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0. Introduction 

In [4] Gersten developed the notion of homotopy for ring homomorphisms. A 
simple homotopy of two ring homomorphisms f,g : A +B can be viewed as a 
deformation over the parameter space Spec Z[t]. This is a homomorphism A+B[t] 
which restricts to f when t = 0 and to g when t = 1. Two homomorphisms f and g are 
homotopic if there is a chain of homomorphisms starting with f and ending with g 
such that each term is simple homotopic to the next. 

Let A be a k-algebra and k a field. Consider the finite dimensional representations 
of A and require that a simple homotopy of representations be given by a 
deformation over Speck[t] = A:. Using direct sum we can make the homotopy 
classes of representations into an abelian monoid. Now it is more useful to use any 
nonsingular, rational affine curve as well as A: for the parameter space of a 
homotopy. (This becomes apparent when A is commutative; see Section 1.3.) The 
abelian monoid of homotopy classes is denoted by N(A) and its associated group by 
R(A). Two modules (representations) whose classes in R(A) are the same are said to 
be ‘rationally equivalent’. In Section 1.3 we show that when A is commutative R(A) 
is isomorphic to the Chow group of O-cycles of SpecA modulo rational equivalence. 
In Section 1.2 we prove basic structure theorems about the functor H from k- 
algebras (finitely generated) to abelian monoids. 

Now consider more general deformations using any connected affine k-scheme as 
the parameter space. The result is a coarser equivalence relation on the finite 
dimensional A-modules and a corresponding abelian monoid which we denote 
C(A). In Section 1 .I we determine C(A) for some algebras: finite dimensional 
algebras, enveloping algebras, commutative algebras. We prove basic structure 
theorems about C(A *kB), C(A Ok@, C(A x B). Let D(A) be the associated abelian 
group. Two finite dimensional modules M and N are said to be ‘algebraically 
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equivalent’ if their classes in D(A) are the same. In Section 1.3 we show that when A 

is commutative and k algebraically closed, D(A) is isomorphic to the group of O- 
cycles of Spec A modulo algebraic equivalence. 

The results on algebraic and rational equivalence in Section 1.3 suggest that D(A) 

and R(A) are good noncommutative generalizations of the groups of O-cycles 
modulo algebraic and rational equivalence. 

In Section 2 we consider the category of finitely generated (left) A-modules and 
the equivalence relations obtained by deformations over rational curves and over 
arbitrary connected k-schemes. The main result here is that the group of rational 
equivalence classes is isomorphic to K’,(A) when A is left-noetherian. 

1. Finite dimensional modules 

1.1. The monoid C(A) and the group D(A) 

Let A be a finitely generated algebra over the field k. The functor ModA is 
representable, where ModA is the set of left A OR-module structures on R” 

and R is a commutative k-algebra. See [3] or [5]. Let ModA denote the union over 
m E N so ModA is locally algebraic (locally of finite type) over k. The direct sum of 
modules gives rise to a scheme morphism 

@ : Mod/, x ModA *Mod/, 

which is additive on the dimensions. We let C(A) denote the monoid whose elements 
are the connected components of ModA and whose addition is inherited from 0. We 
may speak of two modules in the same component as C-equivalent and we denote by 
(M) the connected component of M as an element of C(A). 

The dimension function dim : C(A)-+N is a homomorphism of monoids and 
provides a natural augmentation for C(A). Let C,,,(A) be the classes of modules of 
dimension m. 

We make C(A) into a group in the standard way by adjoining additive inverses. 
Let D(A) denote the group. The natural map from C(A) to D(A) may not be 
injective so the equivalence relation on modules arising from D(A) may be coarser 
than C-equivalence. Two modules M and N are in the same class in D(A) if there 
exists a third module P such that MOP and N@ P are in the same connected 
component of C(A). This is the coarsest geometric equivalence relation that we 
examine in this paper. 

Since D(A) provides less information we concentrate on C(A) for the rest of this 
section. 

