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CONNECTED COMPONENTS OF REPRESENTATION VARIETIES

Kent Morrison!

ABSTRACT. Thisis primarily a survey of results known about the connected

components of varieties of representations of groups and algebras. The

examples discussed are finite groups, finite dimensional algebras, commutative

algebras, finite dimensional Lie algebras, finitely generated nilpotent groups,

fundamental groups of compact orientable surfaces.

Let T' be afinitely generated discrete group orlet A be a finitely generated associative
k-algebra over a field k. The set of n-dimensional representations of I" or A, thatis, either

Homgrp(l“,GLn (k))y or Homk_ (A,Mn (k)), is a variety defined over k. The basic problem

alg
of interest in this article is the characterization of the connected components of these varieties in
terms of algebraic data coming from I' or A, or, as we shall see with surface groups, in
terms of topological data -- characteristic classes -- of flat bundles on the surface. Since these
spaces of rcpres¢ntaﬁons are algebraic varieties, for each n there are only a finite number of
connected components.

Let Rrl @) and Rn (A) denote these algebraic varieties. (This is the notation of [LM]
which will be used in this article.) They are affine varieties over k, which we take to be
algebraically closed. We will generally use. Rn (A)  in what follows. The reader should realize
that setting A = kI, the group algebra of I', will give us Rn(r'). 'Two representations, are
isomorphic when they are in the same orbit of the conjugation action of GLn (k) .on Rn (A).
Each orbit is connected since it is the image of the connected group GLn (k) under the orbit
map, so we need only consider the connected components of the orbit space Rn (A)/GLn ).
This, however, is not usually a nice space but there is a better quotient; it is the variety associated

GL (k)

to the ring of invariants O'(Rn(A)) . Its points are in one-to-one correspondence with
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the isomorphism classes of semi-simple representations, these being precisely the closed orbits
of the action, and is denoted SSn (A). See [LM, Pr]. When I' isafundamental group
topologists as in [CS] are calling SSn () the “character variety” of n—dimensional
representations, a suggestive name because the traces of the elements P(¥), for ¥ € I' fixed
and O varying over representations, generate the coordinate ring of SSn (I‘).V For this
quotient the connected components are also in one-to-one correspondence with those of Rn @D,
the reason being that a component of Rn (I') is determined by a minimal idempotent in its
coordinate ring and idempotents are GLn (k)-invariant since GLn (k) isconnected. So we
have reduced the main question to this: when are two semi-simple representations in‘the same
component of SSn (A)?

When k = C- we can consider the usual (strong) topology on Rn (A) and SSn A)
and we can ask about the strongly connected components and the path components. Happily all
three notions -- the Zariski components, the strong components, the path components -- coincide
for complex algebraic varieties. It is easy to see that path connected = strongly connected =
Zariski connected: To show Zariski connected = path connected, first note that a Zariski
connected component is the union of irreducible components with a connected incidence graph.
Vertices represent irreducible components and two vertices are connected by an edge if the
corresponding irreducible components meet. Then use the fact that two points in an irreducible
variety lie in an irreducible curve, which over C is'a’Riemann surface, possibly singular, but
certainly path connected.

Now the problem of classifying the components should be easier than that of classifying
all finite dimensional representations and even easier, as we have seen, than classifying the semi-
simple representations. In the classical moduli probléms of algebraic geometry there are two
aspects: first to describe the discrete invariants (genus of a curve, degree and rank of a vector
bundle, Hilbert polynomial) and then to describe the continuous invariants (construction of a
good moduli space). The discrete invariants are usually easy to see and understand while the
continuous invariants require all the work. But for general representation varieties we have a
good moduli space SSn (A), although we do not know too much about it, but we do not even

know the discrete invariants, i.e. the connected components.
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In order to put some algebraic structure into the picture one may collect together the
connected components of R (A) forall n in° N and make them i mto an abelxan mon01d
using direct sum for addition. Then form the’ associated group by adJommg formal inverses and
denote this group D(A). In the case of representations of a group T the tensor product
provides a multiplication to make D(I") a commutative ring, and D) isa quomant of the o
usual representation ring R[I']. ‘In fact, by topologizing R[I'] with the natural topology
obtained by constructing R[] as the group associated to the monoid U R (I‘)/GL k)
(disjoint union), we see that D(I") is the'ring ‘of connected componentsn>g[ﬂ ’modulo the
connected component containing 0. / A

