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0. Introduction

In [4] Gersten developed the notion of homotopy for ring homomorphisms. A
simple homotopy of two ring homomorphisms f,g:A—B can be viewed as a
deformation over the parameter space Spec Z[¢]. This is a homomorphism 4 — B[¢]
which restricts to f when t =0 and to g when ¢ =1, Two homomorphisms f and g are
homotopic if there is a chain of homomorphisms starting with f and ending with g
such that each term is simple homotopic to the next.

Let A be a k-algebra and « a field. Consider the finite dimensional representations
of A and require that a simple homotopy of representations be given by a
deformation over Speck[f]=Al. Using direct sum we can make the homotopy
classes of representations into an abelian monoid. Now it is more useful to use any
nonsingular, rational affine curve as well as A} for the parameter space of a
homotopy. (This becomes apparent when A is commutative; see Section 1.3.) The
abelian monoid of homotopy classes is denoted by H(A4) and its associated group by
R(A). Two modules (representations) whose classes in R(A) are the same are said to
be ‘rationally equivalent’. In Section 1.3 we show that when 4 is commutative R(A4)
is isomorphic to the Chow group of 0-cycles of Spec 4 modulo rational equivalence.
In Section 1.2 we prove basic structure theorems about the functor A from k-
algebras (finitely generated) to abelian monoids.

Now consider more general deformations using any connected affine &-scheme as
the parameter space. The result is a coarser equivalence relation on the finite
dimensional 4-modules and a corresponding abelian monoid which we denote
C(A). In Section 1.1 we determine C(A) for some algebras: finite dimensional
algebras, enveloping algebras, commutative algebras. We prove basic structure
theorems about C(A » B), C(A ®, B), C(A x B). Let D(A) be the associated abelian
group. Two finite dimensional modules M and N are said to be ‘algebraically
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equivalent’ if their classes in D(A) are the same. In Section 1.3 we show that when A
is commutative and k algebraically closed, D(A) is isomorphic to the group of 0-
cycles of Spec A modulo algebraic equivalence.

The results on algebraic and rational equivalence in Section 1.3 suggest that D(A)
and R(A) are good noncommutative generalizations of the groups of 0-cycles
modulo algebraic and rational equivalence.

In Section 2 we consider the category of finitely generated (left) A-modules and
the equivalence relations obtained by deformations over rational curves and over
arbitrary connected k-schemes. The main result here is that the group of rational
equivalence classes is isomorphic to Kj(4) when A is left-noetherian.

1. Finite dimensional modules
1.1. The monoid C(A) and the group D(A)

Let A be a finitely generated algebra over the field &. The functor Mod 4(m) is
representable, where Mod 4(m)(R) is the set of left A ® R-module structures on R™
and R is a commutative k-aigebra. See (3] or {5]. Let Mod 4 denote the union over
me N so Mod 4 is locally algebraic (locally of finite type) over k. The direct sum of
modules gives rise to a scheme morphism

@ :Mod, XxMod 4, —~Mod 4

which is additive on the dimensions. We let C(A4) denote the monoid whose elements
are the connected components of Mod 4 and whose addition is inherited from ®. We
may speak of two modules in the same component as C-equivalent and we denote by
{M) the connected component of M as an element of C(A).

The dimension function dim:C(4)—N is a homomorphism of monoids and
provides a natural augmentation for C(4). Let C,,(4) be the classes of modules of
dimension m.

We make C(A) into a group in the standard way by adjoining additive inverses.
Let D(A) denote the group. The natural map from C(A) to D(A) may not be
injective so the equivalence relation on modules arising from D(A) may be coarser
than C-equivalence. Two modules M and N are in the same class in D(A) if there
exists a third module P such that M@ P and N®P are in the same connected
component of C(4). This is the coarsest geometric equivalence relation that we
examine in this paper.

Since D(A) provides less information we concentrate on C(A) for the rest of this
section.