C is a contravariant functor from the category of finitely generated k-algebras to 
the category of abelian monoids. A morphismf: A-+B induces a scheme morphism 
f * : ModB(m)-+ModA(m) which is ‘restriction of scalars’ and thus a map 
C,,,(J) : C,(B)* C,(A): 04) - (f*(M)). Let C(J) denote the collection of all these 
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maps. It clearly preserves the direct sum operation and so defines a homomorphism 
of abelian monoids. 

Proposition 1.1. if O-M’dM+M” -0 is an exact sequence of A-modules, then 
(M) = (M’) + (M”) in C(A). 

Proof. We show that a module isomorphic to M’@M” is in the connected 
component of M. Let U denote the vector space underlying M’ and let V be a 
complementary subspace to U. Let nu and II v denote the projections onto U and I’. 
Define the morphism Speck[t]--,ModA(I/@ I’) by the A(t]-module structure on 
(U@ V)@ k[t] = I/[t] @ v[t] whose scalar multiplication is 

a. (u + v) = au + tn&av) + n v(av) 

and extended in the natural way to make it k[t]-linear. For t = 1 we get the module M 
and for t = 0 we get a module isomorphic to M’@M”. 

Let M>M, 3 .-. >M, 30 be a composition series for M. Repeated use of 
Proposition 1 shows that 

(M) = (M/M,) + (M,/M2) + ..a + (M,). 

Therefore C(A) is generated by the components (f.) where L is a simple A-module. 
Define a module L to be d-simple if every module in its component is simple. 

Thus L is simple and cannot be deformed to a nonsimple module. 

Proposition 1.2. The components (L > with L d-simple form the unique minimal set 
of generators for C(A). 

Proof. If L is d-simple then (L) # (M,) + (Ml) for M,,M,#O. Thus any set of 
generators must include (L). Now every component (M) = (L, > + a+. + (L,) where 
Li is simple. If Li is not d-simple then (Li) = (IV) + (P) since (L;> contains a 
nonsimple module and thus a decomposable module by Proposition 1. Continuing 
this process one eventually arrives at d-simple modules because the dimensions of 
the summands decrease. 

Are the d-simple components a free set of generators? In other words, is the 
decomposition of (M) into d-simple components unique? Unfortunately I cannot 
answer this in general but in several cases it is true and there are no counter- 
examples. 

Consider the following conjectures: 

Conjecture (1). C(A) is the free monoid on the set of d-simple components. 

Conjecture (2). C(A) has the cancellation property. 
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The truth of (1) implies the truth of (2) since a free monoid is isomorphic to N(S) 
for some set S and N(s) has the cancellation property. Conjecture (2), though 
weaker, is unknown in general and has the same status as (1). It is known to be true 
in the same special cases as (1) and there are no counterexamples. The truth of (2) 
would imply that the natural map of C(A) into its associated group is injective. 

Example 1.3. Let A be a finite dimensional algebra. Thus C(A) z NS where s is the 
number of non-isomorphic simple A-modules. There is a one-to-one corres- 
pondence between the connected components of ModA containing k-rational 
points and the semisimple modules of dimension m. See [5, 31. 

Example 1.4. Let A be a commutative algebra and let k be algebraically closed. 
Then C(A)=NS where s is the number of factors in the decomposition of A into 
connected subalgebras, A =A t x .-- xA,. See [5, Theorem 2.81. 

Note. I have been unable to remove the restriction that k be algebraically closed. 

Example 1.5. Let k be algebraically closed with characteristic zero. Let A be the 
enveloping algebra of a finite dimensional Lie algebra 8. Then C(A) G N(s) where S 
is the set of non-isomorphic simple Q/rad g-modules. Note that S may be an infinite 
set as it is for Q = sI(2, C). If Q is solvable then rad Q = Q and we let s Consist of the 
single element that is the zero-module of dimension one so C(A) z N which means 
the only discrete invariant is the dimension. For Q = sI(2, C) there is a simple module 
in each positive dimension and so S = N. Thus C(A) is the infinite direct sum of a 
countable number of copies of N. 

