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Abstract. In a guessing game, players guess the value of a random real number selected
using some probability density function. The winner may be determined in various ways;
for example, a winner can be a player whose guess is closest in magnitude to the target, or
a winner can be a player coming closest without guessing higher than the target. We study
optimal strategies for players in these games and determine some of them for two, three, and
four players.

1. INTRODUCTION AND BACKGROUND. There are situations in everyday life
in which people try to outguess one another. Visitors to the county fair can be asked to
guess the number of jellybeans in a jar. In a sealed-bid auction, it might be desirable
to bid closest to the value of a some object without guessing too high. Contestants on
the American television program “The Price Is Right” try to make better guesses on
the price of household goods than their opponents. Assuming rational and intelligent
guessers, what does the mathematics say a person should do?

A collection of n players guess the value of r , a random number selected using some
cumulative distribution function G known to all. How should each player guess, if the
winning guess is the closest without going higher than r? How should each player
guess, if the winning guess is simply the closest guess to r? We provide techniques to
find solutions to these games and exhibit explicit solutions for small values of n.

The goal is to find a single optimal strategy S such that a Nash equilibrium results
when each player employs S. In other words, if player i knew that all of his opponents
were using strategy S, then the expected payoff to player i is maximized when player i
uses strategy S as well. For our guessing games, a strategy is a cumulative distribution
function F such that F(x) is the probability of guessing a real number less than or
equal to x .

Under the assumption that the random number r is a continuous random variable,
the general problem can be reduced to the case that r is selected uniformly in [0, 1].
The cumulative distribution function G is strictly increasing on the range of r and so
G−1 exists. If F(x) is an optimal strategy when r is selected uniformly from [0, 1],
then F(G(x)) is an optimal strategy for the more general case. This is because

F(G(x)) = the probability that a guess for r is ≤ G(x)

= the probability that a guess for G−1(r) is ≤ x,

providing a cumulative distribution function. So we restrict attention to when r is se-
lected uniformly in [0, 1]. We will assume that the players choose numbers in [0, 1],
since there is nothing to be gained from other choices.

In section 2, we analyze the game in which the winner makes the guess closest
to, but not larger than, r . In section 3, we analyze the game in which the winner is
simply the player whose guess is closest to r . The paper ends with some remarks
about numerical approximations in section 4. This introductory section concludes by
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clarifying what we mean by a solution in an n person zero-sum game and by proving
two theorems about solutions.

Representing the simultaneous choices of the n players as a vector x = (x1, x2, . . . ,

xn) in [0, 1]n , we denote the payoff to player i by Ai (x). This is the expected return to
player i when the target number r is distributed uniformly in [0, 1]. If each player pays
one unit to play and the winner takes all, then the game is zero-sum, i.e.,

∑
i Ai (x) = 0

for all x. (With ties, the pot is split equally.)
Since the set of pure strategies for each player is the unit interval [0, 1], a mixed

strategy is a probability measure on the interval or, equivalently, a cumulative distri-
bution function. Suppose that player i uses the mixed strategy given by the cumulative
distribution function Fi , while the other players guess x j for j 6= i . Then the expected
payoff to player i is the Riemann–Stieltjes integral∫

Ai (x) d Fi (xi ),

which, when F ′(xi ) exists and is bounded, is the same as the ordinary integral∫
Ai (x)F ′i (xi ) dxi .

It will turn out that the optimal mixed strategies that we find are actually differentiable,
but it is convenient to allow the larger class of cumulative distribution functions at the
outset.

Definition 1.1. Let Ai be the payoff function for player i in a zero-sum game with
n players. A solution to the game is the data consisting of cumulative distribution
functions F1, . . . , Fn and real numbers v1, . . . , vn such that

∑
i vi = 0 and for each

i = 1, . . . , n and for all x j ∈ [0, 1] with j 6= i , the inequality

vi ≤

∫
Ai (x) d Fi (xi )

holds. We refer to the Fi as optimal strategies.