Intermediate between R[I] and‘ D(T) is K, (I-mod) where T-mod is the oategofy
of finite dimensional representations of I. ‘There are surjective homomorphisms |
RIT] » KO(I‘ -mod) » D). Now KO(F'M) as a group is free abolian on the classes of
simple modules and the class of - 0 in D(I") "only depends on the image of k p 1n SSn @,
which is the isomorphism class of the semi-simplification of P, that is, the sum of the simple
modules in a composition series for p. Therefore Ko(l"—md) maps surjectively onto D(T).
Likewise the corresponding statements hold for the groups R[A], KO(A-mod) and D(A). o »

- A word of warning: it is not known in general that the cancellation property holds for the
monoid of components, so it is not known whether we lose any information in the construction |
of the group D(A). We do not know whether it is possible for p ® O to bein the same ‘ N
componentas 0 & T+ while* 0 ‘and T ‘are in different components In all known
examples, however, cancellation does in fact hold. - ' ‘ »

The basic data are collected in the following examples.

Examplel Let A be a finite ditnensional k-algebra.’ Each component of R (A‘)V contoins a
unique closed orbit of semi-simple represéntations, so that the connected ooropoxiénts are o
bijective with the isomorphism classes of senﬁ-siﬁiplé representations, Two rcpfésentaﬁons"Are
in the same component if and only if they have isomorphic simple factors in their comoosiﬁon |
series. If A is semi-simple then the components are eiactly the orbits and also the irreducible

components; this is the situation for representations of a finite group I' when the characteristic
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of k does not divide the orderof I'. We have D(A) = R[A] and D) = R[I]; the

quotient varieties SSn (A) ‘ and SSn (") are finite sets of isolated points [Ar, Ga, Pr].

Example2 A isa ﬁifitely generated commutative k-algébra, 'k algebraically closed. A
splits into a i)roduét of connected algebras (i.e. having no non-trivial idempotents or equivalently -
a connected spectrum) A = Al X o X As . An A-module decomposes into a sum of Al -
modules and SSn(A) . is the disjoinf union of SSnl(A 1) X . X SSns'(As) as
(n;,...n)¢€ N® ranges over s-tuples with ri] + o+ n, = n Then S _(A)) =
(Spec A)m/Zm because the simple A, -modules are one-dimensional and R/(A) =

S S1 (A i ) = Spec Ai ;) = m is the symmetric group acting on the m-fold product of Spec A
by permuting the factois. Thén SSm (Ai ) is Connecied so that the components of SSn (A)
are identiﬁed by (nl s vees ns) whichisa diménsibn vécbr. Cancellation holds in the monoid

and D(A) = Z° [Mo 1].

Examnlg_} A = U(9), the enveloping algebra of a finite dimensional Li¢ algebra g overa
field k, algebraically closed of characteristic zero. In this case we write Rn(g), and so on, in
place of Rn (U(9)). The components of Rn(ﬂ) are bijective with the components of
Rn(ﬂlrad 9), via thé natural map Rn(ﬂ/rad ['}) ,_), kRn(y), and these are precisely the
isomorphism classes of g/rad g - modules since | g/rad g is semi-simple. Again cancellation
holds in the monoid of connected componexits since it is inherited from the category of $/rad g-

modules. D(d) as a group is free abelian on the élasses of simple g/rad g-modules. [Mo 1].