Underlying this example is the theorem [5, Theorem 3. I] that every representation 
of Q may be deformed to one for which radg acts trivially as zero. Then one has a 
representation of g/rad Q whose isomorphism class is a discrete invariant. The proof 
of the theorem uses Levi’s Theorem and the existence of eigenvectors for 
representations of solvable Lie algebras. I do not know how to extend the theorem 
to fields which are not algebraically closed or to characteristic p. 

Proposition 1.6. For k-algebras A and B the following holds: 
(i) C(A x B) z C(A) x C(B). 

(ii) C(A *k B) 3 C(A) xN C(B), fiber product over N. 
(iii) Let ICA be a nilpotent two-sided ideal. Then C(A) z C(A/I). 

Proof. (i) Every A x B-module M splits into Mt @Mz where M, is an A-module and 
MZ is a B-module. The dimensions of the factors are the same for every other 
module in the same component as M within ModAXB(m) as can be seen by 
considering the induced k x k-modules via k x k-+A x B. 

(ii) A ek B has the universal property that Homk_,,,,(A jk B,E) = Homk_ ,,JA, E) x 
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Homk_&B,E). Let E= End,(P). Thus an m-dimensional A *kB-moduie is a pair 
made up of an A-module and a B-module each of dimension m. Then C,(A rkB) = 

C*(A) x C,(B) or 

C(A *kB) = C(A) XN C(B). 

(iii) Let rr : A-+A/Z, C(n) : C(A/I)*C(A). We will show C(n) is an isomorphism 
by showing that each A-module M has an A-module N in its component with 
ICann(N). Note C(n) is an injection so we consider C(A/I) as a submonoid of 
C(A). Let n be the least integer such that I”=O. 

Lemma 1.7. 1. JCA is an ideal, J2=0, then C(A/f)zzC(A). 

Proof. Let A = B@ J, direct sum over k. Let the A-module A4 have structure map 
Q : A -+End,(k’“) and define 

el:A+Endk(km): (b+u)-e(b)+@(u). 

It is easy to check that Q, is an algebra homomorphism. (To be precise, one must 
extend Q, to A@k[t]-+Endk(km)@k[t] =End,#[tlm) to get an A@k[t]-module.) 
Then e. is an A-module with eel J=O so e. is actually an A/J-module. Thus 
C(A/J)-C(A) is onto. 

For the rest of the proof of (iii) proceed inductively to get 

C(A/rj+ ‘) = C((A/li)/(lj/lj+ 1)). 

Thus C(A/Z”) = C(A). 

Remark. The modules of A &B do not have such a nice description as those for 
A *k B since, a representation Q : A &B+Endk(km) consists of a pair tr and r which 
are representations of A and B, respectively, and whose images in End#Y’) 
commute. Mod,g&r) is a closed subscheme of ModA x Mod@) consisting of 
the pairs (Q, a) such that [@(ai), a(bj)] = 0 as ai and bi range over sets of generators for 
A and B. The connected components of this subscheme are not easy to describe in 
terms of the components of ModA x Mod&r). 

Let us first consider a polynomial algebra B, either commutative or non- 
commutative. Thus B=k[x,, . . . ,x,] or B=k{xl, . . . p,,}. The homomorphism 
E : B-k: xi -0 gives a one-dimensional B-module MI whose class (MI) generates 
C(B). It is easy to see that any B-module with structure map Q : B+Endk(km) may 
be connected to @“MI by the family ot: B-+End&“)@k[t]: Xi- to(xi). We have 
o. as the structure map for @“Mt. 

The algebra homomorphisms i:A+A@B: a-a@1 and n:A@B-rA: a@b- 
&(b)a induce monoid homomorphisms C(i) : C(A 0 B)+C(A) and C(n) : C(A)+ 
C(A @B). 
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Proposition 1.8. For B=k[x,, . . . . x,] or B=k{x,, . . . ,x,}, C(A@B)z C(A) and 

C(i) - L = C(n). 