By definition, using an optimal strategy Fi guarantees player i an expected payoff
of at least vi regardless of what the other players do. It follows that

vi ≤

∫
· · ·

∫∫∫
· · ·

∫
Ai (x) dG1(x1)

· · · dG i−1(xi−1)d Fi (xi )dG i+1(xi+1) · · · dGn(xn)

for any cumulative distribution functions G1, . . . , G i−1, G i+1, . . . , Gn . The condition
that

∑
i vi = 0, combined with the fact that we are considering a zero-sum game,

implies that vi is the maximal expected payoff that player i can ensure for himself.
This fact is implied by Theorem 1.2 below.

Theorem 1.2. If F1, . . . , Fn together with v1, . . . , vn is a solution for a zero-sum game
with payoffs given by Ai , then

vi =

∫
· · ·

∫
Ai (x) d F1(x1) · · · d Fn(xn).
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This iterated integral gives the expected payoff to player i when each player j is using
the cumulative distribution function F j to select his real number. So Theorem 1.2 says
that the expected payoff to player i is vi when each player is using an optimal strategy.

Proof. We have

vi ≤

∫
· · ·

∫
Ai (x) d F1(x1) · · · d Fn(xn)

=

∫
· · ·

∫ −∑
j 6=i

A j (x)

 d F1(x1) · · · d Fn(xn)

= −

∑
j 6=i

∫
· · ·

∫
A j (x) d F1(x1) · · · d Fn(xn)

≤ −

∑
j 6=i

v j

= vi ,

and so we must have equalities instead of inequalities throughout.

Theorem 1.3 below says that if every player except player i uses an optimal cumu-
lative distribution function, then player i will earn an expected payoff of vi . Theorem
1.3 may be considered a continuous analogue of the equilibrium theorem for games.

Theorem 1.3. If F1, . . . , Fn together with v1, . . . , vn is a solution for a zero-sum game
with payoffs given by Ai , then

vi =

∫
· · ·

∫∫
· · ·

∫
Ai (x) d F1(x1) · · · d Fi−1(xi−1)d Fi+1(xi+1) · · · d Fn(xn).

There are n − 1 integrals here; the missing integral corresponds to d Fi .

Proof. Since vi is the maximum expected payoff that player i can ever achieve when
his opponents are using optimal strategies, we have

vi ≥

∫
· · ·

∫∫
· · ·

∫
Ai (x) d F1(x1) · · · d Fi−1(xi−1)d Fi+1(xi+1) · · · d Fn(xn).

Now suppose that equality does not hold, so that

vi >

∫
· · ·

∫∫
· · ·

∫
Ai (x) d F1(x1) · · · d Fi−1(xi−1)d Fi+1(xi+1) · · · d Fn(xn).

Integrate both sides of the inequality with respect to xi to get∫
(vi ) d Fi (xi ) >

∫ (∫
· · ·

∫∫
· · ·

∫
Ai (x) d F1(x1)

· · · d Fi−1(xi−1)d Fi+1(xi+1) · · · d Fn(xn)

)
d Fi (xi ).
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The left side is vi and the right side is∫
· · ·

∫
Ai (x) d F1(x1) · · · d Fn(xn),

which is vi by Theorem 1.2. Thus we have vi > vi , a contradiction, and so equality
must hold.

2. THE PRICE IS RIGHT. In this section, we consider the following guessing
game. A random number r is selected uniformly in [0, 1]. A total of n people guess r .
A winning guess is a guess closest to, but still smaller than, r . This game is very similar
to the guessing game played on the daytime television program “The Price Is Right.”
The main difference is that guesses on the television program are given sequentially,
so that the i th guesser has the privilege of knowing the previous i − 1 guesses.

If k ≥ 1 players out of n select the same winning number, then we define the payoffs
to be n/k − 1 to each winner and−1 to everyone else. If all players’ guesses are larger
than r , the payoff to all players is 0. This zero-sum payoff scheme is the same as if
each player antes 1 to play and winners share the pot.

We now provide a solution to the two-person game, using a technique outlined in
[1] to solve certain continuous two-person games.

