂y2

)(
∂2h

∂w2

)
− u2 ≤ −u2 < 0 (S76)

and (y?, w?) is a saddle pont.604

In summary, we have shown that the solution (y?, w?) of Eq. (S56) is a saddle point for605

the function h(y, w;σ) defined in Eq. (S55), when w is regarded as a real variable. This606

implies, by the Cauchy-Riemman condition, that the real part of h has a minimum along the607

imaginary w axis (i.e, along the integration contour Γ). Since the saddle point is unique,608

it yields a global minimum for the exponent in the probability (S54) of finding the globally609

stable fixed point with support {S}k.610

S6 Mode of the distribution for large number of species611

For large n, the mode of the distribution (S64) is recovered at a q? value such that F takes its612

maximum value. We now calculate this q? in the limits α/µ̂ � 1 (the mode has to be close613

to 1/2) and the ecological case α/µ̂� 1.614

First recall that, by definition [cf. equation (S37)], v = γs
k+s . In the limit of large n,615

v = γu
q+u is a function of q, so we have to take into account this implicit dependence on q. We616
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take the derivative with respect to q on equation (S65),617

∂F

∂q
= 1

2
(
w?2 − y?2

)
+q
(
w?w?′ − y?y?′

)
−log Φ(y?−v)+log(1−Φ(w?−v))+(w? − 2y?)uy?′

+ uy?w?′ + (1− q)
(
y?′ − v′

)Φ′(y? − v)
Φ(y? − v) − q

(
w?′ − v′

) Φ′(w? − v)
1− Φ(w? − v) + log 1− q

q
. (S77)

Now, according to equation (S56),618

Φ′(y? − v)
Φ(y? − v) = qy? + 2uy? − uw?

1− q ,

Φ′(w? − v)
1− Φ(w? − v) = uy? + qw?

q
,

(S78)

so the derivative with respect to q simplifies to619

∂F

∂q
= 1

2
(
w?2 − y?2

)
− v(w? − y?)− log Φ(y? − v) + log(1− Φ(w? − v)) + log 1− q

q
. (S79)

Setting the derivative to zero yields the condition620

(1− q?)ew?
2/2−vw? [1− Φ(w? − v)] = q?ey

?2/2−vy?Φ(y? − v), (S80)

where the functions y?(σ), w?(σ) and v(q) are evaluated at q = q?. On the other hand,621

Φ′(y? − v)
Φ(y? − v) = qy? + 2uy? − uw?

1− q = e−(y?−v)2/2
√

2πΦ(y? − v)
,

Φ′(w? − v)
1− Φ(w? − v) = uy? + qw?

q
= e−(w?−v)2/2
√

2π[1− Φ(w? − v)]
,

(S81)

hence622

(1− q)e−(y?−v)2/2 =
√

2πΦ(y? − v)(qy? + 2uy? − uw?),

qe−(w?−v)2/2 =
√

2π[1− Φ(w? − v)](uy? + qw?).
(S82)

Substituting these expressions into equation (S80) yields, after some algebra, this simple623

condition for the mode of the distribution, q?:624

y?(q?, u, v(q?)) = w?(q?, u, v(q?)). (S83)
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Then, if this condition is satisfied, equation (S79) reduces to log 1−Φ(y?−v)
Φ(y?−v) = log q?

1−q? , which625

implies626

Φ(y? − v) = 1− q?. (S84)

From this we get627

y?(q?, u, v(q?)) = v(q?) +
√

2erf−1(1− 2q?). (S85)

Finally we take into account the last expression and use equation (S83) into equation (S56)628

to obtain629

√
2γu+ 2(q? + u)erf−1(1− 2q?) = e−[erf−1(1−2q?)]2

√
π

(S86)

which is a transcendental equation that determines the mode of the distribution q? = k?

n as a630

function of interaction strengths and growth rates. Equivalently, the transcendental condition631

for the mode can be expressed as632

α

µ̂
= e−[Φ−1(1−q?)]2

/2 −
√

2πq?Φ−1(1− q?)√
2π[Φ−1(1− q?) + γ]

, (S87)

with Φ−1(q) =
√

2erf−1(2q−1). A simple relation arises for the curve that separates left- and633

right-skewed distributions by choosing the mode to be q? = 1
2 :634

αγ

µ̂
= 1√

2π
. (S88)

In terms of the original (non-scaled) parameterization, this expression becomes635

αγ

µ
= n√

2π
(S89)

via the substitution µ̂→ nµ.636

In the limit of small interaction strengths (µ̂ � α) of the mean zero case (γ = 0), condi-637

tion (S87) reduces to638

k?

