A Generalization of Circulant Matrices for Non-Abelian Groups

Kent E. Morrison
Department of Mathematics
California Polytechnic State University
San Luis Obispo, CA 93407
kmorriso@calpoly.edu

August 18, 1998

Abstract

A circulant matrix of order n is the matrix of convolution by a fixed element of the group algebra of the cyclic group \mathbf{Z}_{n}. Replacing \mathbf{Z}_{n} by an arbitrary finite group G gives the class of matrices that we call G-circulant. We determine the eigenvalues of such matrices with the tools of representation theory and the non-abelian Fourier transform.

Definition 1 An n by n matrix C is circulant if there exist c_{0}, \ldots, c_{n-1} such that the i, j entry of C is $c_{i-j \bmod n}$, where the rows and columns are numbered from 0 to $n-1$ and $k \bmod n$ means the number between 0 and $n-1$ that is congruent to k modulo n.

For $n=5$ a circulant matrix looks like

$$
\left[\begin{array}{lllll}
c_{0} & c_{4} & c_{3} & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{4} & c_{3} & c_{2} \\
c_{2} & c_{1} & c_{0} & c_{4} & c_{3} \\
c_{3} & c_{2} & c_{1} & c_{0} & c_{4} \\
c_{4} & c_{3} & c_{2} & c_{1} & c_{0}
\end{array}\right]
$$

Definition 2 Let $G=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be a finite group of order n. An n by matrix C is G-circulant (with respect to the ordering of G) if the entry in row i and column j is a function of $\sigma_{i} \sigma_{j}^{-1}$.

A circulant matrix is a \mathbf{Z}_{n}-circulant matrix with the ordering $\mathbf{Z}_{n}=\{0,1, \ldots, n-1\}$. We call a matrix group-circulant if it is G-circulant for some group G and an ordering of the elements of G.

Group-circulant matrices naturally arise as the transition matrices of Markov chains on finite groups. The state space is G and the probability of moving from τ to $\sigma \tau$ is p_{σ}.

At each step the current state is multiplied on the left by the element of G drawn from the probability distribution given by p. The transition matrix has in row σ and column τ the probability of moving from state τ to σ, which is $p_{\sigma \tau^{-1}}$. As an example, let G be the symmetric group S_{n} and define p to be concentrated uniformly on the transpositions. Since the transpositions generate S_{n} this Markov chain will tend to the uniform distribution on the entire group. If you were to use several random transpositions in an attempt to construct a random permutation, then you would like to know how quickly the approach to uniformity takes place. Such information can be extracted from the eigenvalues of the transition matrix.

Define the group algebra $\mathbf{C}[G]$ to be the set of functions $\phi: G \rightarrow \mathbf{C}$ with the usual operations of addition and scalar multiplication and with multiplication defined by

$$
(\phi * \psi)(\sigma)=\sum_{\tau \in G} \phi\left(\sigma \tau^{-1}\right) \psi(\tau) .
$$

It is, perhaps, simpler to define multiplication using the basis $\delta_{\sigma}, \sigma \in G$,

$$
\delta_{\sigma}(\tau)= \begin{cases}1 & \sigma=\tau \\ 0 & \sigma \neq \tau\end{cases}
$$

Define multiplication on the basis elements by $\delta_{\sigma} * \delta_{\tau}=\delta_{\sigma \tau}$ and extend by linearity. It is easy to verify that the two definitions are equivalent.

Theorem 3 For ϕ in $\mathbf{C}[G]$ define the linear map

$$
C_{\phi}: \mathbf{C}[G] \rightarrow \mathbf{C}[G]: \psi \mapsto \phi * \psi .
$$

Then the matrix of C_{ϕ} with respect to the basis $\left\{\delta_{\sigma}\right\}$ is G-circulant. Conversely, every G-circulant matrix arises in this way.

Proof Apply C_{ϕ} to the basis element δ_{τ} and extract the coefficient of δ_{σ} in the result.

$$
\begin{aligned}
C_{\phi}\left(\delta_{\tau}\right) & =\phi * \delta_{\tau} \\
& =\sum_{s \in G} \phi(s) \delta_{s} * \delta_{\tau} \\
& =\sum_{s \in G} \phi(s) \delta_{s \tau} \\
& =\sum_{\sigma \in G} \phi\left(\sigma \tau^{-1}\right) \delta_{\sigma}
\end{aligned}
$$

Thus, the entry in row σ and column τ is $\phi\left(\sigma \tau^{-1}\right)$.
The Fourier transform turns convolution, which is the multiplication in the group algebra, into multiplication and enables us to find the eigenvalues of C_{ϕ}. We summarize what is needed from the theory of representations of finite groups.

Definition 4 For a finite group G let \hat{G} denote the set of equivalence classes of irreducible representations of G. The set \hat{G} is called the dual of G.

