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In April of 1973 a small company, Federal Express, began package delivery operations
by flying 186 packages to 25 cities in the U.S. from Memphis. In order to deliver small
packages quickly the company used a novel strategy in the shipping business. Every
day packages picked up from all over the country were flown to Memphis where they
were sorted and then flown to their destinations for delivery the next day. The strategy
has been extremely successful and has been adopted by other shippers such as UPS,
which established a shipping hub in Louisville. Meanwhile, Federal Express has grown
into a large company, now known as FedEx, with worldwide operations.

According to the company website [6], Memphis was

selected for its geographical center to the original target market cities for small
packages. In addition, the Memphis weather was excellent and rarely caused
closures at Memphis International Airport. The airport was also willing to make
the necessary improvements for the operation and had additional hangar space
readily available.

It is the question of the “geographical center” that is the focus of this article. Sup-
pose that FedEx were choosing its hub today with the assumption that anyone in the
U.S. is equally likely to ship a package to anyone else in the country. The goal is to
minimize the average distance the package must be shipped. Since we are assuming
that the sender’s and receiver’s locations are independent and identically distributed,
the average distance that a package travels is twice the average distance from the sender
to the hub location, and so the optimal location is a point located with minimal aver-
age distance to the population. This is equivalent to a point that minimizes the sum
of all the distances to the members of the population. Such a point we will call a hub
for the population. By the term FedEx problem, we mean the related questions of the
existence, uniqueness, and determination of hubs.

In the first section we deal with the FedEx problem for a population in R
n using the

Euclidean distance, and in section 2 we actually find the hub for the U.S. population
based on the data from the 2000 census and with the distance between points measured
along great circles. In the last section we consider the FedEx problem in more general
metric spaces and with more probability distributions.
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The Euclidean FedEx problem
The Euclidean FedEx problem in one dimension has a well-known solution: a hub for
the population is any median. Here is a quick proof. For a population located at the
points x1 ≤ x2 ≤ · · · ≤ xk , a hub must be between x1 and xk , for otherwise all the
distances to the xi could be decreased by moving the potential hub toward the points.
As far as x1 and xk are concerned, any point between them is equally optimal because
the sum of the distances to those two points is constant. Thus, we can eliminate x1 and
xk from the population and reduce the problem to a smaller population. We continue
to eliminate the endpoints until there is either one or two left. If there is one point left
(corresponding to k odd), then that point is the unique hub, and if there are two points
left (corresponding to k even), then any point between them is a hub. The results in
either case are medians for the population locations.

In higher dimensions the story starts with Fermat, who generally receives credit
for first posing the following problem, which we have updated and renamed for the
twenty-first century.

The FredEx Problem. Fred has been married and divorced three times. He has
three children, one from each marriage, and the children live with Fred’s ex-wives.
Each weekend Fred visits one of his children in a regular rotation. Where should he
live in order to minimize the distance he travels? Let the locations of the residences be
a, b, c ∈ R

2. We are assuming that they are near enough so that we do not have to take
into account the curvature of the Earth and that the metric is Euclidean distance. The
mathematical problem is to find the point h in R

2 that minimizes

f (x) = ‖x − a‖ + ‖x − b‖ + ‖x − c‖.
Torricelli gave the first solution to Fermat’s problem and eventually offered several

different proofs. The solution, to be discussed in more detail following the proof of
Theorem 1, has two cases. First, if the angles of the triangle abc are less than 2π/3,
then h is the point within the triangle such that the lines from h to the vertices form
three equal angles of size 2π/3. Second, if some angle is larger than 2π/3, then h
is the vertex of that angle. Note that the solution can be constructed by compass and
straightedge.

a

b

c

h

Figure 1. Solution of the FredEx problem with h inside the triangle.

Since then the problem of minimizing total or average distance has arisen repeat-
edly and in different contexts so that several different names are attached. In addition to
being called the Fermat-Torricelli problem, it is known as the Weber problem—named
for the economist Alfred Weber who was interested in the problem in connection with
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the location of industries. In the sub-area of operations research known as location
science, the problem is called the median problem or the single facility location prob-
lem. Statisticians may refer to the minimal point as the spatial, multivariate, or multi-
dimensional median. For a survey of the problem, its generalizations, and its history
see the article by Wesolowsky [14] with its extensive bibliography or the papers in the
collection edited by Drezner and Hamacher [3].

