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KENT E. MORRISON

ABSTRACT. We determine the exact probabilities of the different isomorphism classes of
tournaments that result from random sets of three and four independent dice drawn from
the balanced uniform model of 3-sided dice.

1. BACKGROUND AND RESULTS

By now it is well-recognized that various models of generalized dice exhibit surprisingly
high rates of intransitivity for randomly chosen dice. Given two dice A and B, where A
has face values a1, . . . , an and B has face values b1, . . . , bm, we say that A dominates B,
denoted by A � B, if it is more likely for A to show a higher value than B, that is∑

i,j

sgn(ai − bj) > 0.

If the sum is 0, then neither die dominates the other and we say that the result is a tie.
In this article we will always be working with dice with the same number of faces; i. e.,
m = n.

In 2016 Conrey, Gabbard, Grant, Liu, and Morrison [1] considered n-sided dice as integer
multisets of size n with elements in {1, 2, . . . , n} and satisfying

∑
ai = n(n + 1)/2. We

made two conjectures about random sets of three n-sided dice as n→∞.

• The probability of any ties goes to zero.
• The probability of an intransitive triple goes to 1/4.

For three dice A,B,C and in the absence of ties there are 23 possible configurations for
the relations between the three pairs (A,B), (B,C), and (A,C). Two of the eight config-
urations represent the intransitive cycles A � B � C � A and A � C � B � A. The
other six configurations are transitive chains. Evidence for the conjecture was provided by
Monte Carlo simulations showing that the probabilities of all eight configurations appear
to approach 1/8, and so the probability of an intransitive triple approaches 1/4 and the
probability of a transitive triple approaches 3/4. We also made much more speculative
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generalized conjectures concerning k random dice for any fixed positive integer k. First,
the probability that there is a tie between any of the k dice goes to 0. With no ties there are
2(

k
2) outcomes for all pairwise comparison, and each of these outcomes is represented by a

complete directed graph on k vertices, i.e., a tournament. The second generalized conjecture
is that in the limit all the tournaments are equally probable.

A few years later these conjectures became the topic of a Polymath project. An alternative
model was introduced, the balanced sequence model, in which an n-sided die is a sequence
A = (a1, . . . , an) of elements in {1, 2, . . . , n} with total n(n + 1)/2. The balanced sequence
model is easier to work than the multiset model. For example, a random die is now a
sequence of n iid random variables uniform in {1, . . . , n} and conditioned on the sum
being n(n+1)/2. The main results in [3] are that the conjectures for three dice hold for the
balanced sequence model. Thus, the questions for three dice in the multiset model are still
open, but it would be a surprise if they turn out to be false.

At the same time the Polymath project spurred some other work, and there is strong com-
putational evidence that the generalized conjecture about tournaments fails with four dice.
If the 2(

4
2) tournaments were all equally probable, then the probability of a transitive chain

and the probability of an intransitive cycle would both have limit 3/8 = 0.375, but several
independent simulations done for both the multiset and the sequence models produce data
with the experimental probabilities somewhat greater than 0.38.

Further evidence appears in the results of Cornacchia and Hązła [2] for four dice in the
balanced uniform model. In this model a random n-sided die is a point (a1, . . . , an) ∈
[0, 1]n chosen uniformly and conditioned on

∑
i ai = n/2. They prove that there exists

ε > 0 such that for n sufficiently large, the probability is greater than 3/8 + ε that four
random dice have a transitive tournament. In the same paper they prove that, in fact, the
conjectures do hold for three dice in the balanced uniform model. That is, as n → ∞,
the probability that three n-sided dice form an intransitive triple approaches 1/4, and the
probability that they form a transitive chain approaches 3/4.

In this note we consider random sets of three dice and four dice at the other extreme with
n = 3, which is the least number of sides of any interest. With three dice there are eight
tournaments in two isomorphism classes. One isomorphism class consists of the six tran-
sitive chains and the other class contains the two intransitive cycles. We find the the tran-
sitive probability is exactly 973/1230 = 0.76015625 and the intransitive probability is ex-
actly 307/1280 = 0.23984375. With four dice the 64 tournaments fall into four different
isomorphism classes: the 24 completely transitive chains, the 24 intransitive cycles, the 8
tournaments with an overall winner and a 3-cyle, and the 8 tournaments with an overall
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loser and a 3-cycle. We find the probabilities are:

transitive
110413771

25804800
≈ 0.42788

intransitive
99930571

25804800
≈ 0.38726

winner + 3-cycle
23851829

25804800
≈ 0.09243

loser + 3-cycle
23851829

25804800
≈ 0.09243

2. THREE DICE

The dominance relation between A and B is invariant under permutations of the coordi-
nates, and so we can assume that a1 ≤ a2 ≤ a3. We also have a1+a2+a3 = 3/2. The sample
space for a single die is the polygonal region in the a1a2-plane defined by the inequalities