Examples 1-3 have an underlying sixrﬁlarity. In each case there is'a subalgebra B C A
such that Rn ‘(A,)’ - Rn (ﬁ) induces a bijection on connected components and B is a semi-
simple algebra so that the Componems bf Rn (B) “are just the orbits. Thus SSn (B) is a finite
set of points and ihe inverse images of the map SSn A) - SSn (B) are the connected
components. Inexample 1, B isa semi-simple algebfa isomorphic to A/N where N is the

nilpotent radical. In example 2, B =kx . X k,‘ s factors, embedded in
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A = A1 X ... X A . In example 3, B = U(8) where § is the semi-simple factor in the

Levi decomposition § = 8 @ radg [Mo1].

Exampled4 T is anilpotent groupand I'ab is torsion free (b is the abelianization
I/[T',I'].) The components of SSn (I") are the twist-isomorphism classes and they are the
irreducible components, too. Let P = P, ©& .. & p be a semi-simple representation
decomposed into simple ones. Let X = (Xl’ ey Xm) be a multi-character; i.e. each Xi
is a one-dimensional representation. Then X e p = X0 @ . ® X is the twist of
p by x andissaid tb be "twist—iéomorphic" to 0. The twist of a simple representation
remains simple so D(I") is generated by the twist-isomorphism classes of simple
representations, and in fact freely generated by them, the argument being that the monoid of
connected components is the free abelian monoid on the twist-isomorphism classes of simple
representations. If p = P, & .. & p and 0 = 0, & .. ® ¢ are in the same
component then each simple factor (,  is twist isomorphic to some simple Gj and / = m.
The monoidis N ® with S the set of twist-isomorphism classes of simple representations

and D) = Z® LM, Rul.

Whereas the components in these four examples are given by algebraic data in the rest of
the examples topological data -- characteristic classes or classes of vector bundles -- prove
effective. We also consider representations into groups other than GLn (k) suchas
PSL,(R) and U).

Let ‘M be a manifold. For each homomorphism © from the fundamental group of
M toaLiegroup G there is a principal G-bundle P over M with a flat connection and
also flat connections on any associated bundles. Thus GLn(ﬂZ) representations give flat
complex vector bundles. The construction of the principal bundle is this: n (M) actson
MxG by ¥ e (zg = (zy-1p(y)g), where M is viewed as a principal n, (MD-
bundle, and P = (Kll X G)/1|:1 (M). The flat connection on P, viewing it as a horizontal
distribution, descends from the trivial flat connection on M x G whose leaves are M x

{g}, and p is the holonomy or the monodromy of the connection. The term holonomy is
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preferred by differential geometers and monodromy is preferred by algebraic geometers. If o
is changed to an isomorphic representation the resulting flat connection is isomorphic, using the
appropriate notion of morphism of connections, to the flat connection arising from p, and
every flat connection on a principal G-bundle can be constructed ﬁom its holonomy
(monodromy). Therefore there is a bijection between Hom(ﬂ:1 (M),G)/G, the isomorphism
classes of representations, and the isomorphism classes of flat connections on all principal G-

bundles over M.

Key point If p 0 and P , are in the same component of Hom(z,G) then there is a
homotopy of the associated principal bundles so that the bundles must be isomorphic
(disregarding the flat connections). Thus any topological invariant of G-bundles is a discrete
invariant of representations into G.

First and foremost among these invariants is simply the topological type of the bundle
and is the main theme of the remaining examples. The topological type may be expressed as an
Euler class or a Stiefel-Whitney class or a Chern class, particularly when the base space is a

* surface, in which case it can also be seen as the obstruction to lifting the representation g G

~

to the universal cover G.