For the general FedEx problem in n-dimensional Euclidean space, we consider a
population of size k located at the points x1, x2, . . . , xk ∈ R

n , which are not necessar-
ily distinct. The function to be minimized is the sum of the distances from the xi to a
variable point x ∈ R

n

f (x) =
∑

i

‖x − xi‖.

Just as in one dimension where the hub is located between the extremes, a hub in
higher dimensions should be located “between” the points, which means, as we will
show in Theorem 1, that the hub lies in the convex hull of the points (i.e., the smallest
convex set containing them). Recall that a subset of R

n is convex if, for any two points
in the set, the points on the line segment between them are also in the set. The convex
hull of x1, x2, . . . , xk can be seen as the image of the compact set {(α1, . . . , αk)|αi ≥
0,

∑
αi = 1} under the continuous map sending (α1, . . . , αk) to

∑
αi xi . In particular,

the convex hull is compact.
The function f : R

n → R is continuous everywhere and differentiable at all x ∈ R
n

except the points xi . At a point x not equal to any of the xi the derivative D f (x) is the
linear map from R

n to R defined by

D f (x)(v) =
∑

i

〈
x − xi

‖x − xi‖ , v

〉
. (1)

We now have the ingredients to prove the existence and uniqueness of a hub for a
finite set of non-collinear points in R

n . Although this result has probably been proved
again and again, we cannot find it in the literature clearly stated with a complete proof.
A brief article by Haldane [7] contains the result for R

2 without mention of the convex
hull.

Theorem 1 (Existence and Uniqueness of a Hub). For any non-collinear
points x1, x2, . . . , xk in R

n there is a unique hub contained in the convex hull of the
points.

Proof. Let Z be the convex hull of x1, x2, . . . , xk and let x be a point not in Z .
There is a separating hyperplane H between x and Z . (See, for example, the Basic
Separation Theorem in [11, p. 158]). Let n be the unit normal to H pointing toward
x . Thus, 〈x, n〉 > 〈z, n〉 for all z ∈ Z . In particular, 〈x, n〉 > 〈xi , n〉 for i = 1, . . . , n.
Then it follows that D f (x)(n) > 0, and so f decreases from x in the direction −n.
More precisely, for some ε > 0, f (x − εn) < f (x). Therefore, a minimum of f | Z ,
which exists because f is continuous and Z is compact, will actually be a global
minimum of f .

Next we show that the function f is strictly convex. This means that for all x, y ∈
R

n and any t in the open interval (0, 1),

f (t x + (1 − t)y) < t f (x) + (1 − t) f (y).
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We have

f (t x + (1 − t)y) =
∑

i

‖t x + (1 − t)y − xi‖

=
∑

i

‖t x − t xi + (1 − t)y − (1 − t)xi‖

=
∑

i

‖t (x − xi ) + (1 − t)(y − xi )‖

≤
∑

i

(‖t (x − xi )‖ + ‖(1 − t)(y − xi )‖)

= t
∑

i

‖x − xi‖ + (1 − t)
∑

i

‖y − xi‖

= t f (x) + (1 − t) f (y).

The triangle inequality in the fourth line will be strict, unless t (x − xi ) and
(1 − t)(y − xi ) are linearly dependent, which is equivalent to x, y and xi being
collinear. Therefore, if the xi are not collinear, then there are no x and y simultane-
ously collinear with all the xi , and it follows that the inequality is strict. Thus, f is
strictly convex.

Finally, if there were two distinct minima for f , say x and y, then f (x) = f (y) and

f (t x + (1 − t)y) < t f (x) + (1 − t) f (y) = f (x)

for all t ∈ (0, 1), contradicting the fact that x is a minimum.

The hub h of the points x1, x2, . . . , xk must be a critical point of f , so that either
h = xi for some i or D f (h) = 0, which means

∑
i

h − xi

‖h − xi‖ = 0.