n
≈ 1

2 −
1

2π
µ̂

α
+ 1

4π

(
µ̂

α

)2
, (S90)

which reproduces the expected (binomial) behavior.639
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S7 Truncated-Gaussian distributed rates640

In this section we analyze the case that growth rates are drawn from a from a truncated641

Gaussian distribution,642

P (r) = 1
Zn

exp
(
−

n∑
i=1

(ri − γ)2

2

)
n∏
j=1

Θ(rj) , (S91)

so that every rate rj > 0 for j = 1, . . . , n (Zn is a suitable normalization constant). Then643

we can express the probability P({S}k|A) of observing the globally stable fixed point with644

support {S}k in a simple form:645

PT ({S}k|A) ≡
∫
dkx

(
k∏
i=1

Θ(xi)
)∫

dn−kz

 n∏
j=k+1

Θ(−zj)

fT (x, z|A) . (S92)

where646

fT (x, z|A) = |detA(s)|
Zn

exp
(
−1

2(x− ξ)TG(x− ξ)− 1
2‖z −A

(ns)x− γ1n−k‖2
)

×
k∏
i=1

Θ
(
−(A(s)x)i

) n∏
j=k+1

Θ
(
zj − (A(ns)x)j

)
. (S93)

We focus on the rank-one competitive case: A(s) = (α− µ)Ik + µ1k1Tk , A(ns) = µ1n−k1Tk647

for α < µ < 0. Then648

(A(s)x)i = (α− µ)xi + µ(1Tk x) = αxi + µ
k∑
s=1
s 6=i

xs. (S94)

Since Eq. (S92) forces that xi > 0, and α and µ are both negative, we find that −(A(s)x)i is649

always positive, i.e., it holds that650

Θ
(
−(A(s)x)i

)
Θ(xi) = Θ(xi). (S95)

On the other hand, µ(1Tk x) < 0 and we can express651

Θ
(
zj − (A(ns)x)j

)
Θ(−zj) = Θ

(
zj − µ(1Tk x)

)
+ Θ(−zj)− 1. (S96)
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Now, we apply the same changes of variable leading to Eq. (S27). Then we can write652

PT ({S}k|n) = |α− µ|
k−1|α+ (k − 1)µ|

Zn

∫
dkx

k∏
i=1

Θ(xi + ξ(k))e−
1
2x

TGx

×
∫
dn−kz

n∏
j=k+1

[
Θ(−zj − γ − kµξ(k)) + Θ(zj − µ(1Tk x) + γ)− 1

]
e−

1
2‖z−µ(1Tk x)1n−k‖2

.

(S97)

Let K = {1, . . . , n− k}. Expanding the product we get653

n∏
j=k+1

{
Θ(−zj − γ − kµξ(k)) +

[
Θ(zj − µ(1Tk x) + γ)− 1

]}

=
n−k∑
`=0

∑
p∈Cn−k

`
b=K\p

∏̀
j=1

Θ(−zp(j)+k − γ − kµξ(k))
n−k−`∏
i=1

[
Θ(zb(i)+k − µ(1Tk x) + γ)− 1

]
, (S98)

where p = (p(1), . . . , p(`)) is a combination of ` elements taken from K, p ∈ Cn−k` , and b is654

formed by the remaining elements of the set, b = {1, . . . , n−k}\p. Without loss of generality,655

since integrals are invariant under changes of indices in variable z, we can decompose656

PT ({S}k|n) = |α− µ|
k−1|α+ (k − 1)µ|

Zn

∫
dkx

k∏
i=1

Θ(xi + ξ(k))e−
1
2x

TGx

×
n−k∑
`=0

(
n− k
`

)
`+k∏

j=k+1

∫
dzjΘ(−zj − γ − kµξ(k))e−

1
2 [zj−µ(1Tk x)]2

×
n∏

i=`+k+1

∫
dzi
[
Θ(zi − µ(1Tk x) + γ)− 1

]
e−

1
2 [zi−µ(1Tk x)]2

.