When G is an algebraic group (real or complex), as in all our examples,
Hom(rw,(M),G) has a finite number of components, since it is an algebraic variety, so there are
only a finite number of distinct principal G-bundles that have flat connections. Understanding
which G-bundles have flat connections is part of the problem of classifying the connected
components of Hom(w,G) using topological information. The components (finite in number)
are grouped into classes with isomorphic underlying G-bundles so that the classification problem
has two parts:
€)) Identify the G-bundles admitting flat connections;

2) For each such G-bundle indentify the components associated to it.
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ExampleS We will see this program explicitly here for M a compact orientable surface of
genus g 2 2 and G = PSL2([R ) or SLZ(IR). Goldman [Go 1] and Jankins [Ja] determined
that the connected components of Hom(7t1 (M),PSL2( R)) are exactly the fibers of the
continuous map e : Hom(7\:1 (M),PSLZ( R)) = Z, the “Euler number” map defined so that
e(p) is the Euler number of the R [P l-bundle associated to the principal PSL2(IR)-bund1e
arising from p where PSL,(R) actson R P! = S! in the natural way as linear fractional
transformationson R U {oo},k or equivalently as automorphisms of RP1 as the set of lines
in R2. It was already known by work of Wood [Wo] that an S1-bundle with structure group
Diff + S1 has a flat connection if and only if its Euler number e satisfied |e| < Ixewpy | =
2g - 2. (Beware that these are not principal S !-bundles under consideration.) Earlier Milnor had
shown that a principal bundle with structure group GL;( R), the plus denoting positive
determinant, has a flat connection if and only if its Euler number (that of the associated plane
bundle) e satisfies le|< g-1 [Mi]. Now for GL;( R) we may just as well use

S L2(IR ). The factor of 2 present in the first inequality can be explained by the fact that

q: SLz(lR) - PSL2([R) is a double cover.

We have the commutative diagram

Hom(nl(M),SLz(lR)) g-;k Hom(nl(M),PSLz([R))

e'd le

2
Z — z

where e and e' are the Euler class maps and 2 denotes multiplication by 2. Goldman [Go 2]
has also determined the components of Hom(n1 (M),SLZ( R). For 1-g<k<g-1,
(¢)"1(k) is a component and is a covering space of e-1(2k) of index 228 For k = 1-g
and k = g-1, )l is 2% components, each one of which is diffeomorphic to e-1(2k).
The difference for the extreme value of k is due to the fact that the components of

Hom(7t1 (M),PS L2( R)) with Euler number + (2 - 2g) correspond to Fuchsian representations

of T, (M) and their orbit spaces correspond to Teichmiiller space which is contractible. Thus we
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see that there are 228+1 + 2g - 3 components of Hom(7t1 (M),SLz(lR)) partitioned into
2g - 1 topological types. k

More can be said about the topology of the other components of Hom(ﬂ;1 D),

PSL 2(‘[R }). Hitchin [Hi] has recently shown that the moduli space c'l(k)/PSLz(IR) is
diffeomorphic to a cor;lplex vector bundle of C-rank g-1+k over the symmetric product
SZg-Z-k M.

The Euler number can be seen more directly for a representation 0 : T, M) - G asan
obstruction to lifting Q0 to 5 imy ™M) - é, where G is the universal covering group of
G. Let nl(M) have the standard presentation (ocl, . ocg, Bl, o Bg 11 Lo ,Bi] = 1).
Let p(oci ) = Ai , P (Bi ) = Bi in G. Pick any lifts of Ai and Bi in G and call
them A, and B, . Then T(A,.B,1 ¢ Kerp = m,(G), p: G > G. As 7,(PSL,(R)) =
Z we get an integer which is the Euler number. For an arbitrary manifold M we consider the
exact sequence of Cech cohomology sets

H1MG) » HIMG) — HXMm,(G))
arising from the exact sequence of constant sheaves over M
0 - 1:1(G)—>(~}—>G—>1,
and we interpret H1(M,G) as the isomorphism classes of principal G-bundles with flat
connections, i.e. HIM,G) = Hom(1t1 (M),G)/G. The obstruction class map 0, is the
composition
Hom(w, M),G) — Hom(, M),G)/G 5 HIM,G) - Hz(M,nl(G)).
For G = U(n) or GLn((I:) we get the first Chern class, an integral cohomology class since
T (Um) = Z. For G = SO(), n = 3, we get the second Stiefel-Whitney class in
HZM,Z 2), whose vanishing means the structure group lifts to Spin(n).