Now we return to the case of three points in R
2, which we can assume are not

collinear. If the hub is one of the points, then it must be the vertex opposite the longest
side of the triangle formed by the three points, because f (xi ) is the sum of the lengths
of the two sides meeting at xi , and this is minimal when the two sides are the shorter
ones. If the hub is not one of the xi , then it lies within the triangle. Let ui be the
unit vector pointing from h to xi . Then u1 + u2 + u3 = 0. By rotating the coordinate
system we may assume that u1 = (1, 0). Then u2 = (a, b) and u3 = (−1 − a, −b)

with ‖u2‖2 = a2 + b2 = 1 and ‖u3‖2 = (−1 − a)2 + b2 = 1. The last two equations
imply that a = −1/2 and b = ±√

3/2. Thus, the angle between any pair of the vectors
u1, u2, u3 is 2π/3.

If one of the angles of the triangle is 2π/3 or greater, then at any other point of the
closed triangle, the vectors from it to the other two vertices span an angle greater than
2π/3. Such a point cannot be a hub, and so the hub must be the vertex of the large
angle (see Figure 2).

If, on the other hand, all the angles are less than 2π/3, then the following continuity
argument, illustrated in Figure 3, shows that the hub is an interior point. Let L1, L2,
and L3 be three rays issuing from a point P and making equal angles of 2π/3 between
them. Place the triangle with one vertex at P , one vertex on L1, and the third vertex in
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b c
x

a

Figure 2. The solution of the FredEx problem is h = a. An interior point x cannot be the hub
because �bxc > �bac > 2π/3.

the region between L1 and L3. Now continuously slide the triangle so that the vertex
originally at P moves out along L2, and the vertex on L1 stays on L1 and moves toward
P . When the third vertex crosses L3 the vertices of the triangle are on the three rays,
and so the point P satisfies the property that the unit vectors from P toward the vertices
of the triangle sum to 0. Therefore, P is the hub and is an interior point of the triangle.
For more on this classical problem we recommend [9] for an extended discussion and
[8] for another proof using calculus.

L3

L2

L1P

Figure 3. Beginning with one side on L1 the triangle is moved until the third vertex meets L3.
The hub is at P .

There is also a nice description of the hub for four distinct points in R
2. We assume

that the four points are not on a line for otherwise we are in the one-dimensional
setting. Again there are two cases; the convex hull is either a quadrilateral or a triangle.
In the first case the hub is the intersection of the two diagonals. In the second case one
of the four points is in the triangular convex hull of the other three, and that point is
the hub.

To prove this result, first consider the case in which the four points are the vertices
of a convex quadrilateral and labeled so that the sequence x1, x2, x3, x4 makes a circuit
of the quadrilateral. Let h be the intersection of the diagonals; one diagonal is the line
between x1 and x3 and the other is the line between x2 and x4. Let ui be the unit vector
pointing from h to xi . Therefore, u1 = −u3 and u2 = −u4, and so u1 + u2 + u3 + u4 =
0, from which it follows that h is the hub.

For the second case suppose that x4 is in the triangular convex hull of the other
three points. Let h be the hub. Then either D f (h) = 0 or h is one of the xi . Suppose
D f (h) = 0. Then the unit vectors ui pointing from h toward the xi satisfy u1 + u2 +
u3 + u4 = 0. We may assume that they are ordered so that they run counter-clockwise
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around the unit circle. Therefore the points 0, u1, u1 + u2, u1 + u2 + u3 form a quadri-
lateral with sides of equal length, and such a quadrilateral must be a rhombus. Thus,
u1 = −u3 and u2 = −u4. Then x1 and x3 are on the line through h with direction vec-
tor u1, and x2 and x4 are on the line through h with direction vector u2. This means that
the xi are actually the vertices of a convex quadrilateral with h as the intersection of the
diagonals. This contradicts our assumption that the convex hull is a triangle. It follows
that h must be one of the xi . Finally, we claim that if x4 
= xi , then f (x4) < f (xi ). Con-
sider i = 1, since the other two are similar. The inequality f (x4) < f (x1) is equivalent
to

‖x4 − x2‖ + ‖x4 − x3‖ < ‖x1 − x2‖ + ‖x1 − x3‖,
which is clear from the picture in Figure 4 (proof left to the reader). Therefore, the hub
is x4, the point that is in the convex hull of the other three points. Note that x4 may be
on the boundary of the triangle.

x3x2

x4

x1

Figure 4. Proof that f (x4) < f (x1).