C is a contravariant functor from the category of finitely generated k-algebras to
the category of abelian monoids. A morphism f: A— B induces a scheme morphism
f*:Modg(m)—Mod 4(m) which is ‘restriction of scalars’ and thus a map
Cin(f) : Con(B)= Cra(A): (MY~ { f¥M)). Let C(f) denote the collection of all these
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maps. [t clearly preserves the direct sum operation and so defines a homomorphism
of abelian monoids.

Proposition 1.1. [f 0—=M'—>M—-M"—0 is an exact sequence of A-modules, then
(My=(M")+{M") in C(A).

Proof. We show that a module isomorphic to M’@®M” is in the connected
component of M. Let U denote the vector space underlying M’ and let V be a
complementary subspace to U. Let n and n denote the projections onto U/ and V.
Define the morphism Spec k(¢t]=>Mod (U@ V) by the A[f]-module structure on
(U V)Y®Kk[t] = Ult]@® V][] whose scalar multiplication is

a-(u+v)=au+tny(av)+ny(av)

and extended in the natural way to make it k[¢]-linear. For r =1 we get the module M
and for ¢=0 we get a module isomorphic to M@ M".

Let MDM,D--DM,D0 be a composition series for M. Repeated use of
Proposition 1 shows that

(M) ={M/M) +{M/M)+ -+ (M.

Therefore C(A) is generated by the components (L) where L is a simple 4A-module.
Define a module L to be d-simple if every module in its component is simple.
Thus L is simple and cannot be deformed to a nonsimple module.

Proposition 1.2. The components (L) with L d-simple form the unique minimal set
of generators for C(A).

Proof. If L is d-simple then (L) # (M) + (M,) for M,M,+#0. Thus any set of
generators must include (L). Now every component (M) ={L) +---+{L,) where
L; is simple. If L, is not d-simple then (L,) =(N)+(P) since (L;> contains a
nonsimple module and thus a decomposable module by Proposition 1. Continuing
this process one eventually arrives at d-simple modules because the dimensions of
the summands decrease.

Are the d-simple components a free set of generators? In other words, is the
decomposition of (M) into d-simple components unique? Unfortunately I cannot
answer this in general but in several cases it is true and there are no counter-
examples.

Consider the following conjectures:

Conjecture (1). C(A) is the free monoid on the set of d-simple components.

Conjecture (2). C(A) has the cancellation property.



168 K. Morrison

The truth of (1) implies the truth of (2) since a free monoid is isomorphic to N
for some set § and N® has the cancellation property. Conjecture (2), though
weaker, is unknown in general and has the same status as (1). It is known to be true
in the same special cases as (1) and there are no counterexamples. The truth of (2)
would imply that the natural map of C(A) into its associated group is injective,

Example 1.3. Let A be a finite dimensional algebra. Thus C(A)= N* where s is the
number of non-isomorphic simple A-modules. There is a one-to-one corres-
pondence between the connected components of Mod4(/m) containing k-rational
points and the semisimple modules of dimension m. See [5, 3].

Example 1.4. Let A be a commutative algebra and let k& be algebraically closed.
Then C(A)=N* where s is the number of factors in the decomposition of A into
connected subalgebras, A=A x--- X A,. See [5, Theorem 2.8].

Note. 1 have been unable to remove the restriction that k be algebraically closed.

Example 1.5. Let & be algebraically closed with characteristic zero. Let A be the
enveloping algebra of a finite dimensional Lie algebra g. Then C(4)=N®) where S
is the set of non-isomorphic simple g/rad g-modules. Note that S may be an infinite
set as it is for g=38[(2,C). If g is solvable then rad g=g and we let S consist of the
single element that is the zero-module of dimension one so C(4)=N which means
the only discrete invariant is the dimension. For g = 8[(2, C) there is a simple module
in each positive dimension and so S=N. Thus C(A) is the infinite direct sum of a
countable number of copies of N.