Proof. An A @B-module is determined by an A-module structure @ : A +End&“) 
and o : B+End,(km) such that o(XJ commutes with Q(A). We can deform o to o. 
with ao(xi) =0 and thereby get an A@B-module which comes from the A-module 
structure Q by making Xi act as zero. Thus C(i) is surjective. But C(i) is injective 
since C(i)oC(n)=id,-tA). 

A commutative k-algebra B is formally smooth if for every k-algebra homo- 
morphism @ : B+E/Z where E is commutative and I*=0 there exists a lifting 
6: B+E such that @= ~06, n being the projection E+E/I. 
Now extend this definition to an arbitrary k-algebra B by requiring that 6 exist for 

any k-algebra homomorphism @ : B+E/Z, Zz= 0 and E not necessarily 
commutative. 

Note that if B is formally smooth and I is a nilpotent ideal then @ : B-E/Z may be 
lifted to 6: BdE by a sequence of lifts e2: B-+E/Z*, I$~: B-+E/Z3, . . . . Since I*=0 
we use 6= Gn. 

To generalize 1.8 we make the following assumptions: 
(i) B is formally smooth in the category of k-algebras. 

(ii) C(B) is generated by a single class (MI) in dimension one. 
(iii) k is algebraicahy closed. 

Now if B is commutative we replace (i) and (ii): 
(i’) B is formally smooth in the category of commutative k-algebras. 

(ii’) B is connected. 
(iii) k is algebraically closed. 

Together (ii’) and (iii) imply (ii). See Example 1.3. 

Theorem 1.9. With &her set of assumptions above, C(A@B)z C(A). 

Proof. Let E: B+k be the structure map of M, or any k-point of B if B is 
commutative. In either case (M,) is a generator for C(A). Let g : A@B+Endk(km) 
be the structure map of an AQB-module. We will deform Q to map Q with 
a(a@b)=e(b)a(u). This will show that A@B+A:a@b-c(b)a induces an 
isomorphism C(A)+C(A@B). 

Let f = Q 1 B and let R =f(B). R is a finite dimensional algebra, so R = S + N, the 
semidirect sum of a separable subalgebra S and the radical N. Suppose N”=O. We 
will deform f to g in the scheme of algebra homomorphisms from B to R, where 
g=nsof and ns:R+S is the projection onto S. Let U=f-r(N) and Bo=f-'(S). 
Suppose we have constructed f,: B+R such that fi(U)CN’ and fi =f on Bo. Let 
~;+r:R*R/N’+‘and Ri:R/N’+’ +R/N’ be the projections. Define the family 

#:B+R/Nr+‘@k[r]: b+u-f(b)+t~~+,(J(u)) 
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where bcB,, and u E U. Note that $I is actually a homomorphism because 
Qi+ ru;(u))CKer rr;, a square zero ideal. Now lift @ to a map 6: B+R@k[t] which 
can be done since B is formally smooth. We let _fi+, =&lrEo and we see that 

fj, ,(U)CN’+‘. Continuing in this way we arrive at g =f,, with g(U)CN”= 0 and 
g=f on R,,. Thus g= rrsof. 

The algebra S is a product of simple algebras each of which is a matrix algebra 
over k since k is algebraically closed. As S contains the identity of Endk(km) we have 

Endk(k”l) x -se x Endk(kmw) z SC Endk(km) 

with C mi = m. Thus the B-module defined by g is a direct sum of B-modules of 
dimensions m 1, . . . , m,. Each of those modules has a structure map B+EndJk”?. 
By assumption (ii) or (ii’), that structure map is in the same component as 
B-+Endk(km3: b-&(b)/. We simultaneously deform g to the direct sum to get the 
structure map B-*Endk(km): b-,@)I,,,. This deformation is taking place inside S 
which commutes with Q(A) so we have an actual deformation of Q to d of the form 
a(& 6) = E(b)@). 

Remark. Theorem 1.9 asserts that a Ktinneth homomorphism C(A)@C(B)+ 
C(A @B) is an isomorphism under the conditions that B is formally smooth, 
C(B)= N, and k is algebraically closed. Since C(B)= N, the left hand side is 
isomorphic to C(A). The Ktinneth homomorphism maps (M) @ (N) to (M&N) 
where M&N where M@kN is an A &B-module in the usual way. The inverse 
constructed in the proof of Theorem 1.9 maps the class (M) to (,.&I)@ (M,) 
where *M means Mas an A-module and MI is the one-dimensional B-module whose 
class generates C(B). 