The “Varignon frame” is a mechanical device invented by Pierre Varignon (1654–
1722) for finding the hub of points x1, . . . , xk in R

2. On a flat piece of wood mark
the locations of the points and drill a hole at each point. For each hole take a piece of
string and attach a weight to one end—all weights the same. Put the string through the
hole with the weight below the board and tie all of the loose ends together. Hold the
board level and above the ground so that the weights can hang freely. The knot tying
all the strings together will move to the location of the hub.

The U.S. population hub
Let’s return to the original FedEx Problem of where to establish a shipping hub. Every
ten years the U.S. Census Bureau calculates a point called the “center of population.”
Could this point be the hub we are looking for? According to the current Bureau web-
site [13] the center of population is

the point at which an imaginary, flat, weightless, and rigid map of the United
States would balance perfectly if weights of identical value were placed on it so
that each weight represented the location of one person on the date of the census.

This clearly is not what we want in a hub. The U.S. is large enough so that the
curvature matters in measuring distance, and even if we could treat the U.S. area as
flat, this population center is the center of gravity for the population distribution, and,
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thus in effect it is the point minimizing the average squared distances to the population,
or, equivalently, the point minimizing the aggregate squared distance to all the people
in the country. However, it is an often held misconception that the center of gravity or
centroid minimizes the average distance. Even the Census Bureau suffered from this
confusion as witnessed by this passage from its Bulletin of the 1920 census (quoted in
[5, p. 34]):

If all the people in the United States were to be assembled at one place, the center
of population would be the point which they could reach with the minimum ag-
gregate travel, assuming that they all travelled in direct lines from their residence
to the meeting place.

After correspondence in 1926 between the Census Bureau, the American Statistical
Association, and a group of interested people, the Census Bureau fixed the problem by
taking out references to the minimum aggregate travel [4].

Although the population center of the Census Bureau is not the hub we are looking
for, it is interesting nevertheless to understand how it is calculated. This description
comes from [13] and is the method used for the censuses from 1950 to the most recent
one in 2000. The center of population is given as a pair of numbers (φ̄, λ̄) representing
the center’s latitude and the longitude. The latitude φ̄ is simply the average latitude of
the population:

φ̄ = 1

k

∑
i

φi .

However, the longitude λ̄ is not the average longitude. Instead it is defined by

λ̄ =
∑

i λi cos φi∑
i cos φi

.

To make some sense of this, notice that the distance from the point with latitude φ

and longitude λ to the Greenwich meridian (longitude zero) along the latitude line is
λ cos φ. Therefore, the distance to the Greenwich meridian (along lines of constant
latitude) averaged over the entire population is (1/k)

∑
i λi cos φi . This needs to be

converted to a longitude value. If we use the average cosine of the latitude of the
population in order to convert, then we get the formula of the Census Bureau:

λ̄ =
1
k

∑
i λi cos φi

1
k

∑
i cos φi

=
∑

i λi cos φi∑
i cos φi

.

The calculation of φ̄ and λ̄ gives (φ̄, λ̄) = (37.7◦, 91.8◦), which is a point in Phelps
County, Missouri, but there are some difficulties with this definition of the popula-
tion center. Here is one example. Suppose the population in question consisted of two
individuals, one located at (φ1, λ1) = (35◦, 120◦), which is near San Luis Obispo, Cal-
ifornia, and one located at (φ2, λ2) = (35◦, 80◦) near Charlotte, North Carolina. It is
easy to check that φ̄ = 35◦ and λ̄ = 100◦, which is the point midway between on the
same line of latitude. However, it is difficult to imagine any reasonable definition of
population center for this case that would give a point different from the midpoint of
the great circle between the two locations, which is (36.7◦, 100◦). In this case there is
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quite a discrepancy between the two answers. Both points are in Oklahoma, but they
are 116 miles apart.