Underlying this example is the theorem [5, Theorem 3.1] that every representation
of g may be deformed to one for which rad g acts trivially as zero. Then one has a
representation of g/rad g whose isomorphism class is a discrete invariant. The proof
of the theorem uses Levi’s Theorem and the existence of eigenvectors for
representations of solvable Lie algebras. I do not know how to extend the theorem
to fields which are not algebraically closed or to characteristic p.

Proposition 1.6. For k-algebras A and B the following holds:
(i) C(A X B)=C(A) X C(B).
(i) C(A % B)=C(A) xnC(B), fiber product over N.
(iii) Let IC A be a nilpotent two-sided ideal. Then C(A)=C(A/I).

Proof. (i) Every A x B-module M splits into M, ® M, where M, is an A-module and
M, is a B-module. The dimensions of the factors are the same for every other
module in the same component as M within Mod 4, g(m) as can be seen by
considering the induced & x k-modules via k x k— A X B.

(ii) A % B has the universal property that Hom, _ 4;,(A % B, E) = Hom _ 4,(A, E) X
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Hom, _ (B, E). Let E=End, (k™). Thus an m-dimensional A % B-module is a pair
made up of an A-module and a B-module each of dimension m. Then C,,(4 » B) =
Cm(A)xC,(B) or

C(A % B) = C(A) xn C(B).
(iii) Let r: A—A/I, C(n): C(A/I)—=C(A). We will show C(r) is an isomorphism

by showing that each A-module M has an A-module N in its component with
ICann(N). Note C(r) is an injection so we consider C(A/[) as a submonoid of
C(A). Let n be the least integer such that /" =0.

Lemma 1.7. If JCA is an ideal, J3=0, then C{A/J)=C(A).

Proof. Let A =B®J, direct sum over k. Let the A-module M have structure map
©:A—End, (k™) and define

0, A—End (k™) (b+u)—o(b)+ to(u).

It is easy to check that g, is an algebra homomorphism. (To be precise, one must
extend g, to AQk[¢]~End, (k™) & k[r] = End,(k[£]™) to get an A®K[¢]-module.)
Then g, is an A-module with 9¢jJ/=0 so g, is actuaily an A/Jj-moduie. Thus
C(A/J)—C(A) is onto.

For the rest of the proof of (iii) proceed inductively to get
CA/H*Y=CHA/) /(71 1)),
Thus C(A/1")=C(A).

Remark. The modules of A ®, B do not have such a nice description as those for
A % B since a representation 0 : A ®, B—End, (k™) consists of a pair ¢ and 7 which
are representations of A and B, respectively, and whose images in Endg(k™)
commute. Mod 4 () is a closed subscheme of Mod 4(m) x Modg(rm) consisting of
the pairs (g, o) such that [o(a;), ()] = 0 as a;and b, range over sets of generators for
A and B. The connected components of this subscheme are not easy to describe in
terms of the components of Mod 4(m) x Mod g(m).

Let us first consider a polynomial algebra B, either commutative or non-
commutative. Thus B=kl[x,,...,x,] or B=k{x,...,x,}. The homomorphism
€:B—k: x;—0 gives a one-dimensional B-module M| whose class (M,) generates
C(B). It is easy to see that any B-module with structure map ¢ : B—~End, (k™) may
be connected to @™ M, by the family g,: B~ End (k™) ® k[t]): x;— ta(x;). We have
oo as the structure map for @™ M,.

The algebra homomorphisms i: A2 A®B: a~a®1 and n: AQRB—A: aRb—
&(b)a induce monoid homomorphisms C(i): C(A® B)—C(A4) and C(n):C(4)—
C(A®B).
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Proposition 1.8. For B=k[x,,...,x,] or B=k{x,,...,x,}, C(A®B)=C(A) and
C(i)~t=C(n).