The results above - Theorem 1.9, Propositions 1.6 and 1.8 - also hold with D in 
place of C. 

In order to count the classes in C(A) define the power series kA(t) = ~~zP=o~nfn 
where v, = cardinality of C,(A) or the number of connected components with k- 

rational points in ModA( 

PrOpOSitiOn 1.10. (i) KA xB(t) = K~(f)Ks(f). 

(ii) KA(~) = KAII(f) when I is a nilpOtent two-sided ideal. 

Proof. These follow from Proposition 1.6. 

Example 1.11. If A is finite dimensional then KA(~) = K~,k{f) where N is the radical 
of A. Since A/N is semisimple, A/NaS, x --- xS, with each Si simple. NOW C(Si) 
has one generator in dimension mi. Thus 
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Thus ~~(t)=n:=i 1/(1-t’“) where ml,... ,m, are the dimensions of the simple A- 
modules. 

Example 1.12. If A is commutative and k algebraically closed, then [5, Theorem 
2.81 showsKA(t)=1/(1-t)SwhereA=AIx...xA,andeachAjisconnected. 

Example 1.13. For A = U($I(2,C)) there is a simple module in each dimension and 
so v, is the number of partitions of n. Thus I,_, is the classical partition function 
/CA(f) = n:, l/(1 - f’). 

If Conjecture (1) is true then C(A)SN(~) where S indexes the d-simple 
components and ~~(1) = l/n(l -P’s) where m, is the dimension of the corres- 
ponding simple module. 

1.2. The monoid H(A) and the group R(A) 

We define two modules M and N to be H-equivalent if there is a sequence of 
modules M=MO,M,, ,.. , MS= n and morphisms Q;: Uj*ModA where Uiis an affine 
open subscheme of PL and the image of hi contains Mi and Mi+ I. Each @i is a 
homotopy of modules if we enlarge upon Gersten’s definition (see the introduction) 
to allow rational curves as parameter spaces, not just A:. We denote by H(A) the set 
of H-equivalence classes of ModA and make H(A) into an abelian monoid using 
@ : ModA x ModA dModA which respects H-equivalence. We denote the associated 
group by R(A). 

Then H is a functor from the category of finitely generated k-algebras to the 
category of abelian monoids and R is a functor to the category of abelian groups. 
There is a morphism of functors @ : H-C such that QA : H(A)-+C(A): [M] - (M) 

where [M] is the H-equivalence class of M. Since H-equivalence is finer than C- 
equivalence this functor is well defined and QA is surjective for every algebra A. 

Given an exact sequence O-+M’*M+M” +O we have [M] = [M’] + [M”] since the 
deformation of M to M’@M” takes place over A’, giving an H-equivalence. 
Therefore the classes of simple modules form a set of generators for H(A). 

Proposition 1.14. (i) H(A x B) z H(A) x H(B). 

(ii) H(A *kB) z H(A) xN H(B). 

(iii) H(A/I) 3 H(A), I nilpotent two-sided ideal. 

Proof. The proofs are the same as for Proposition 1.6. 

If A and B are k-algebras, there is a Kiinneth morphism H(A)@H(B)+ 

H(A&B) which takes [Ml@ [N] to [M&N] with M&N an A@kB-module 
whose scalar multiplication is given by a@b - x@y = ax@by. If B = k[Xi] or 
B = k{Xi) then H(B) = IN and the Kunneth morphism is an isomorphism. 
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Proposition 1.15. If B=k[xJ or B= k{x;} then H(A)@H(B)+H(A@B) is an 
isomorphism. 

Proof. First, H(B)=N since any representation of B may be deformed by a line to 
the zero-representation xi w 0. Then any representation of A @ B deforms to one 
with the action of A remaining unchanged while the action of B is the zero- 
representation. This representation of A@B is the tensor product of the 
representation restricted to A with the one dimensional zero representation of B. 