It is convenient to pick representatives of the equivalence classes and to regard \hat{G} as a set of specific representations. When G is abelian, \hat{G} is also an abelian group and isomorphic to G, although not naturally isomorphic. When G is non-abelian, \hat{G} does not have a group structure. Let $\hat{G}=\left\{\rho_{1}, \ldots, \rho_{r}\right\}$ and suppose that the dimension of ρ_{i} is d_{i}. It is useful to know that r, the number of irreducible representations, is also the number of conjugacy classes of G and that $\sum d_{i}^{2}=n$.

Definition 5 For $\phi \in \mathbf{C}[G]$ the Fourier transform of ϕ is the matrix valued function $\hat{\phi}$ on \hat{G} defined by

$$
\hat{\phi}(\rho)=\sum_{s \in G} \phi(s) \rho(s)
$$

Note that the sum above makes sense since all the matrices are the same size.

Theorem 6 (Fourier Inversion)

$$
\phi(s)=\frac{1}{|G|} \sum_{\rho_{i} \in \hat{G}} d_{i} \operatorname{Tr}\left(\rho_{i}\left(s^{-1}\right) \hat{\phi}\left(\rho_{i}\right)\right)
$$

Theorem 7 For ϕ and ψ in $\mathbf{C}[G]$,

$$
\widehat{\phi * \psi}=\hat{\phi} \hat{\psi}
$$

where $(\hat{\phi} \hat{\psi})(\rho)=\hat{\phi}(\rho) \hat{\psi}(\rho)$ and the product is matrix multiplication.
Let $M_{k}(\mathbf{C})$ be the algebra of $k \times k$ complex matrices and define

$$
\mathcal{M}[\hat{G}]:=M_{d_{1}}(\mathbf{C}) \oplus \cdots \oplus M_{d_{r}}(\mathbf{C})
$$

Now $\mathbf{C}[G]$ and $\mathcal{M}[\hat{G}]$ both have dimension $n=|G|$. If we consider the Fourier transform of $\phi \in \mathbf{C}[G]$ as the k-tuple of matrices $\left(\hat{\phi}\left(\rho_{1}\right), \ldots, \hat{\phi}\left(\rho_{r}\right)\right)$ or as an $n \times n$ matrix in block form

$$
\hat{\phi}\left(\rho_{1}\right) \oplus \ldots \oplus \hat{\phi}\left(\rho_{r}\right)
$$

then Fourier Inversion shows that the Fourier transform is a linear isomorphism. The previous theorem shows that it is also an algebra homomorphism where $\mathcal{M}[\hat{G}]$ has the product algebra structure. Therefore, the Fourier transform is an algebra isomorphism between $\mathbf{C}[G]$ and $\mathcal{M}[\hat{G}]$.

Note If G is abelian, then $d_{i}=1$ and $r=n$, so that $\mathcal{M}[\hat{G}]$ can be identified with the algebra of complex valued functions on \hat{G}.

Theorem 8 Let the eigenvalues of $\hat{\phi}\left(\rho_{i}\right)$ be $\lambda_{i, j}, 1 \leq j \leq d_{i}$. Then these are the eigenvalues of C_{ϕ} and $\lambda_{i, j}$ has multiplicity d_{i}.

Proof Let λ be an eigenvalue of C_{ϕ} with eigenvector ψ. Thus, $\phi * \psi=\lambda \psi$. Taking Fourier transforms we see that in $\mathcal{M}[\hat{G}]$

$$
\hat{\phi} \hat{\psi}=\lambda \hat{\psi} .
$$

Because of the block form for $\hat{\phi}$ the eigenvalues of C_{ϕ} are the union (over i) of the eigenvalues of multiplication by $\hat{\phi}\left(\rho_{i}\right)$ on $M_{d_{i}}(\mathbf{C})$. The eigenvalue equation

$$
\hat{\phi}\left(\rho_{i}\right) \hat{\psi}\left(\rho_{i}\right)=\lambda \hat{\psi}\left(\rho_{i}\right)
$$

is of the form $A B=\lambda B$ for square matrices A and B of size d_{i}. Hence each column of B is an eigenvector of A with eigenvalue λ. The action of A on the vector space of matrices $M_{d_{i}}(\mathbf{C})$ is equivalent to the direct sum of d_{i} copies of the action on $\mathbf{C}^{d_{i}}$ and so the multiplicity of the eigenvalue is multiplied by d_{i}.

Letting $G=\mathbf{Z}_{n}$, we can determine the well-known eigenvalue picture for circulant matrices. Let $\zeta=\exp (2 \pi i / n)$. The irreducible representations are all one-dimensional and given by the characters $\rho_{j}(m)=\zeta^{j m}$. Thus, ρ_{j} maps the generator 1 in \mathbf{Z}_{n} to ζ^{j}.
Theorem 9 (Diagonalization of Circulant Matrices) Let C be the circulant matrix defined by c_{0}, \ldots, c_{n-1} as in Definition 1. Then C is diagonalizable with eigenvalues $\lambda_{0}, \ldots, \lambda_{n-1}$ given by

$$
\lambda_{j}=\sum_{m=0}^{n-1} c_{m} \zeta^{j m}
$$

and corresponding eigenvector

$$
\left(1, \zeta^{-j}, \zeta^{-2 j}, \ldots, \zeta^{-(n-1) j}\right)
$$

Proof The matrix C is the matrix of convolution by ϕ where $\phi(m)=c_{m}$. By Theorem 8 the eigenvalues of C_{ϕ} are the eigenvalues of the 1×1 matrices $\hat{\phi}\left(\rho_{j}\right)$. Thus,

$$
\lambda_{j}=\hat{\phi}\left(\rho_{j}\right)=\sum_{m} \phi(m) \rho_{j}(m)=\sum_{m} c_{m} \zeta^{j m} .
$$