If the Census Bureau insists that the population center be the center of gravity,
then it could be done more accurately by treating the area of the United States as a
region on a spherical shell with a unit of mass for each person. On the other hand
the Bureau could return to its definition of 1920 in which the population center is the
point of minimum aggregate travel but calculate it correctly. While it may have been a
daunting task back then, it is now a calculation that can be done easily with the data
provided by the Census Bureau.

Calculating the hub On its web pages [12] the Census Bureau provides 2000 cen-
sus data for the 65,443 census tracts in the 50 states. Each line of the comma-delimited
text file contains six numbers. The first three numbers identify the state, county, and
census tract. The last three numbers give the population of the tract and the latitude
and longitude in degrees of the population center of the tract. Note that the longitude is
negative because of the convention that east is the positive direction from Greenwich.
Here are a few lines from that file with the commas removed for readability.

State County Tract Pop. Latitude Longitude

06 077 005404 6511 +37.732419 −121.425296
06 077 005500 6876 +37.71513 −121.322774
06 079 010000 6803 +35.701192 −120.801674
06 079 010100 8787 +35.634833 −120.69533
06 079 010201 4687 +35.642344 −120.655632
06 079 010202 4180 +35.606719 −120.650357
06 079 010203 8069 +35.615338 −120.670017

We wrote a program to use this data to compute the function that is the aggre-
gate great circle distance from the entire population to the point with latitude φ and
longitude λ. Then we minimized this function on a grid with one degree increments.
Each evaluation of the function on a grid point took about two seconds, and so in sev-
eral minutes all points with any chance of being optimal could be checked. We found
the minimum to be (39◦, 87◦), a location in Greene County, Indiana, about 70 miles
southwest of Indianapolis. From this point the average distance to any person in the
country is 795 miles, while the average distance to Memphis is 843 miles. It is inter-
esting to note that as FedEx has grown it has established some secondary hubs, one of
them being in Indianapolis. Furthermore, the optimal location is only about 85 miles
northwest of Louisville where UPS has established its main hub. The optimal loca-
tion is 275 miles from the Census Bureau’s population center (37.7◦, 91.8◦) located in
Phelps County, Missouri and 315 miles from Memphis (35◦, 90◦). The Census Bureau
also computes a point called the “median center of population” by finding the median
latitude and median longitude for the U.S. population; one half of the population lives
north of the median latitude and one half of the population lives east of the median
longitude. In the plane, this point minimizes the expected distance using the 1-norm to
define distance between x, y by ‖x − y‖ = |x1 − y1| + |x2 − y2|, and so the Census
Bureau is essentially using the distance defined by the sum of differences in latitude
and longitude. In general the optimal points depend on the metric used, but in this case
the median center of population when rounded to the nearest degree is the same as the
hub we found. (Their precise answer is (38.75644◦, 86.93074◦). See [13].) Refer to
Figure 5 for a map showing these locations.
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C:  Pop. Center
H:  Hub &
      Median Center
M:  Memphis 

Figure 5. Location of the 2000 Census Bureau population center (C), the 2000 U.S. popula-
tion hub (H), and the FedEx Memphis hub (M). The median center is very close to H.

Generalizations and extensions
More than four points in the plane With five or more points in the plane
there is no simple description of the hub. The difficulty stems from the fact that
the set {(u1, . . . , uk) | ‖ui‖ = 1,

∑
ui = 0} ⊂ (R2)k has dimension k − 2. The one-

dimensional orthogonal group O(2) acts on the set by rotations; the quotient space is
the space of geometrically distinct configurations and has dimension k − 3. For k = 3
there is a unique configuration up to the action of O(2), and for k = 4 there is a one-
dimensional set of geometrically distinct configurations parameterized by the smallest
angle between two of the ui . For k ≥ 5 the dimension of the set of geometrically
distinct configurations is two or more, and there are too many possibilities. Figure 6
is a typical example with k = 6, showing the unit vectors and the associated hexagon
that has no obvious symmetry. The hexagon can be deformed continuously into other
hexagons with three degrees of freedom. (Challenge to the reader: identify the degrees
of freedom.)

From points to probability measures A finite number of points x1, x2, . . . , xk

in R
n can be regarded as a discrete probability measure with each point having prob-

u1

u2

u3

u4

u5

u6

u1

u2
u3

u4

u5 u6

Figure 6. A configuration of six unit vectors with zero sum.
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ability 1/k. It is natural to define a hub for a probability measure ρ as a point having
minimal expected distance to points distributed according to ρ. Then Theorem 1 has
the following generalization and can be proved in essentially in the same way. (An
even more general result can be found in [10].)