Proof. An A®@ B-module is determined by an A-module structure g : A—End (k™)
and o: B—~End, (k™) such that g(x;) commutes with g(4). We can deform ¢ to g,
with gy(x;) =0 and thereby get an 4® B-module which comes from the A-module
structure ¢ by making x; act as zero. Thus C(i) is surjective. But C(i) is injective
since C(i)° C() = id 4.

A commutative k-algebra B is formally smooth if for every k-algebra homo-
morphism ¢:B—E/I where E is commutative and 7?=0 there exists a lifting
@ : B—E such that ¢ = no @, n being the projection E~E/I.

Now extend this definition to an arbitrary k-algebra B by requiring that ¢ exist for
any k-algebra homomorphism ¢:B—E/I, [*=0 and E not necessarily
commutative.

Note that if B is formally smooth and 7 is a nilpotent ideal then ¢ : B—E/I may be
lifted to ¢ : B—E by a sequence of lifts ¢,: B—E/I% ¢;:B—E/I3 .... Since I"=0
we use g =¢,.

To generalize 1.8 we make the following assumptions:

(i) B is formally smooth in the category of k-algebras.
(ii) C(B) is generated by a single class (M) in dimension one,
(iii) & is algebraically closed.
Now if B is commutative we replace (i) and (ii):

(i) Bis formally smooth in the category of commutative k-algebras.

(ii’) B is connected.

(iii) k is algebraically closed.

Together (ii") and (iii) imply (ii). See Example 1.3.

Theorem 1.9. With either set of assumptions above, C(AQ@ B)= C(A).

Proof. Let ¢: B—k be the structure map of M, or any k-point of B if B is
commutative. In either case (M) is a generator for C(A). Let o: AQB—End (k™)
be the structure map of an A® B-module. We will deform ¢ to map o with
ag(a®b) =¢e(b)o(a). This will show that ARB—-A:a®b—¢e(b)a induces an
isomorphism C(A)— C(AX B).

Let f=¢|B and let R=f(B). R is a finite dimensional algebra, so R=S+ N, the
semidirect sum of a separable subalgebra S and the radical N. Suppose N"=0. We
will deform f to g in the scheme of algebra homomorphisms from B to R, where
g=nsof and mg: R—S is the projection onto S. Let U=f~4N) and By=/"'(S).
Suppose we have constructed f;: B—R such that f(U)CN'and f;=f on B,. Let
0i+1:R—=R/N*Vand n;: R/N'*!'—=R/N'be the projections. Define the family

¢:B—R/N'IQK[1]: b+u—f(b)+10;.1(f (1))
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where beBy and ueU. Note that ¢ is actually a homomorphism because
Qi+ 1(f{u))CKer r;, a square zero ideal. Now lift ¢ to a map @ : B~ R® k[t] which
can be done since B is formally smooth. We let fi,,=¢|,—o and we see that
fi-1(U)CN*L Continuing in this way we arrive at g =/, with g(U)CN"=0 and
g=fon R,. Thus g=ngof.

The algebra S is a product of simple algebras each of which is a matrix algebra
over k since k is algebraically closed. As S contains the identity of End (k™) we have

End, (k™) % --- X End (k™) =S CEnd, (k™)

with ¥ m;=m. Thus the B-module defined by g is a direct sum of B-modules of
dimensions m,...,m,. Each of those modules has a structure map B—End (k™).
By assumption (ii) or (ii’), that structure map is in the same component as
B—End (k™): b~e(b)l. We simultaneously deform g to the direct sum to get the
structure map B—End (k™): b—~e&(b)],,. This deformation is taking place inside S
which commutes with o(A4) so we have an actual deformation of ¢ to ¢ of the form

ag(a® b) =e(b)o(a).

Remark. Theorem 1.9 asserts that a Kiinneth homomorphism C(A4)® C(B)—
C(A ®,B) is an isomorphism under the conditions that B is formally smooth,
C(B)=N, and k is algebraically closed. Since C(B)=N, the left hand side is
isomorphic to C(A4). The Kiinneth homomorphism maps (M) ® (N) to (MR N)
where M®, N where M®; N is an A ®, B-module in the usual way. The inverse
constructed in the proof of Theorem 1.9 maps the class (M) to { MR (M)
where 4M means M as an A-module and M is the one-dimensional B8-module whose
class generates C(B).