0 ≤ a1, a1 ≤ a2, 1 ≤ 2a1 + 2a2, 2a1 + 4a2 ≤ 3.

The third and fourth inequalities come from a3 ≤ 1 and a2 ≤ a3 by replacing a3 with
3/2−a1−a2. Call this region Q. Its boundary is a quadrilateral within the unit square and
it has area 1/8. The probability measure on Q is the normalized area. See Figure 1.

The sample space for three dice (A,B,C) is the six-dimensional polytope Q3 ⊂ [0, 1]6. It
is defined by 12 linear inequalities, four for each of the three dice. The volume of Q3 is
1/83 = 1/512. We use the coordinates (a1, a2, b1, b2, c1, c2) for points in Q3.

Our goal is to compute the volume of the subset of Q3 defined by A � B � C � A.
Let’s first consider the inequalities that define A � B. It is not necessary to check all 9
comparisons between each ai and bj . It is sufficient to simply compare ai with bi.

Lemma 1. There are three different configurations for which A � B. They are

(�1) : a1 < b1, a2 > b2, a3 > b3

(�2) : a1 > b1, a2 < b2, a3 > b3

(�3) : a1 > b1, a2 > b2, a3 < b3

Proof. If ai > bi for all i = 1, 2, 3, then
∑
ai >

∑
bi, which is impossible. However, if any

two of the three hold, then A dominates B. The configurations are labeled �i according to
which inequality ai > bi fails to hold. �
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FIGURE 1. The sample space Q for a single random die

Lemma 2. If A �i B and B �i C, then A �i C. (That is, the relations �i are transitive.)

Proof. Straightforward. Just write down the inequalities. �

Lemma 3. IfA,B,C form an intransitive triple withA � B � C � A, thenA �i B �j C �k A
where {i, j, k} = {1, 2, 3}.

Proof. Assume that the three relations are not distinct. By relabeling, if necessary, we can
assume that i = j. Then A �i B and B �i C, and therefore A �i C, which is a contradic-
tion. �

For a permutation σ = σ1σ2σ3 define Eσ to be both the event

A �σ1 B �σ2 C �σ3 A

and the subset of Q3 representing the event. Each Eσ is a polytope defined by nine addi-
tional inequalities, three for each of the three relations. The union E =

⋃
Eσ is the event

that A � B � C � A, and P(E) = vol(E)/vol(Q3). Also, vol(E) =
∑

σ vol(Eσ). The
volumes of the Eσ are computed using the SageMath interface to LattE integrale.
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Lemma 4.

P(Eσ) =


23

1800
if σ = 123, 231, 312

3133

115200
if σ = 132, 213, 312

P(E) =
307

2560

Proof. See Section 4 for the code. Note that it suffices to compute the volumes of E123

and E132 because Eσ and Eσ′ have the same volume if σ′ is a cyclic permutation of σ. The
reason is that the cyclic permutation (A,B,C) 7→ (B,C,A) is volume preserving and maps
Eσ1σ2σ3 to Eσ2σ3σ1 .

�

Theorem 5. The probability that A,B,C form an intransitive triple is 307/1280 = 0.23984375.
The probability that they form a transitive chain is 973/1280 = 0.76015625.

Proof. By symmetry P(A � B � C � A) = P(A ≺ B ≺ C ≺ A), which is P(E), and so the
probability of an intransitive triple is 2P(E). The transitive probability is the complemen-
tary probability 1− 2P(E). �

3. FOUR DICE

The sample space for four dice (A,B,C.D) is the eight-dimensional polytope Q4 ⊂ [0, 1]8.
It is defined by 16 linear inequalities, four for each of the four dice. The volume of Q4 is
1/84 = 1/4096. We use the coordinates (a1, a2, b1, b2, c1, c2, d1, d2) for points in Q4.