Theorem 1.16. Let B satisfy the assumptions of Theorem 1.9. Then H(A@ B) z 

H(A ). 

Proof. The proof of Theorem 1.9 works again because all the deformations used 
there are done over A’. 

Remark. The results in this section also hold with R in place of H. 

1.3. Zero cycles 

In this section k is algebraically closed and A is a commutative k-algebra. Let 
X = Spec A. The group of O-cycles of X, denoted by Y,,(X), is the free abelian group 
on the closed points of X. Using an appropriate definition of ‘rational equivalence’ 
we show that the group YO(X)/Yrf(X) is isomorphic to R(A). Thus, R(A) serves as 
a noncommutative generalization of the Chow group of O-cycles. Likewise we show 
that D(A) is isomorphic to the group Z,-,(X)/Yi’g(X), which is the group of O-cycles 
modulo algebraic equivalence. 

Definition 1.17. Let X be a k-scheme. The group ZJX) of p-cycles on X is the free 
abelian group on the irreducible subvarieties of X of dimension p (i.e. on the 
reduced and irreducible subschemes of dimension p). 

Note. If X is not reduced, Y,(X) = YJX,,,) so we may assume X is a variety. 

Definition 1.18. The O-cycle ZE To(X) is rationally equivalent to 0 if there exists an 
open subset UCP’, two points uI and u2 in U, and a l-cycle WE f, (c’x X), finite 
and flat over U, such that z= wI - w2 where wi is the O-cycle on X defined by 
projecting the fiber of w at Ui onto X [2]. 

The group of O-cycles rationally equivalent to 0 is denoted by Yr(X) and the 
quotient PO(X)/ Z;‘(X) by Ao(X). The group Ao(X) is the Chow group of O-cycles. 

If, in the definition of ‘rationally equivalent to 0’, we replace the rational curve U 
by an arbitrary connected variety 7, then the cycle t is said to be ‘algebraically 
equivalent to 0’. We denote by Iilg(X) the subgroup of O-cycles algebraically 
equivalent to 0. 



174 K. Morrison 

Now let A4 be an A-module of dimension n over k. We define a O-cycle 
Z(M) = 1 miXi where m, is the multiplicity of the A-module K(x,) in a composition 
series for M. Recall that K(Xi) is the one-dimensional module A/m(Xi) and m(xi) is 
the maximal ideal of Xi. Since k is algebraically closed, every simple A-module has 
dimension one and appears as the residue field of a unique maximal ideal. 

Theorem 1.19. The map R(A)-+A,,(X): [M]-+[Z(M)] is an isomorphism. 

Proof. First we must show that the map ModA -+ Ye(X): M-+2(M) respects the R- 
equivalence classes in ModA. Suppose M and N are equivalent in R(A). Then there 
exists P such that MOP and N@ P are in the image of a morphism @ : C-+Mod, 
from a rational curve C. By normalizing we may assume C is nonsingular and we 
may assume it is affine since the points mapped to M@P and N@P lie in an affine 
subset. Thus we may assume C is open in PI. The morphism @ : ChMod, is an A@ 

R-module on R”‘, N= dimkM@P and Spec R = C. This gives a module over R which 
is finite and flat; in fact it is free. Therefore the l-cycle associated to this module in 
Z,(CX X) is finite and flat over C and shows that Z(M@ P) and Z(N@ P) are 
rationally equivalent. Since Z is additive we have [Z(M)@ Z(P)] = [Z(M)] @ (Z(P)] 
and SO [Z(M)]=[Z(N)J. This shows the map R(A)-Ao(X) is well defined. It is 
surjective since the O-cycle c niXi is the image of ): niK(Xi). 