The results above — Theorem 1.9, Propositions 1.6 and 1.8 — also hold with D in
place of C.

In order to count the classes in C(A) define the power series K 4(t) =¥ - Vat"
where v, = cardinality of C,(A) or the number of connected components with k-
rational points in Mod 4(k").

Proposition 1.10. (i) x4, g(t) =k 4(t)x5(2).
(ii) k 4(t) = K 4 ,1(t) when I is a nilpotent two-sided ideal.

Proof. These follow from Proposition 1.6.

Example 1.11. If A is finite dimensional then « 4(f)= k 4,5(¢) where N is the radical
of A. Since A/N is semisimple, 4A/N=S§, x--- x §; with each §; simple. Now C(S))
has one generator in dimension m;. Thus

1

ks =14tMp i = Y .
s(0) y -
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Thus x4(8)=[Ti=; 1 /(1 — ¢t™) where m,, ..., m, are the dimensions of the simple A-
modules.

Example 1.12. If A is commutative and k algebraically closed, then [S, Theorem
2.8] shows x 4(r)=1/(1 —¢)* where A=A, x --- X A; and each A;is connected.
Exampie 1.13. For t each dimension and
50 v, is the number of partitions of n. Thu

KA =TI, 1701 = 9.

If Conjecture (1) is true then C(4)=N® where S indexes the d-simple
components and x4(?)=1/][(1 —t™) where m, is the dimension of the corres-
ponding simple module.

1.2. The monoid H(A) and the group R(A)

We define two modules M and N to be H-equivalent if there is a sequence of
modules M =My, M|, ..., M;=n and morphisms ¢,: U;—~Mod 4 where U;is an affine
open subscheme of P} and the image of ¢, contains M; and M,,,. Each ¢;is a
homotopy of modules if we enlarge upon Gersten’s definition (see the introduction)
to allow rational curves as parameter spaces, not just A,. We denote by H(A4) the set
of H-equivalence classes of Mod, and make H(A) into an abelian monoid using
® :Mod  xMod 4 —Mod, which respects H-equivalence. We denote the associated
group by R(A).

Then H is a functor from the category of finitely generated k-algebras to the
category of abelian monoids and R is a functor to the category of abelian groups.
There is a morphism of functors & : H—C such that @ 4: H(A)—= C(A): [M]~ (M)
where [M] is the H-equivalence class of M. Since H-equivalence is finer than C-
equivalence this functor is well defined and @ 4 is surjective for every algebra 4.

Given an exact sequence 0= M’ - M—M”—0 we have [M] = [M’] + [M"] since the
deformation of M to M'@M"” takes place over Al, giving an H-equivalence.
Therefore the classes of simple modules form a set of generators for H(A).

Proposition 1.14. (1) H(A X B)=H(A) X H(B).
(ii) H(A % B)=H(A) xx H(B).
(iii) H(A/I)= H(A), I nilpotent two-sided ideal.

Proof. The proofs are the same as for Proposition 1.6.

If A and B are k-algebras, there is a Kiinneth morphism H(A)® H(B)-
H(A®,B) which takes [M]®[N] to [M®N] with M@, N an A @,B-module
whose scalar multiplication is given by a®b-x@y=ax@by. If B=k[x] or
B =k{x;} then H(B)=N and the Kiinneth morphism is an isomorphism.
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Proposition 1.15. If B=k[x] or B=k{x;} then HA)QHB)—-H(A®B) is an
isomorphism. ‘

Proof. First, H(B)= N since any representation of B may be deformed by a line to
the zero-representation x;~0. Then any representation of A® B deforms to one
with the action of A remaining unchanged while the action of B is the zero-

representation. This representation of A®B is the tensor product of the
representation restricted to 4 with the one dimensional zero representation of B.