The main computation that we need to do is to find the probability that A � B � C �
D � A. Then using symmetry and the results already computed for three dice we will
have enough to determine the probabilities of the four different tournament types. To see
how that works, we introduce the following notation for the probabilities of the different
isomorphism classes for three and four dice.
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transitive 3-chain P3-line

intransitive 3-cycle P4

transitive 4-chain P4-line

intransitive 4-cycle P�

winner + 3-cycle P1→4

loser + 3-cycle P1←4

Generating a random set of four dice and then deleting one of them at random gives a
random set of three dice. If the four dice are a transitive chain, then the remaining three
dice will be transitive. If the four dice are a 4-cycle, then removing one of them results in
a 3-cycle or a 3-chain, with two possibilities for each. If the four dice are a 3-cycle plus
winner/loser, then the result is a 3-cycle when the winner/loser is removed or a 3-chain if
one of the other three dice is removed. Therefore,

P3-line = P4-line +
1

2
P� +

3

4

(
P1→4 + P1←4

)
P4 =

1

2
P� +

1

4

(
P1→4 + P1←4

)
Furthermore, P1→4 = P1←4, because the transformation

A = (a1, a2, a3) 7→ A∗ = (1− a3, 1− a2, 1− a1)

reverses the relation between dice, and so the tournament associated to (A∗, B∗, C∗, D∗) is
the result of reversing all the edges in the tournament of (A,B,C,D). Therefore, once we
have found P�, we use it and the already known P3-line and P4 to solve for the remaining
probabilities.

Lemma 6. P� = 6P(A � B � C � D � A).

Proof. There are six ways to label the vertices of a 4-cycle. �

A priori, there are 81 different polytopes inQ4 to consider because each of the four relations
in the cycle A � B � C � D � A is �1,�2, or �3. For σ = σ1σ2σ3σ4, where σi ∈ {1, 2, 3},
letGσ be the eventA �σ1 B �σ2 C �σ3 D �σ4 A as well as the corresponding subset ofQ4.
The unionG =

⋃
Gσ corresponds to the eventA � B � C � D � A, and P(G) =

∑
P(Gσ).

Fortunately, we can reduce the number of Gσ whose volumes need to be computed.

Lemma 7. If σ′ is a cyclic permutation of σ, then vol(Gσ′) = vol(Gσ).

Proof. The map Q4 → Q4 : (A,B,C,D) 7→ (B,C,D,A) is an isometry and maps Gσ to Gσ′

where σ = (σ1, σ2, σ3, σ4) and σ′ = (σ2, σ3, σ4, σ1). �

Lemma 8. If σ has one or two distinct entries, then Gσ = ∅.
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Proof. The σ in question are the following and all cyclic permutations of them:

(iiii) : 1111, 2222, 3333

(iiij) : 1112, 1113, 2221, 2223, 3331, 3332

(iijj) : 1122, 1133, 2233

(ijij) : 1212, 1313, 2323

For σ in the first group the chain of inequalities obviously leads to a contradiction. Now
let σ = 1112, which means that a1 < b1 < c1 < d1 and d2 < a2. But we also have
a2 > b2 > c2 > d2, which is a contradiction. The remaining five σ in the second group are
disposed of similarly. From the third group we use the fact that the �i are transitive. If
σ = iijj then Gσ is the event A �i B �i C �j D �j A, and this implies that A �i C and
C �j A, which is impossible. Finally for σ = ijij we consider A �i B �j C �i D �j A.
Then for k 6= i, j we have ak > bk > ck > dk > ak, which is impossible. �

Lemma 9. There are 36 different σ for which P(Gσ) > 0. Each is a cyclic permutation of one of
the nine on the list below. If σ′ is a cyclic permutation of σ, then P(Gσ′) = P(Gσ).

σ P(Gσ)

1123 229/322560

1132 691507/294912000

1213 40913/15482880

1223 5431/8064000

1232 32299/16515072

1322 38929/18432000

1233 229/322560

1323 40913/15482880

1332 691507/294912000

Proof. See the Appendix for the Sage code to compute the volumes and probabilities. �

Notice that P(G1123) = P(G1233), P(G1132) = P(G1332), and P(G1213) = P(G1323). Consider
the event G1123, which means that A �1 B �1 C �2 D �3 A. Apply the star operator
to each die and verify that verify A∗ �1 D

∗ �2 C
∗ �3 B

∗ �3 A
∗. That is, �1 reverses

direction and changes to �3, while �3 reverses and changes to �1, and �2 only reverses
direction. Thus, the isometry

Q4 → Q4 : (A,B,C,D) 7→ (A∗, D∗, C∗, B∗)

maps G1123 onto G1233. It also maps G1132 onto G2133, which has the same volume as G1332

because 2133 and 1332 are cyclically related. And it maps G1213 onto G1323.
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Lemma 10.