To show injectivity suppose that [Z(M)] = [Z(N)] in A,,(X). There is a cycle 
w E fi( Ux X), finite and flat over U, such that w, = Z(M) and wb = Z(N) for points 
a, be U. Since w is finite and flat over U, w can be written w = c niwi where wi is 
represented by the irreducible curve Wi C U xX, flat and finite over U. Cover U 

with { Uiili such that 0( Wij Vii) is a flat B(Uti) module and finitely generated. Each 
lJO is affine and so is the complement of a finite set of points in A’. Thus B(U,$ is 
obtained from k[t] = B(A’) by adjoining elements of the form I/$ This shows 
b(Uti) is principal and so 0( Wil U,) is free. Thus U( WJ is projective over B(U) and 
hence also free. Let mj be the rank. 

Each curve Wi defines an A@ B(U)-module on B(U)“‘< in the natural way. The 
sum C niWi can be separated into positive and negative parts to define two families 
of A-modules parameterized by U. These families are given by morphisms 
@,,&: (IdMod,. Then we have M@@2(u)z@i(a) and N@@t(b)a&(b), SO 

[Ml = [@da)1 - [@zWI and WI = b$ I(b)l - [@@)I in W ). Thus [Ml= WI in R(A 1. 
This shows the injectivity. 

Remark. In the definition of rational equivalence we require finiteness. This 
prevents the cycle from disappearing by going to infinity. It gives a well-defined 
degree map on a noncomplete variety X. 

Theorem 1.20. The map D(A)-*Yo(X)/Y$~(X): (M)-[Z(ZL~)]~,~ is on iso- 
morphism. 
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Proof. The same arguments used in the previous theorem show that this map is well 
defined and surjective. For injectivity we cannot use the rationality of the parameter 
space, so we give a different proof which can be used for the injectivity in Theorem 
1.19 as well. 

Suppose that Z(M) and Z(N) are algebraically equivalent. Let WE Y,(TxX) be a 
flat, finite cycle over T and a, b E T such that wG = Z(M) and w6 = Z(N), and T is a 
connected k-scheme. Let w = C nj w, where each wi is the cycle of an irreducible curve 
I+‘; C TxX, which is flat and finite over T. By finiteness IV; is affine over Tand that 
together with flatness implies IV; is locally free over T. Cover T with affine 
neighborhoods Tj SO that W,= Wi [ Tj is free over Tj, i.e. n( W;j) is a finite free 
P(Tj)-module. Then @( Wii) is a family of A-modules parameterized by Tj since 
@(WV) is a quotient of @(Tj)@A, being the coordinate ring of the subscheme 
WiiC TjxA. Since T is connected and is covered by the open subvariety Tjv all 
modules in the families O( WV), for i fixed, are C-equivalent. Thus M and N are C- 
equivalent and so the map (M) - [Z(M)],,, is injective and an isomorphism. 

2. Finitely generated modules 

2. I. The category AA 

Let AA denote the category of finitely generated left A-modules and assume A is a 
k-algebra. We define abelian monoids C(_&,J and H(_H~) and their associated 
groups D(.JA) and R(*RA) in a manner similar to what was done in Section 1 for 
finite dimensional modules. 

Definition 2.1. Two finitely generated left A-modules Mt and Mz are C-equivalent 
if there exists a commutative k-algebra R of finite type and two k-points of R 
cl, e2 : R+k and a finitely generated left A &R-module E such that E is flat over R 
and the A-modules E, = E@,, k and E2 = E& k are isomorphic over A to Mt and 
M2, respectively. 

Definition 2.2. The modules M, and M2 are homotopic or H-equivalent if there is a 
finite sequence of modules Ml =N,,N2, . . . , N,= Ml where Ni and Ni+ I are C- 
equivalent over a k-algebra R; which is the coordinate ring of a rational curve. 

Define the monoid C(_&,.i) to consist of the C-equivalence classes of modules in 
_/(A and define H(dA) to be the monoid of H-equivalence classes. Let D(AA) and 
R(_dA) denote the associated abelian groups. 

For an algebra morphism f:A-+B such that B is a flat A-module there are 
monoid morphisms Ccf). : C(Y/(,)-C(AB) and Hcf)* : H(JA)*H(dB) which map 
the class of M to the class of MBA B. 