Theorem 1.16. Let B satisfy the assumptions of Theorem 1.9. Then HA®B)=
H(A).

Proof. The proof of Theorem 1.9 works again because all the deformations used
there are done over Al

Remark. The results in this section also hold with R in place of H.

1.3, Zero cycles

In this section & is algebraically closed and 4 is a commutative k-algebra. Let
X =Spec A. The group of 0-cycles of X, denoted by #,(X), is the free abelian group
on the closed points of X. Using an appropriate definition of ‘rational equivalence’
we show that the group Zy(X)/ # {(X) is isomorphic to R(A4). Thus, R(A) serves as
a noncommutative generalization of the Chow group of 0-cycles. Likewise we show
that D(A) is isomorphic to the group 2,(X)/ # 3¥(X), which is the group of O-cycles
modulo algebraic equivalence.

Definition 1.17. Let X be a k-scheme. The group #,(X) of p-cycles on X is the free
abelian group on the irreducible subvarieties of X of dimension p (i.e. on the
reduced and irreducible subschemes of dimension p).

Note. If X is not reduced, #,(X)= #,(X eq) 50 We may assume X isa variety.

Definition 1.18. The 0-cycle ze #4(X) is rationally equivalent to 0 if there exists an
open subset UCP!, two points u, and ; in U, and a l-cycle we #, (U x X)), finite
and flat over U, such that z=w, - w,; where w; is the 0-cycle on X defined by
projecting the fiber of w at u; onto X [2].

The group of O-cycles rationally equivalent to 0 is denoted by #{'(X) and the
quotient Z(X)/ # (X)) by Ag(X). The group Ay(X) is the Chow group of 0-cycles.

If, in the definition of ‘rationally equivalent to 0’, we replace the rational curve U
by an arbitrary connected variety 7, then the cycle z is said to be ‘algebraically
equivalent to 0’. We denote by #3%(X) the subgroup of O-cycles algebraically
equivalent to 0.
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Now let M be an A-module of dimension n over k. We define a 0-cycle
Z(M) =Y mx; where m; is the multiplicity of the 4-module x(x,) in a composition
series for M. Recall that x(x)) is the one-dimensional module 4/m(x;) and m(x)) is
the maximal ideal of x;. Since & is algebraically closed, every simple A-module has
dimension one and appears as the residue field of a unique maximal ideal.

Theorem 1.19. The map R(A)— Ay(X): [M]1—[Z(M)] is an isomorphism.

Proof. First we must show that the map Mod 4~ #y(X): M~ Z(M) respects the R-
equivalence classes in Mod 4. Suppose M and N are equivalent in R(A). Then there
exists P such that M@ P and N@® P are in the image of a morphism ¢: C—Mod 4
from a rational curve C. By normalizing we may assume C is nonsingular and we
may assume it is affine since the points mapped to M@ P and N@® P lie in an affine
subset. Thus we may assume C is open in P!, The morphism ¢ : C—Mod, isan A®
R-module on RY, N=dim; M@ P and Spec R = C. This gives a module over R which
is finite and flat; in fact it is free. Therefore the 1-cycle associated to this module in
Z(Cx X) is finite and flat over C and shows that ZIM® P) and Z(N@ P) are
rationally equivalent. Since Z is additive we have [Z(M)® Z(P)] = [Z(M)]| D [Z(P)]
and so [Z(M))=[Z(N)]). This shows the map R(4)—Ay(X) is well defined. It is
surjective since the O-cycle ¥ n.x; is the image of ¥ n;x(x).