Theorem 2. Let ρ be a probability measure on R
n with compact support not lying

on a line. Then ρ has a unique hub, and this hub is contained in the convex hull of the
support.

With this result we know that reasonable sets in R
n have unique hubs. For example,

let X be a bounded subset of R
n having positive Lebesgue measure λ(X) and define ρ

to be normalized Lebesgue measure restricted to X . That is, for a measurable subset E

ρ(E) = λ(E ∩ X)/λ(X).

There are only a few regions for which the hub can be exactly determined. For the
interior of a rhombus or an ellipse the hub is the center, but for a region as simple as
the interior of an isosceles triangle there does not appear to be an exact formula for the
hub.

The theorem also applies to bounded curves in the plane for which ρ is normalized
arc length of the curve. Again there are very few curves for which the hub can be
described exactly.

Hubs on a sphere Essential to the proof of uniqueness of a hub for points in R
n is

that the function to be minimized is strictly convex, a property that depends strongly on
the Euclidean structure of R

n . Interesting and challenging questions immediately arise
in other metric spaces such as the sphere. Given points x1, x2, . . . , xk on the sphere,
a hub is a point h minimizing the function f (x) = ∑

i d(xi , x), where d(x, y) is the
great circle distance between x and y. Hubs exist because the function to be minimized
is continuous and the sphere is compact, but uniqueness may fail. An easy example is
the case of two antipodal points, say the north and south poles; in this case any point
on the equator is a hub.

A subset of the sphere is spherically convex if it contains the geodesics between
any two points in the subset, and the (spherical) convex hull of a subset is the smallest
convex set containing the subset. Aly, Kay, and Litwhiler [1] prove that if x1, . . . , xk lie
in an open hemisphere, then the hub (or hubs) must be in the convex hull of the points.
One might conjecture in that case that the hub is unique, but even for three points that
is not always true. For example, three points equally spaced on the same latitude just
above the equator have the property that the points themselves are minima and they
are the only minima. A complete description of the minima for three points was given
by Cockayne in 1972 [2]. It would be interesting to find reasonable assumptions that
guarantee unique hubs for k points, as well as to prove existence and uniqueness results
for more general probability measures on S2 and on higher dimensional spheres.

Multiple hubs As FedEx and other package shipping companies have grown, they
have established additional hubs so that packages from Boston to New York, for ex-
ample, are shipped through an intermediate location on the East Coast rather than
through Memphis. Deciding where to put a second or third hub is a “multiple facility
location” problem in operations research, and there is ongoing interest in such prob-
lems. The two hub problem for finite sets in Euclidean space is the following. Given
x1, x2, . . . , xk in R

n and two hubs u, v ∈ R
n a package shipped from xi to x j goes
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via the hub that results in the shorter total distance traveled by the package. One can
prove the existence of minimizing pairs using continuity and compactness arguments,
but uniqueness may not hold in the generality of the one hub case because the function
f is no longer convex. Explicitly finding solutions, however, appears to be virtually
impossible. Consider, for example, the two hub problem for the uniform distribution
on [0, 1]. The function to be minimized is

f (u, v) =
∫ 1

0

∫ 1

0
min(|x − u| + |y − u|, |x − v| + |y − v|) dx dy.

Numerical optimization gives the optimal locations as approximately 0.29 and 0.71.
For these hubs the average distance a package travels is 0.39, a significant decrease
from the one hub average, which is 1/2, and not too more than the average distance
between any two points, which is 1/3.

Summary. The original shipping strategy of FedEx was to fly all packages to a hub during
the afternoon and evening, sort them there, and then fly them to their destinations over night
for delivery the next day. This leads to interesting mathematical questions: Given a population
represented by points in Euclidean space or on a sphere, what is the location of the hub that
minimizes the total distance to all the points? Is such a point unique? After answering these
questions, we use census data from 2000 to examine how close the FedEx hub in Memphis is
to the proper hub of the U.S. population.
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