P(A � B � C � D � A) = P(G) =
99930571

1548288000

Proof. There are four cyclic permutations of each σ in Lemma 9. So summing them and
multiplying by four gives P(G). �

Theorem 11. With four 3-sided dice in the balanced uniform model, the probabilities of the four
isomorphism classes of tournaments are the following:

P4-line =
110413771

258048000
≈ 0.42788 (transitive chain)

P� =
99930571

258048000
≈ 0.38726 (intransitive 4-cycle)

P1→4 =
23851829

258048000
≈ 0.09243 (winner + 3-cycle)

P1←4 =
23851829

258048000
≈ 0.09243 (loser + 3-cycle)

Proof. With four vertices there are six different 4-cycles. From Lemma 9 we know P(G),
the probability of one particular 4-cycle, and so

P� = 6P(G) = 6

(
99930571

1548288000

)
=

99930571

258048000
.

We also know P3-line = 973/1280 and P4 = 307/1280 from Theorem 5, so that we can solve
for P4-line, P1→4, and P1←4 using the equations

P3-line = P4-line +
1

2
P� +

3

4

(
P1→4 + P1←4

)
P4 =

1

2
P� +

1

4

(
P1→4 + P1←4

)
P1→4 = P1←4

�
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4. SAGE COMPUTATION: THREE DICE

We define the polytopes (or “polyhedra” ) in Sage using the half-space representation [4],
which is a system of linear inequalities of the form

0 ≤ β + α1x1 + α2x2 + · · ·+ αnxn.

This inequality is represented by (β, α1, α2, . . . , αn), a tuple of length n+ 1. Our variables
are a1, a2, b1, b2, c1, c2, so that, for example, the inequality 2a1 + 4a2 ≤ 3 is represented
by the 7-tuple (3,−2,−4, 0, 0, 0, 0). The twelve inequalities defining Q3 and their Sage
representations are the following:

0 ≤ a1, a1 ≤ a2, 1 ≤ 2a1 + 2a2, 2a1 + 4a2 ≤ 3,

0 ≤ b1, b1 ≤ b2, 1 ≤ 2b1 + 2b2, 2b1 + 4b2 ≤ 3,

0 ≤ c1, c1 ≤ c2, 1 ≤ 2c1 + 2c2, 2c1 + 4c2 ≤ 3.

(0, 1, 0, 0, 0, 0, 0), (0,−1, 1, 0, 0, 0, 0), (−1, 2, 2, 0, 0, 0, 0), (3,−2,−4, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0), (0, 0, 0,−1, 1, 0, 0), (−1, 0, 0, 2, 2, 0, 0), (3, 0, 0,−2,−4, 0, 0),

(0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0,−1, 1), (−1, 0, 0, 0, 0, 2, 2), (3, 0, 0, 0, 0,−2,−4).

To define E123 corresponding to A �1 B �2 C �3 A there are nine additional inequalities.

a1 < b1, a2 > b2, a3 > b3 ⇔ a1 + a2 < b1 + b2,

b1 > c1, b2 < c2, b3 > c3 ⇔ b1 + b2 < c1 + c2,

c1 > a1, c2 > a2, c3 < a3 ⇔ c1 + c2 > a1 + a2.

The Sage representations are

(0,−1, 0, 1, 0, 0, 0), (0, 0, 1, 0,−1, 0, 0), (0,−1,−1, 1, 1, 0, 0),

(0, 0, 0, 1, 0,−1, 0), (0, 0, 0, 0,−1, 0, 1), (0, 0, 0,−1,−1, 1, 1),

(0,−1, 0, 0, 0, 1, 0), (0, 0,−1, 0, 0, 0, 1), (0,−1,−1, 0, 0, 1, 1).