The two-person game is symmetric (meaning that the game is the same for either
player), so the expected payoff for both players should be 0. Additionally, there should
be one strategy, given by a cumulative distribution function F , which is optimal for
both players. To find F in the proof of Theorem 2.1 below, we assume that F is con-
stant except on some interval (0, u), and that F ′(x) exists and is positive on (0, u).
These natural assumptions allow us to replace Riemann–Stieltjes integrals with Rie-
mann integrals in our calculations.

Theorem 2.1. An optimal strategy for the two-person “Price Is Right” guessing
game is the cumulative distribution function defined by F(x) = 1/

√
1− x − 1 for

x ∈ (0, 3/4).

Proof. If the first player selects x and the second selects y for x, y ∈ [0, u], the ex-
pected payoff A(x, y) to the first player is

A(x, y) =

{
2y − x − 1 if x < y,
1+ y − 2x if x > y.

Using Theorem 1.3, the x player should earn the expected payoff of 0 when the y
player uses F . That is,

0 =
∫
R

A(x, y)F ′(y) dy

=

∫ x

0
(1+ y − 2x)F ′(y) dy +

∫ u

x
(2y − x − 1)F ′(y) dy. (1)

At this point, we can simply verify that the function F given in the statement of the
theorem satisfies the above equation, but instead we will finish the proof by showing
how such an F is obtained.
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Differentiating both sides of (1) to eliminate the integrals, simplifying, and using
F(u) = 1 and F(0) = 0, we arrive at the differential equation

0 = 2(x − 1)F ′(x)+ 1+ F(x).

The solution is F(x) = C(2− 2x)−1/2
− 1 on (0, u) for some constants C and u. Using

F(0) = 0, it follows that C =
√

2. Using the fact that F(x) ≤ 1 for all x , u = 3/4.
We have now found the function F given in the statement of the theorem.

The probability that both players guess too high can be found using Theorem 2.1.
To find this probability, we first note that the probability that both players guess too
high, provided that r is a random number selected uniformly, is (1 − F(r))2 where
F(x) is the function in Theorem 2.1. Therefore, the probability that both players guess
too high is∫ 3/4

0
(1− F(r))2 dr =

∫ 3/4

0

(
2−

1
√

1− r

)2

dr = ln 4− 1 ≈ 0.3863.

We now move on to the n-person game for n ≥ 3. The theory of continuous n-
person symmetric zero-sum games is significantly less developed than that for two
players, but still we are able to generalize the approach taken in the two-person game.

In the two-person game, no player should guess a number larger than 3/4. What is
the least upper bound for a player’s guess for the n-person game?

Theorem 2.2. If there is an optimal strategy given by a differentiable cumulative dis-
tribution function F, then the least upper bound for a player’s guess in the n-person
game is 1− 1

n +
1

n2 for n ≥ 2.

Proof. Let A(x1, . . . , xn) be the expected payoff to the first player when player i
guesses xi , and let u be the least upper bound for the set of possible guesses. Using
Theorem 1.3, the function F should satisfy

0 =
∫
· · ·

∫
A(x1, . . . , xn)F ′(x2) · · · F

′(xn) dxn · · · dx2 (2)

for all x1 where the integral is over the region [0, u] × · · · × [0, u].
In the case where x1 = 0 and over the region where x2 ≤ x3 ≤ · · · ≤ xn , the integral

in (2) becomes ∫ u

0

∫ u

x2

· · ·

∫ u

xn−1

(nx2 − 1)F ′(x2) · · · F
′(xn) dxn · · · dx2

=

∫ u

0

nx2 − 1

(n − 2)!
(1− F(x2))

n−2 F ′(x2) dx2. (3)

To evaluate the n − 2 integrals above, we used the fact that F(u) = 1. If the variables
x2, . . . , xn are written in any order other than x2 ≤ x3 ≤ · · · ≤ xn , then the integral in
(3) remains unchanged; this is because A(0, x2, . . . , xn) = n min{x2, . . . , xn} − 1 and
because we are able to interchange the order of integration. There are (n − 1)! orders
of the variables x2, . . . , xn . Therefore, when x1 = 0, (2) becomes