To show injectivity suppose that [Z(M)]=[Z(N)] in Ay(X). There is a cycle
we Z,(U x X), finite and flat over U, such that w,=Z(M) and w, = Z(N) for points
a,be U. Since w is finite and flat over U, w can be written w= Y n;,w; where w; is
represented by the irreducible curve W; C Ux X, flat and finite over U. Cover U
with {U;;}; such that 4(W;|Uy) is a flat 6(U;;) module and finitely generated. Each
U, is affine and so is the complement of a finite set of points in Al Thus o(Uy) is
obtained from k(¢]= 6(A') by adjoining elements of the form 1/f. This shows
o(U;) is principal and so (W;{ Uy) is free. Thus ¢(W)) is projective over #(U) and
hence also free. Let m; be the rank.

Each curve W; defines an A® ¢(U)-module on #(U)™ in the natural way. The
sum ¥ n;w; can be separated into positive and negative parts to define two families
of A-modules parameterized by U. These families are given by morphisms
¢, 9,: U»Mod,. Then we have M@ ¢, (a)=¢,(a) and ND @ (b)=¢.(b), so
(M) =[91(a)] - [92(a)] and [N]=[0,(D)] - [#3(b)] in R(A). Thus [M]=[N] in R(A).
This shows the injectivity.

Remark. In the definition of rational equivalence we require finiteness. This
prevents the cycle from disappearing by going to infinity. It gives a well-defined
degree map on a noncomplete variety X.

Theorem 1.20. The map D(A)— Zy(X)/ Z¥¥(X): (M) —[Z(M))ag is an iso-
morphism,
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Proof. The same arguments used in the previous theorem show that this map is well
defined and surjective. For injectivity we cannot use the rationality of the parameter
space, so we give a different proof which can be used for the injectivity in Theorem
1.19 as well.

Suppose that Z(M) and Z(/V) are algebraically equivalent. Let we #\(TxX X)bea
flat, finite cycle over T and @, b€ T such that w,=Z(M) and w,=2Z(N), and T is a
connected k-scheme. Let w= Y n;w; where each w;is the cycle of an irreducible curve
W;C T x X, which is flat and finite over T. By finiteness W;is affine over 7 and that
together with flatness implies W; is locally free over 7. Cover T with affine
neighborhoods T so that W= W;|T; is free over T}, i.e. £(W};) is a finite free
¢(T;)-module. Then ¢(W;) is a family of A-modules parameterized by 7; since
(W) is a quotient of #(T;)®A, being the coordinate ring of the subscheme
W,;CT;xA. Since T is connected and is covered by the open subvariety 7}, all
modaules in the families #(W}), for i fixed, are C-equivalent. Thus M and N are C-
equivalent and so the map (M) ~[Z(M)],, is injective and an isomorphism.

2. Finitely generated modules

2.1. The category .4 4

Let .#, denote the category of finitely generated left A-modules and assume A is a
k-algebra. We define abelian monoids C(.#,) and H(.#4) and their associated
groups D(.44) and R(.#4,) in a manner similar to what was done in Section | for
finite dimensional modules.

Definition 2.1. Two finitely generated left A-modules M, and M, are C-equivalent
if there exists a commutative k-algebra R of finite type and two k-points of R
£,€;: R—k and a finitely generated left A ®; R-module E such that E is flat over R
and the A-modules E,=E®, k and E;=E®,,k are isomorphic over A to M, and
M, respectively.

Definition 2.2. The modules M, and M, are homotopic or H-equivalent if thereis a
finite sequence of modules M;=N,N,,...,N,=M, where N; and N;,, are C-
equivalent over a k-algebra R; which is the coordinate ring of a rational curve.

Define the monoid C(.#4) to consist of the C-equivalence classes of modules in
.# 4 and define H(.#,) to be the monoid of H-equivalence classes. Let D(.#4) and
R(.#4) denote the associated abelian groups.

For an algebra morphism f: 4—B such that B is a flat A-module there are
monoid morphisms C(f). : C(.« 4)~ C(4 ) and H(f). : H(.4 4)— H(.#) which map
the class of M to the class of M®,4 B.

If f: A— B makes B into a finitely generated 4-module then there are morphisms
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C(f)*: C(4g)—C(A4) and H(f)*: H(.4g)— H(.#4) mapping the class of the B-
module N to the class of the A-module 4N. (4N denotes the A-module structure on
N obtained by restricting the scalar multiplication to A4 via f.)