To get an eigenvector for λ_{j} let ψ_{j} be the element of the group algebra such that $\hat{\psi}_{j}=e_{j}:=(0, \ldots, 0,1,0, \ldots, 0)$, where the e_{j} are the standard basis vectors of \mathbf{C}^{n}. Thus,

$$
\hat{\psi}_{j}\left(\rho_{k}\right)= \begin{cases}1 & j=k \\ 0 & j \neq k\end{cases}
$$

Note that $\hat{\phi} \hat{\psi}_{j}=\lambda_{j} \hat{\psi}_{j}$. Fourier Inversion gives

$$
\begin{aligned}
\psi_{j}(m) & =\frac{1}{n} \sum_{k} \rho_{k}(-m) \hat{\psi}_{j}\left(\rho_{k}\right) \\
& =\frac{1}{n} \zeta^{-j m}
\end{aligned}
$$

which is an eigenvector for convolution by ϕ in the group algebra. After multiplying by n we still have an eigenvector. Taking its coordinate representation with respect to the basis $\delta_{m}, m=0, \ldots, n-1$, gives the eigenvector in the statement of the theorem.

Corollary 10 Let F be the $n \times n$ matrix with $j k$ entry $\zeta^{-j k}, 0 \leq j, k \leq n-1$. Let C be a circulant matrix and let Λ be the diagonal matrix with diagonal entries λ_{j}. Then

$$
C=F \Lambda F^{-1}
$$

Furthermore, the $j k$ entry of F^{-1} is

$$
\frac{1}{n} \zeta^{j k}
$$

The center of the group algebra is the space of class functions. Recall that $\phi: G \rightarrow \mathbf{C}$ is a class function if $\phi\left(\tau \sigma \tau^{-1}\right)=\phi(\sigma)$ for all $\sigma, \tau \in G$. The center of $\mathcal{M}[\hat{G}]$ is the direct sum of the centers of the summands $M_{d_{i}}(\mathbf{C})$ and the center of the matrix algebra $M_{d_{i}}(\mathbf{C})$ is the space of scalar multiples of the identity. The Fourier transform maps the center of the group algebra onto the center of $\mathcal{M}[\hat{G}]$. Therefore, for a class function ϕ, the eigenvalues of C_{ϕ} are $\lambda_{i}, 1 \leq i \leq r$, where λ_{i} corresponds to ρ_{i} and is the scalar such that

$$
\hat{\phi}\left(\rho_{i}\right)=\lambda_{i} I_{d_{i}} .
$$

With the trace we can isolate λ_{i} as

$$
\lambda_{i}=\frac{1}{d_{i}} \sum_{\sigma \in G} \phi(\sigma) \operatorname{Tr} \rho_{i}(\sigma)
$$

Let $G=S_{3}$ and order the elements

$$
\iota,(12),(23),(13),(123),(132)
$$

Recall that there are three irreducible representations of S_{3}. Let ρ_{1} be the trivial representation, ρ_{2} the alternating representation,

$$
\rho_{2}(\sigma)=(-1)^{\sigma}
$$

and let ρ_{3} be the 2-dimensional representation

$$
\begin{gathered}
\iota \mapsto\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mapsto\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right], \quad\left(\begin{array}{ll}
2 & 3
\end{array}\right) \mapsto\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right], \quad\left(\begin{array}{ll}
1 & 3)
\end{array}>\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\right. \\
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \mapsto\left[\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right], \quad\left(\begin{array}{ll}
1 & 3
\end{array} 2\right) \mapsto\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right] .
\end{gathered}
$$

Let $\phi=\delta_{(123)}$. Using the convention that $\sigma \tau$ means σ followed by τ, i.e. $(12)(23)=(132)$, the matrix for C_{ϕ} is

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

The Fourier transform of ϕ is the element of $\mathcal{M}\left[\hat{S}_{3}\right]=\mathbf{C} \oplus \mathbf{C} \oplus M_{2}(\mathbf{C})$ given by

$$
\begin{aligned}
& \hat{\phi}\left(\rho_{1}\right)=1 \\
& \hat{\phi}\left(\rho_{2}\right)=1 \\
& \hat{\phi}\left(\rho_{3}\right)=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

The eigenvalues of $\hat{\phi}\left(\rho_{3}\right)$ are the cube roots of unity $-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. Each of them has multiplicity two as an eigenvalue of C_{ϕ}. In addition, 1 is an eigenvalue of multiplicity 2. A quick check with MATLAB verifies that these are the eigenvalues of C_{ϕ}.