In 1976 Heitsch posed the problem of finding the supremum of the absolute value of the
Euler number for real vector bundles of rank 2n with structure group a discrete subgroup of
S L2n( R) i:e. flat orientable bundles, over a manifold M of dimension 2n and to do so in
terms of topological invariants of M such as the Euler and Pontryagin classes [DT]. Earlier
Sullivan showed that an upper bound is the number of top dimensional simplices of a

triangulation of M [Su]. See also [Du, He].
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Example6 M is a compact surface of genus g just as in the previous example. The space
of equivalence classes of unitary representations Hom(ﬂ:1 M), Um))/U(n) is the moduli space
of semi-stable holomorphic vector bundles of degree 0 (i.e. topologically trivial) and rank n on
a Riemann surface with M as the underlying differentiable manifold [NS, Se}. A priori
Hom(n 1 (M),U(n))/U(n) has no complex structure but in fact it is a projective variety and the
complex structure depends on the complex structure of M, an aspect described in greater
generality in [AB, H]. When n = 1, the U(1) conjugation action is trivial, and
Hom(x 1 (M),U(1)) is the Jacobian variety of the Riemann surface. Topologically,
Hom(nl(M),U(l)) = Hom(H1 M, 2),U(1)) = Hom(Zzg,U(l)) = U(1)2g, but of course
this ignores the complex structure [Gu 1, Gu 2].

Hom(n1 (M),U(n)) is connected as shown by the work of Narasimhan and Seshadri.
The quotient space fibers over the Jacobian variety of M; the projection is the map that sends
each unitary representation to its determinant. The fibers are irreducible varieties. It should be
noted that since U(n) is compact each representation is semi-simple and so each orbit is closed

and Hom(1c1 M),Um))/U(n) is automatically Hausdorff,

Example7 For bundles of non-zero degree Atiyah and Bott [AB] have shown that there is a
central extension of T (M) by R that they denote rlR which generalizes the role of the
fundamental group in degree zero. The orbit space Hom(T R ,U(m))/U(n) is the moduli space
of all semi-stable holomorphic vector bundles of rank n over M. The degree (first Chern
class) is a discrete invariant and there is exactly one connected component for each degree.
Thus there are an infinite number of components, but Hom(I‘[R ,U(n)) is not an algebraic
variety since T R is not finitely generated. It is defined by the exact sequence

0 - R — Fm - nl(M) — 1 with H[ai,Bi]=1€ R. For n =1
every homomorphism I‘[R — U(1) factors through I‘T}g = U@l) x Z28 so

Hom(l"{R ,JU) = Hom(U(1) x Zzg,U(l)) = ZxU(1)28 with the Z-factor specifying the
degree. This space, which is an abelian group, is the Picard group of M; the connected

component containing 0 is the Jacobian variety.
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Example 8 We know that Hom(nl(M),GLz((E)) = R2(1t1(M)) is connected for M a
compact orientable surface of genus g = 0, andfor g = 0 and 1, Rn(n1 M) is
connected, but it is still unknownfor g 2 2 and n =2 3 whether or not Rﬂ(rc1 M) is
connected. The question can be reduced to the special linear representations:

If Hom(ﬂ:l (M),SLn((IZ)) is connected for M - a compact orientable surface then
Hom(xn 1 M) ,GLn((IZ)) is connected. That is because the tensor product (twist) map
t: Hom(n1 M),C*) x Hom(1t1 (M),SLn(C)) - Hom(nl(M),GLn((E)) is surjective,
since the equation X ® 0 = O canbe solved for X and O, when Q is given, by
X=(detp)/n and 0 = X1 ® p. The nthroots of det 0 exist because detp factors
through the free abelian group H1 (M,Z) and maps to the divisible group C*. The proposition
follows since Hom(n1 (M),(Ex) = ((IZ")2g is connected, so the domain of t is connected. ‘