Proposition 2.3. [f IC A is a nilpotent ideal and n: A— A/l is the projection, then
C(n)* and H(n)* are isomorphisms.

Proof. Let f* denote either map. Then f* is surjective because any 4-module M is
homotopic to an A/[-module, i.e. an A-module with I acting as 0. To show f* is
injective let f*(M)) =f*(M,). Then there is a flat family of A-modules E containing
M, and M,. Now E can be deformed by homotopies to a module E’ with I® R
acting as 0 (£ is an A® R-module). Thus £’ is a flat family of 4//& R-modules and
s0 M, and M, are equivalent as A//-modules.

Proposition 2.4, There are isomorphisms C(M)DC(Mg)—C(M 445 and
H( A )@ H( M)~ H(A 4p).

Proof. These isomorphisms are given by pf+ p3 for p;: A xB—A and p;: A X B—

n

D.

Proposition 2.5. There is a natural group homomorphism n:Ky(.4,4)—
R4 4): [M]= (M. Thus Ky-equivalence is finer than R-equivalence.

Proof. Suppose 0—M,—>M,—M;—0 is an exact sequence in .#4. Then [M,]=
[M,] + [M;]. But M, can be deformed over Al to M, @M, and so {(M,) = (M) +
{M3). Thus n is well defined.

Proposition 2.6. If A is left noetherian then n : Ko(4 4)— R(A 4) is an isomorphism.

Proof. We will show that n~'({M))=[M] gives a well-defined inverse for 7.
Suppose Spec R is a nonsingular, rational, affine curve. Then Spec R is isomorphic
to an open subset of A!. Thus R is obtained from k[¢] by adjoining elements of the
form 1/(¢~a). Then Ko(44)=Ko(As5r)- In one direction the isomorphism is
given by [M]—~[M®R). The inverse is [E]l=[E]~[E(_g-1or] where
aeSpec RC A!l. Note that this is the alternating sum ¥, (—1)/ Torf*@R(E,A) where A
is an A® R-module via AQR—A : a@®r— Fa, F=rmod (- a). Any of the points of
Spec R define the same map since all are inverses of a single map. Thus in Ky(.#4)
we have [E,] — [E( . g)—1or] = [Ep] = [Et— p)~10r]-

Now suppose E is a flat (over R) family of A-modules. Then (E,) = (E,) by
definition of R-equivalence, but also [E,] = [E},] since £ has no (¢ —a)-torsion or
(¢ - b)-torsion. Thus 7~ Y(E,») =n"'(E,)) and so - ! makes sense.
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2.2. Notes on projective modules

Let 2, denote the category of finitely generated, projective left A-modules.
Define monoids C(#,), H(#,4) and groups D(#,), R(?,4) just as for the category
” A Lau®lee A€ momlanedon A caemdiilas misae Qoo ID (o momionticoa ALAD cweamdnls
M 4. A LdIlllly O PIUJCCLIVE A-NIOUUICS OVEL OpPCL R 15 PLYJCLULIVE A R-HIVUUWIC L.
(It is superfluous to require that £ be flat as an R-module. £ is a direct summand of
(A®R)" As an R-module A®R is free since A is free over k. Thus E is a projective

R-module.)
Proposition 2.7. [f A is left-regular then Ko( 7 4) = R(P4).

Proof. Define &: Ko(24)— R(24): [P}~ (P). Then £ is well defined in general and
not just when A4 is regular. To define £-! we need the regularity of A. Let
&~ Y({P)»)=[P] and suppose E is a projective A ® R-module. By Proposition 2.6 we
know that the class in Ky(.# 4) is constant for the modules in the family E£. But since
A is regular Ko(24) = Ko(44) [1, p. 453]. Thus the class in Ky(#,) is also constant
and we get the inverse map.
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