(S99)

Note now that657

∫ ∞
−∞

dz
[
Θ(z − µ(1Tk x) + γ)− 1

]
e−

1
2 [z−µ(1Tk x)]2

= −
√

2πΦ(−γ). (S100)

Therefore we can decompose P({S}k|n) as the sum658

PT ({S}k|n) = (2π)n/2

Zn

n−k∑
`=0

(
n− k
`

)
[−Φ(−γ)]n−`−kP({S}k|`+ k), (S101)
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where P({S}k|n) is precisely the expression (S27) obtained for the non-truncated Gaussian659

distribution. According to Eq. (S39),660

P({S}k|`+k) = k + s

2πi

∫ ∞
−∞

dy

∫
Γ
dw e−

1
2 (k+2s)y2+syw+ 1

2kw
2 [1− Φ(w − v)]k[Φ(y − v)]`. (S102)

We introduce (S102) into (S101) and use the binomial expansion661

n−k∑
`=0

(
n− k
`

)
[−Φ(−γ)]n−`−k[Φ(y − v)]` = [Φ(y − v)− Φ(−γ)]n−k (S103)

to get the probability PT ({S}k|n) expressed as a double integral,662

PT ({S}k|n) = (2π)n/2−1(k + s)
i Zn

∫ ∞
−∞

dy

∫
Γ
dw e−

1
2 (k+2s)y2+syw+ 1

2kw
2

× [1− Φ(w − v)]k[Φ(y − v)− Φ(−γ)]n−k. (S104)

Note that the only difference with Eq. (S39) is the term Φ(−γ) that appears in the last factor663

of the integrand. Hence we can easily extend the saddle-point calculation for the truncated664

Gaussian case. The probability PT (k|n) =
(n
k

)
PT ({S}k|n) that the support has cardinality665

k in this case can be written, up to a normalization factor and sub-leading corrections, as666

PT (k|n) ∼ enFT (σ), where667

FT (σ) := q

2
(
w?2 − y?2

)
+ (1− q) log[Φ(y? − v)− Φ(−γ)]

+ q log[1− Φ(w? − v)]− uy?2 + uy?w? − q log q − (1− q) log(1− q). (S105)

We can compare the mode of the distribution for the truncated and the purely Gaussian668

cases. The calculation of the mode follows the same steps of the Gaussian case. The equations669

for the saddle point (y?, w?) are now670

qy − (1− q) Φ′(y − v)
Φ(y − v)− Φ(−γ) + 2uy − uw = 0,

qw − q Φ′(w − v)
1− Φ(w − v) + uy = 0.

(S106)
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As can be easily checked, the condition ∂FT
∂q = 0 to be satisfied by the mode q? leads to the671

same constraint as in the Gaussian case, y?(q?, u, v(q?)) = w?(q?, u, v(q?)), see Eq. (S83). This672

implies that673

Φ(y? − v) = 1− q? + q?Φ(−γ), (S107)

which reduces to the Gaussian-case condition for the mode in the limit of large γ, where both674

the truncated and the Gaussian distributions tend to almost overlap. Finally, after the same675

algebraic manipulations in the condition above we obtain the following non-linear equation676

that determines the mode in the truncated-Gaussian case:677

[1− Φ(−γ)]
[√

2γu+ 2(q? + u)erf−1(1− 2q? + 2q?Φ(−γ))
]

= 1√
π
e−[erf−1(1−2q?+2q?Φ(−γ))]2

.

(S108)

Figure S1 shows the most probable number of coexisting species obtained for the Gaussian678

and the truncated Gaussian distributions as function of the parameters γ and α/µ̂. We observe679

that the expected values for both cases are roughly the same for γ & 1.680
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Fig. S1. Comparison between the modes for purely Gaussian and truncated-Gaussian dis-682

tributed growth rates.683
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S8 Final communities684

Figure S2 shows the properties of the parameters of the communities found after the dynamical685

pruning, for an starting community of 1000 species, and a final community comprising 472686

species. As proposed recently30, the matrix of interactions in the pruned community is a687

random subset of the original. On the other hand, the distribution of growth rates changes688

in a nontrivial way, with a larger mean and positive skewness. This change is related to the689

negative diagonal that we need to add to the matrix in order to ensure stability, pushing the690

r’s values towards the right.691
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Fig. S2. Comparison between the properties of the original community with n = 1000 and693

the final community, after dynamical pruning, comprising n = 472 species. The first row694

shows the eigenvalue distribution of the matrix of interaction A; for a matrix in which the695

entries are i.i.d. samples from a distribution, we expect the eigenvalues to be approximately696

uniformly distributed in a circle in the complex plane, whose radius depends on the size of697

the system and the variance of the distribution5,26. In the second panel, we show that indeed698

the distribution of the off-diagonal elements of A is the same before/after dynamics. Finally,699

in the third panel we show that instead the distribution of growth rates changes non trivially.700