The polytope E132 corresponding to A �1 B �3 C �2 A has the additional inequalities
represented by

(0,−1, 0, 1, 0, 0, 0), (0, 0, 1, 0,−1, 0, 0), (0,−1,−1, 1, 1, 0, 0),

(0, 0, 0, 1, 0,−1, 0), (0, 0, 0, 0, 1, 0,−1), (0, 0, 0, 1, 1,−1,−1),

(0,−1, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 0,−1), (0, 1, 1, 0, 0,−1,−1).

For the volume computations we call the integrate function in LattE integrale using the
Sage interface [5].
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Sage input

from sage.interfaces.latte import integrate

Q3_ieqs = [(0,1,0,0,0,0,0),(-1,2,2,0,0,0,0),(0,-1,1,0,0,0,0),
(3,-2,-4,0,0,0,0),(0,0,0,1,0,0,0),(-1,0,0,2,2,0,0),
(0,0,0,-1,1,0,0),(3,0,0,-2,-4,0,0),(0,0,0,0,0,1,0),
(-1,0,0,0,0,2,2),(0,0,0,0,0,-1,1),(3,0,0,0,0,-2,-4)]

Q3 = Polyhedron(ieqs = Q3_ieqs)
vol_Q3 = integrate(Q3.cdd_Hrepresentation(),cdd=True)

E123_ieqs = [(0,-1,0,1,0,0,0),(0,0,1,0,-1,0,0),(0,-1,-1,1,1,0,0),
(0,0,0,1,0,-1,0),(0,0,0,0,-1,0,1),(0,0,0,-1,-1,1,1),
(0,-1,0,0,0,1,0),(0,0,-1,0,0,0,1),(0,-1,-1,0,0,1,1)]

E123 = Polyhedron(ieqs = Q3_ieqs + E123_ieqs )
vol_E123 = integrate(E123.cdd_Hrepresentation(), cdd=True)
prob_E123 = vol_E123/vol_Q3

E213_ieqs = [(0,-1,0,1,0,0,0),(0,0,1,0,-1,0,0),(0,-1,-1,1,1,0,0),
(0,0,0,1,0,-1,0),(0,0,0,0,1,0,-1),(0,0,0,1,1,-1,-1),
(0,-1,0,0,0,1,0),(0,0,1,0,0,0,-1),(0,1,1,0,0,-1,-1)]

E213 = Polyhedron(ieqs = Q3_ieqs + E213_ieqs)
vol_E213 = integrate(E213.cdd_Hrepresentation(), cdd=True)
prob_E213 = vol_E213/vol_Q3

prob_E = 3*prob_E123 + 3*prob_E213

print("vol(Q3) =",vol_Q3)
print("P(E123) =",prob_E123,"=",n(prob_E123,digits=9))
print("P(E213) =",prob_E213,"=",n(prob_E213,digits=9))
print("P(A>B>C>A) = P(E) =",prob_E,"=",n(prob_E,digits=9))
print("P(intransitive) =",2*prob_E,"=",n(2*prob_E,digits=9))

Output
vol(Q3) = 1/512
P(E123) = 23/1800 = 0.0127777778
P(E213) = 3133/115200 = 0.0271961806
P(A>B>C>A) = P(E) = 307/2560 = 0.119921875
P(intransitive) = 307/1280 = 0.239843750
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5. SAGE COMPUTATION: FOUR DICE

There are 16 inequalties needed to define Q4 in Sage. Each is represented by a tuple of
length 9. They are straightforward extensions of those used to define Q3.

To define Gσ where σ = ijkl we use the function G(i,j,k,l) which returns the Sage
polyhedron. This requires the inequalities forQ4 and the inequalities for the four relations.

For m = 1, 2, 3, 4 and i = 1, 2, 3 the function g(m,i) returns a list of three tuples asserting
that the mth dominance relation is �i. For example, g(3, 2) returns the tuples for C �2 D

since the third relation is the one between C and D. Then G(i, j, k, l) simply concatenates
the inequalities for Q4 with those coming from g(1,i),g(2,j),g(3,k), and g(4,l),
a total of 28 inequalties. The definition of g(m,i) uses vectors a1,a2,a3, . . . ,d1,d2,d3
so that an inequality such as a2 > b2 is represented by a2-b2. The vector a3 is actually
-a1-a2 and likewise for b3,c3,d3, because an inequality such as a3 > b3 is equivalent
to −a1 − a2 > −b1 − b2.