In [Go 1, Go 2] it is shown that Hom(1c1 (M),SL2((]Z)) is connected by rather explicit
computations and arguments that will not work for SLn((E) in general. However the proof of
connectedness would follow easily from this stronger conjecture: the fibers of the commutator
map

SLn((E) X SLn((E) - SLn(ﬂ:)

(AB) - ABA-1B-1

are connected. Then it would be possible to deform a representation O considered as a 2g-
tuple (A1 ,A2, ves Ag,B1 s ey Bg) to the trivial representation by arbitrarily moving

Al Ag_l,B TRE. Bg-l
defining relation. For SL2((E) it is true that these commutator fibers are connected, but the

each to I and then deforming Ag and Bg s0 as to satisfy the

proof in [AM] does not generalize. There is only one isomorphism class of complex vector
bundle arising from representations of T M) in GLn((I:), namely the topologically trivial
bundle, as contrasted with real vector bundles arising from GLZ([R) representations. One
explanation is that the Chern classes of a complex vector bundle with a flat connection are all
torsion classes because as elements of H*(M,R) they can be constructed from the curvature

form of a connection. Over an orientable surface there is no torsion and the Chern classes
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completely describe the bundles. The connectedness conjecture is equivalent to the claim that
there is only one connected component of gauge-equivalence classes of flat connections on the
trivial bundle M x C" when M is a surface.

The stable version of the conjecture is that D(1t1 (M)) = Z, and although weaker it is

also unknown.

Example 9 This is not an example of known connected components but rather a general
setting for the stable version of the connectedness conjecture for surfaces. For a finite group I”
there is a beautiful theorem of Atiyah [At1] and for I' a compact Lie group a generalization of
Atiyah and Segal [AS] that relates the representation ring R[I"] with the ring of vector bundles
K(BI') over the classifying space of I'. In particular the completion R/[I\‘] with respect to the
augmentaton ideal defined by the dimension map is isomorphic to K(BI'), which is complete by
its construction as a limit of K(Bl"n) where BI‘n is the n-skeleton. When T is finite then
D) is the same as R{I'], butwhen I' is discrete but not finite then the natural map
o : R[I'] = K(BI') factors through D(I'), because the topological type of the bundle is
constant on connected components. We denote this map by & : D)) — K(BI') which is also
continuous for the augmentation ideal topology on D("), and thus there is a map
& D@ - K(BI).

Consider the case that ' = T, (M) forasurface M. Then BI' = M (which is also
K(T,1) since T is discrete). Now KM) = Z @ Z asagroupand Z[T}(T-1)2 as aring
where the bundle of rank n and degree (Chern class) d is n +d(T-1). The image of &
consists of the subring of flat bundles, i.e. those with d = 0, and is isomorphic to Z. Since
D(I') contains a copy of Z, knowing that & is injective would imply that D) = Z. Merely
knowing & s injective would not give us that much without knowing the kernel of the
completion D(I") — 6(?‘)

However for a discrete group I' the question is: to what extent is & 6(}) — K(@BI)
injective?

Another viewpoint for surface group representations in GLn(ﬂ:) is through Chern
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classes. For a discrete group I" and p € Rn(D we can associate Chern classes G ©E
H2i(1",Z) = H2i(BF,Z) which are simply the Chern classes of the associated vector bundle on
BT [At 1, Gr]. Obviously G (o) only depends on the component containing O, and so

c, (P) is a discrete invariant ’of Rn (IN. To what extent the Chern classes characterize the
components is quite unknown, since even for I" the fundamental group of a surface we do not
know. (Then of course < (P) = O since it's a torsion class and c ®) = 0 for i = 2 since

BI' = M has dimension 2.)