Iff: A -B makes B into a finitely generated A-module then there are morphisms 
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Ccf)*: C(_k*&+C(J.J and Hcf)*:H(.,U,)-f-R-/r,_,) mapping the class of the B- 
module N to the class of the A-module AN. (AN denotes the A-module structure on 
N obtained by restricting the scalar multiplication to A via J) 

Proposition 2.3. if ICA is a nilpotent ideal and n : A +A/I is the projection, then 
C(R)* and H(R)* are isomorphisms. 

Proof. Let f* denote either map. Thenf* is surjective because any A-module M is 
homotopic to an A/I-module, i.e. an A-module with I acting as 0. To show f * is 
injective letf*(M,) =f*(M2). Then there is a flat family of A-modules E containing 
M, and M2. Now E can be deformed by homotopies to a module E’ with I@R 
acting as 0 (E is an A @R-module). Thus E’ is a flat family of A/I@R-modules and 
so M, and M2 are equivalent as A/f-modules. 

Proposition 2.4. There are isomorphisms C(_J?J@C(J~)+C(~&~ xJ and 

H(~M,)OH(~&+H(.,@, x~9. 

Proof. These isomorphisms are given by p: +/I: for PI : A x B-A and PZ : A X B-+ 

B. 

Proposition 2.5. There is a natural group homomorphism rl: KO(y/lA)~ 
R(JA) : [M] + (M). Thus &-equivalence is finer than R-equivalence. 

Proof. Suppose OdM, +M2-+M3 +O is an exact sequence in _/(A. Then [M2] = 
[M,] + [MJ. But Ml can be deformed over A’ to M, @M3 and so (M2) = (MI> + 
(M3). Thus r,~ is well defined. 

Proposition 2.6. If A is ieft noetherian then r,~ : &(y//A)+R(J,J is an isomorphism. 

Proof. We will show that q - ‘((M)) = [M] gives a well-defined inverse for 4. 
Suppose SpecR is a nonsingular, rational, affine curve. Then SpecR is isomorphic 
to an open subset of A’. Thus R is obtained from k[t] by adjoining elements of the 
form l/(t-a). Then K,,(_kk)aKc(~,~~). In one direction the isomorphism is 
given by [Ml - [MOR]. The inverse is [E] - [E,] - [Ec,_,)_l,,] where 
a E SpecR CA’. Note that this is the alternating sum C (- l)iTorf@R(E,A) where A 
isanA@R-moduleviaA@R+A:a@r-ra, P=rmod(t-a). Anyofthepointsof 
SpecR define the same map since all are inverses of a single map. Thus in KO(-klA) 

we have L%l - [E~t-a) - t,,l = L%l - f-f& b) - ,,,I. 
Now suppose E is a flat (over R) family of A-modules. Then (E,) = (Eb) by 

definition of R-equivalence, but also [E,] = [Eb] since E has no (t -a)-torsion or 
(t-6)-torsion. Thus q-‘((E,)) = q- ‘((Eb)) and so q-i makes sense. 
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2.2. Notes on projective modules 

Let z+‘~ denote the category of finitely generated, projective left A-modules. 
Define monoids C(.YJ, H(9,J and groups D(?+‘,J, R(9,J just as for the category 
_H~. A famiIy of projective A-modules over Spec R is projective A@R-module E. 
(It is superfluous to require that E be flat as an R-module. E is a direct summand of 
(A OR)“. As an R-module A @R is free since A is free over k. Thus E is a projective 
R-module.) 

Proposition 2.7, /f A is left-regular then KO( YA) z R( 9,). 

Proof. Define { : KO( Y,J-R(YJ: [P]+(P). Then < is well defined in general and 
not just when A is regular. To define 4-i we need the regularity of A. Let 
<- ‘((P)) = [P] and suppose E is a projective A @R-module. By Proposition 2.6 we 
know that the class in KO(JA) is constant for the modules in the family E. But since 
A is regular &( PA) P &(-((A) [I, p. 4531. Thus the class in Ke( 9’J is also constant 
and we get the inverse map. 
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