The function pr(i,j,k,l) returns the probability of Gijkl. First it finds the dimension of
G(i,j,k,l). If the dimension is less than eight, then the polytope has zero volume and
the probability is zero. If the dimension is eight, then the function uses the integrate func-
tion from LattE integrale to find the volume and multiplies by 4096 to get the probability.
It is necessary to check the dimension first, because the integrate function does not return
zero on polytopes of less than the full dimension.
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Sage input

from sage.interfaces.latte import integrate

Q4_ieqs = [(0,1,0,0,0,0,0,0,0),(-1,2,2,0,0,0,0,0,0),
(0,-1,1,0,0,0,0,0,0),(3,-2,-4,0,0,0,0,0,0),
(0,0,0,1,0,0,0,0,0),(-1,0,0,2,2,0,0,0,0),
(0,0,0,-1,1,0,0,0,0),(3,0,0,-2,-4,0,0,0,0),
(0,0,0,0,0,1,0,0,0),(-1,0,0,0,0,2,2,0,0),
(0,0,0,0,0,-1,1,0,0),(3,0,0,0,0,-2,-4,0,0),
(0,0,0,0,0,0,0,1,0),(-1,0,0,0,0,0,0,2,2),
(0,0,0,0,0,0,0,-1,1),(3,0,0,0,0,0,0,-2,-4)]

Q4 = Polyhedron(ieqs = Q4_ieqs)
vol_Q4 = integrate(Q4.cdd_Hrepresentation(),cdd=True)

a1=vector((0,1,0,0,0,0,0,0,0));
a2=vector((0,0,1,0,0,0,0,0,0));
a3=vector((0,-1,-1,0,0,0,0,0,0));
b1=vector((0,0,0,1,0,0,0,0,0));
b2=vector((0,0,0,0,1,0,0,0,0));
b3=vector((0,0,0,-1,-1,0,0,0,0));
c1=vector((0,0,0,0,0,1,0,0,0));
c2=vector((0,0,0,0,0,0,1,0,0));
c3=vector((0,0,0,0,0,-1,-1,0,0));
d1=vector((0,0,0,0,0,0,0,1,0));
d2=vector((0,0,0,0,0,0,0,0,1));
d3=vector((0,0,0,0,0,0,0,-1,-1));
def g(m,i):

s = ((-1,1,1),(1,-1,1),(1,1,-1))
if m==1:

return [s[i-1][0]*(a1-b1),s[i-1][1]*(a2-b2),
s[i-1][2]*(a3-b3)]

elif m==2:
return [s[i-1][0]*(b1-c1),s[i-1][1]*(b2-c2),

s[i-1][2]*(b3-c3)]
elif m==3:

return [s[i-1][0]*(c1-d1),s[i-1][1]*(c2-d2),
s[i-1][2]*(c3-d3)]

elif m==4:
return [s[i-1][0]*(d1-a1),s[i-1][1]*(d2-a2),

s[i-1][2]*(d3-a3)]
end



EXACT PROBABILITIES IN THE BALANCED UNIFORM MODEL 13

Sage input

def G(i,j,k,l):
return Polyhedron(ieqs = Q4_ieqs+g(1,i)+g(2,j)+g(3,k)+g(4,l))

end

def pr(i,j,k,l):
event = G(i,j,k,l)
if event.dim() < 8:

eturn 0
else:

return 4096*integrate(event.cdd_Hrepresentation(),cdd=True)
end

print(" Event Probability")
print("G(1,1,2,3) ",pr(1,1,2,3))
print("G(1,1,3,2) ",pr(1,1,3,2))
print("G(1,2,1,3) ",pr(1,2,1,3))
print("G(1,2,2,3) ",pr(1,2,2,3))
print("G(1,2,3,2) ",pr(1,2,3,2))
print("G(1,3,2,2) ",pr(1,3,2,2))
print("G(1,2,3,3) ",pr(1,2,3,3))
print("G(1,3,2,3) ",pr(1,3,2,3))
print("G(1,3,2,2) ",pr(1,3,2,2))

Output
Event Probability

G(1,1,2,3) 229/322560
G(1,1,3,2) 691507/294912000
G(1,2,1,3) 40913/15482880
G(1,2,2,3) 5431/8064000
G(1,2,3,2) 32299/16515072
G(1,3,2,2) 38929/18432000
G(1,2,3,3) 229/322560
G(1,3,2,3) 40913/15482880
G(1,3,2,2) 38929/18432000
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