S9 Numerical simulations701

In this section, we detail the numerical simulations we used to corroborate our argument,702

and extend it to cases in which a direct analytic computation is unfeasible. We start by703

illustrating the Lemke-Howson algorithm that can be used to efficiently search for the non-704

invasible solution. Applying this algorithm, we were able to determine the non-invasible705

solution of a system without the need to integrate the dynamics numerically. Then, we detail706

the parameters for the numerical simulations—how are the matrices constructed, and how707

the network structure is introduced.708

S9.1 Lemke-Howson algorithm709

Because of the equivalence between the Lotka-Volterra and the replicator equation42, the non-710

invasible solution in the diagonally stable regime is the unique symmetric Nash equilibrium711

for the replicator dynamics in which the last element of the solution is played with non-zero712

probability41 (this last element can be interpreted as “the environment” when moving from713

LV with n equations to a replicator system with n+ 1 equations). We use the Lemke-Howson714

algorithm43 to find such a solution. This algorithm is based on exploring the vertices of the715

following polytope:716

P = {z ∈ Rn|z ≥ 0,Cz ≤ 1}, (S109)

where C is a positive payoff matrix of an n×n symmetric game—the positivity of the payoffs717

can be assumed without loss of generality, because adding a suitable constant to all the718

elements of the payoff matrix does not affect the dynamics.719
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We say that z ∈ P has label k if zk = 0 and label −k if (Cz)k = 1. Let us assume that P720

is simple (which holds almost surely in the cases we explore), that is, each vertex is adjacent721

to exactly n facets—a facet is defined by setting to equality one of the inequalities defining722

the polytope. Say that z represents strategy k if either it has label k or −k, then because723

of the simplicity assumption any z that represents all strategies is either 0 or the normalized724

vector ẑ = z/
∑
i zi is a symmetric Nash equilibrium for the game.725

In order to find the solution we move around the vertices of P starting from v0 = 0 using726

a tableaux T : r = 1 − Cz with a slack variable r. Say that rk is in the basis for a vertex727

v ∈ P if and only if v does not have label −k, and zk is in the basis if and only if v does728

not have label k. Then v0 has basis {r1, . . . , rn}, bring zn to the basis and by the min. ratio729

rule—i.e., by looking at the ratio between the free variable (in this case 1) and the coefficients730

of zn in the tableaux—choose rk to leave the basis and proceed to an adjacent vertex v1.731

In the next iteration bring zk to the basis and move to an adjacent vertex v2. We keep732

repeating this process until we get to a vertex v which represents all strategies, that is, v is a733

Nash equilibrium which moreover will have zn in the basis (since by construction the process734

will stop when the element leaving the basis is rn). Because of the simplicity assumption735

the process is going to terminate, having to do in the worst case 2n iterations. As it often736

happens, this worst-case scenario is never found in practice, making the algorithm efficient.737

Let us illustrate this ideas by a simple example. Take the Lotka-Volterra system with738

interactions739

A =

 −2 1

1 −2

 , (S110)

and intrinsic growth rates:740

r =
(
−1

3

)
(S111)

We build the payoff matrix:741

C =


−2 1 −1

1 −2 3

0 0 0

→


1 4 2

4 1 6

3 3 3

, (S112)
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where we have added a constant to all entries to make them all positive. At the beginning of742

the algorithm we have the following tableaux:743

r1 = 1− z1 − 4z2 − 2z3,

r2 = 1− 4z1 − z2 − 6z3,

r3 = 1− 3z1 − 3z2 − 3z3.

(S113)

We now bring z3 into the basis, and by the min. ratio rule: the ratio of 1 and the coefficients744

of z3, r2 should leave the basis and the updated tableaux is:745

r1 = 2
3 + 1

3z1 −
11
3 z2 + 1

3r2,

z3 = 1
6 −

4
6z1 −

1
6z2 −

1
6r2,

r3 = 1
2 − z1 −

5
2z2 + 1

2r2.

(S114)

Now z2 enters the basis, and in this case r1 leaves from the basis:746

z2 = 2
11 + 1

11z1 −
3
11r1 + 1

11r2,

z3 = 3
22 −

15
22z1 + 1

22r1 −
2
11r2,

r3 = 1
22 −

27
22z1 + 15

22r1 + 3
11r2.

(S115)

We bring z1 into the basis and then we are done because r3 leaves the basis in this case. So747

the Nash equilibrium for this game has full support. The final state of the tableaux is :748

z1 = 1
27 + 15

27r1 + 2
9r2 −

22
27r3,

z2 = 5
27 −

6
27r1 + 1

9r2 −
2
27r3,

z3 = 1
9 −

1
3r1 −

1
3r2 + 15

27r3.