Example 10 This is another direction to generalize the conjecture that Hom(1t1 (M),SLn(C))
is connected for a surface M, replacing SLn(GZ) by an algebraic group G whose fundamental
group is finite. As we have seen the obstruction to lifting 0 : T M) -G to 5 DTy ™M) - G
is given by 0, : Hom(1c1 M),G) —» H2(M,1|:1(G)) = 1cl(G). We may ask, as in [Go 2], to
what extent are the fibers of 0, the connected components? We have here two finite sets: the
components of Hom(1t1 (M),G) and T, (G) and also a map between them. The positive
evidence that 0, characterizes the components given in [Go 2] is for G = SL2((E) with
1:1(G) =1, aswellasfor G = PSLZ(C) with T G = 22, for G = SU(2),

T l(G) =1 and for G = SO(3), 1:1(G) = Zz. To this list we may add G =SU(n),

n 1(G) = 1, forall n, since the moduli space of special unitary representations

Hom(n 1 (M),SU(n))/SU(n) is connected by [Se]. Itis thé moduli space of semi-stable bundles

of degree zero with holomorphically trivial determinant line bundle.

Example 11 For SLZ( R) representations of a surface group we have seen that several
connected components all give rise to the plane vector bundle with Euler number g-1 and 1-g.
Examples of this phenomenon for GLn((IZ) representations and complex vector bundles are
given by spherical space forms - manifolds of the form § KT where T is a finite group. Thus
they are manifolds M whose universal cover is a sphere and with finite fundamental group and
they include the real projective spaces and lens spaces. Except for the antipodal actions of Z2

on even dimensional spheres giving the even dimensional real projective spaces, the spherical
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space forms all come from a finite subgroup T of U(k) acting on SZk-1 C C2k without fixed
points. The classification of spherical space forms may be found in [Wf]. What we need is their
K-theory found in [At 2, Gi]. The homomorphism from the representation ring of I to K(M)
is surjective and the kernel is the ideal generated by ;, (-l)i[/\iT ] where T is the natural
representation of I on (Ek (remember I isa subgrlo=1?p of Uk)) and A iT is the exterior
power.

Now T is finite so the components of Rn(I') are just the isomorphism classes of
representations. If two non-isomorphic representations 0 and 0 differ by Z(—l)i[/\i’r ] and
if the dimensions are large enough so that the associated vector bundles are in the stable range,
then the bundles arising from P and O are in different components.

’ For a concrete example consider M = RP3 = §3/ Z,. Then R[Z,] = Z1x)/(x2-1)
where x is the class of the non-trivial character. The representation T : ZZ - GL2((]Z)
maps the generator to -I. Thus [T] = 2x in R[Zz], and [/\OT] =1, [A 1T] =[1] =
2%, [/\2T ] =1 So K(RP3) = Z[x}/(x2-1,2x-2). The rank 2 complex vector bundles
arising from the trivial two-dimensional representation and from T are the same in K(R [P3),
but that is in the stable range so they are isomorphic vector bundles and in fact the trivial bundle.
The only two dimensional representations are "the elements 2,2x,x+1 in R[ZZ]’ but x+1
defines a non-trivial bundle since x+1 # 2 in K(RP3), so we see that the rank 2 trivial
bundle has exactly two components of gauge-equivalence classes of flat connections. while the
other rank 2 bundle has one component. This phenomenon cannot occur for line bundles;
HXRP3Z) = Z , classifies line bundles by the first Chemn class and there are just two one-
dimensional representations which give rise to distinct elements of X(R P3) and must each,
therefore, correspond to one of the line bundles.

Iﬁ general for any manifold M and any line bundle the space of all flat connections is
connected. (Of course it may be empty.) This is because the space of flat connections of a line
bundle is an affine space modeled on the space of closed 1-forms which is a connected space.
We can also see that there is a one-to-one correspondence between the components of

Hom(n 1 (M),C") and the torsion subgroup of H2(M,Z).
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