(S116)

By normalizing the free elements in the final tableaux we also get the values at equilibrium,749

which in this case is (1/9, 5/9, 3/9). Because the last element is positive, then the two species750

coexist, the second with an equilibrium value that is five times as large as the first.751
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S9.2 Sampling the matrices and growth rates752

In the following we give the details of the construction of the matrices and growth rates for753

the cases we explored. For each case we repeat the process 2× 105 times.754

S9.2.1 Mean zero755

We sample the entries of B in pairs, (Bij , Bji) for j 6= i from a bivariate Normal distribution756

N(0,Σ) where Σ is a covariance matrix with diagonal 1 and off-diagonal ρ. The diagonal757

elements Bii are chosen from a standard Normal distribution N(0, 1). We then calculate758

the leading eigenvalue of B +BT : λM = maxλ(<(λ(B +BT ))). We define A = B − dI,759

where d is a constant sufficient to make A+AT negative definite. More precisely, we choose760

d = −λM − 10−6 (so that the matrix A+AT is barely stable). The entries of r are sampled761

from a standard Normal distribution N(0, 1).762

S9.2.2 Mean non zero763

In this case, the entries of the matrix are fixed and we choose each entry of r from a Normal764

distribution N(γ, 1).765

S9.2.3 Adding Structure766

In order to include a network structure, we generate an adjacency matrix G with a desired767

connectance level C (we used C = 0.1 and C = 0.25) and all diagonal elements set to one. In768

the case of a power-law structure, we use the sample fitness pl function from the igraph769

package in R with an exponent of 2. For the modular and bipartite structures we split the770

matrix in two blocks, and arrange the connectance levels within and among them such that771

one is higher than the other—in particular we require two parameters br and cr that determine772

the ratio of the size among the blocks and the ratio of the connectance within and among773

blocks (e.g. cr > 1 for a modular structure). The values used were br = 1/3 for both cases,774

with cr = 3 for modular, and cr = 1/3 for bipartite. This adjacency matrix is then multiplied775

element-wise to our original matrix. The results are presented in Figure 1 in the main text776

as well as in Figure S3.777
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In the mean-zero case the matrix is made negative definite by the same process described778

above.779

In the mean non-zero case the fully connected matrix is by construction negative definite780

(α < µ < 0) but when we add structure we need to restrict the values of µ that keep the781

negative definiteness.782

The prediction shown in Figure 3 of the main text is the mode of a fully connected system783

using the rescaled µ: µ̂ = nµC.784

ρ = −0.5 ρ = 0 ρ = 0.5

0 10 20 0 10 20 0 10 20

0.0
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fr
eq

ue
nc

y

n 5 15 30
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785

Fig. S3. As Figure 1 of the main text, but with modular (top) or “anti-modular” (i.e., close786

to bipartite, bottom) structures.787
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S10 Assembly788

So far, we have described the dynamical process associated with equation (S1) when starting789

with all n species present. A different view of the problem is to take our original n-dimensional790

system as a species pool, and from that derive the possible states to which one can arrive by791

adding one species at a time. This define a directed graph in which the nodes are the feasible792

states, and the edges represent invasion events connecting the two states (a subset of which793

is shown for example in Fig. S2). In this section we present numerical evidence that suggests794

that, in the regime of diagonal stability, one can find sets of persistent species satisfying795

equation (S7) which cannot be assembled (Fig. S4). In such cases, our end-state with k796

species cannot be built by adding a species at a time. The probability of finding such a797

case, however, decreases rapidly with k: when our final community has many species, the798

probability of finding at least one assembly pathway to build the community approaches one799

(Fig. S5).800
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Fig. S4. Assembling communities one species at a time. Top: we want to build the com-802

munity with species 1, 2, . . ., 7 present (darker shades for more speciose communities), by803

adding a species at a time. Starting from an empty system (state 0), we can try all assembly804

pathways in which we sequentially add one species at a time, let the dynamics unfold, and805
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reach a new state. In this case, an assembly path exists: by adding species 2, 5, 7, 3, 4, 6806

and 1 one at a time, we always recover a feasible and stable community (dynamics are shown807

on the right). Bottom: again, we would like to build the community with all seven species808

present. In this case, no assembly path exist. For example, we can add sequentially 7, 6, 5,809

3, and 2, reaching a stable community with five species. At this point, however, whenever810

we add one of the remaining species, we lose another—the state with all species present is811

unreachable, even when considering all possible assembly paths.812
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Fig. S5. Probability pA of finding an assembly path when starting from n species. For814

different means and correlations of interactions strengths, sampled from a bivariate Normal815

with mean µ (colors) and correlation ρ (columns), and for different values of mean intrinsic816

growth rates (γ, rows), we plot the probability of not finding an assembly path out of 106817

simulations. While there is a nontrivial effect of all parameters (for example, for ρ = 0.5 and818
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γ = 1 we found an assembly path for all simulations), in all cases we found that for sufficiently819

large n, all communities could be built by sequential invasions.820
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