0 = (n − 1)

∫ u

0
(nx2 − 1) (1− F(x2))

n−2 F ′(x2) dx2.
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This equation can be rewritten as∫ u

0
x2 (1− F(x2))

n−2 F ′(x2) dx2 =
1

n(n − 1)
. (4)

At the other extreme, consider x1 = u. Assuming x2 ≤ · · · ≤ xn , the integral in (2)
becomes ∫ u

0

∫ u

x2

· · ·

∫ u

xn−1

(n − 1− nu + x2)F ′(x2) · · · F
′(xn) dxn · · · dx2

=

∫ u

0

(n − 1− nu + x2)

(n − 2)!
(1− F(x2))

n−2 F ′(x2) dx2.

The integral above is invariant for any of the (n − 1)! orderings of the variables
x2, . . . , xn . So, if x1 = u, equation (2) becomes

0 = (n − 1)

∫ u

0
(n − 1− nu + x2) (1− F(x2))

n−2 F ′(x2) dx2.

Using equation (4), the above equation simplifies to 0 = (n − 1 − nu) + 1
n . Solving

for u proves the theorem.

Theorem 2.3. An optimal strategy for the three-person “Price Is Right” guessing
game is approximately the cumulative distribution function

F(x) = 0.726193x + 0.480269x2
+ 0.181628x3

+ 0.0444137x4
+ 0.0509559x5

+ 0.0648413x6
+ 0.0363864x7

+ 0.0123602x8
+ 0.0178371x9

+ 0.0244243x10
+ 0.0144697x11

+ 0.00535718x12
+ · · ·

for x ∈ [0, 7/9]. See Figure 1 for the graph of this function.

Proof. Let A(x, y, z) be the expected payoff to the first player when he guesses x and
his opponents guess y and z. Assuming that y < z, we have

0.25 0.5 0.75 1

0.25

0.5

0.75

1

Figure 1. An optimal strategy for the three-player “The Price Is Right” guessing game
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A(x, y, z) =


3y − 2x − 1 if x < y < z,
3z + y − 3x − 1 if y < x < z,
2+ y − 3x if y < z < x .

For the other three orders, we use the symmetry A(x, y, z) = A(x, z, y). We also dis-
regard the possibility that x = y, y = z, or x = z, with the expectation that we find an
optimal cumulative distribution function F that does not give positive probability to
single points.

The function F should satisfy

0 =
∫∫

A(x, y, z)F ′(y)F ′(z) dy dz,

where the integral is taken over [0, 7/9] × [0, 7/9] (this 7/9 comes from Theorem
2.2). Breaking this integral into six pieces, expanding, and simplifying where possible
using F(0) = 0 and F(7/9) = 1, we find

0 = −1− 2x − 2x F(x)+ 3F(x)2
+ x F(x)2

+ 2
∫ x

0
yF ′(y) dy + 6

∫ 7/9

x
yF ′(y) dy

+ 6F(x)

∫ 7/9

x
yF ′(y) dy − 2

∫ x

0
yF(y)F ′(y) dy − 6

∫ 7/9

x
yF(y)F ′(y) dy.

Differentiating, we obtain

0 = −2− 2F(x)+ F(x)2
− 6x F ′(x)+ 6F(x)F ′(x)

+ 6

(∫ 7/9

x
yF ′(y) dy

)
F ′(x). (5)

The term with the integral sign is the only term that prohibits us from finding an ordi-
nary differential equation. Differentiating (5) once more gives

0 = −8F ′(x)+ 2F(x)F ′(x)+ 6F ′(x)2
− 6x F ′(x)2

− 6x F ′′(x)

+ 6F(x)F ′′(x)+ 6

(∫ 7/9

x
yF ′(y) dy

)
F ′′(x). (6)

Again, the term with the integral sign is the only term which prohibits us from finding
an ordinary differential equation, but now we can use (6) to find an expression for∫ 7/9

x yF ′(y) dy and use it to replace this integral in (5). Doing so yields

0 =
8F ′(x)2

− 2F(x)F ′(x)2
− 6F ′(x)3

+ 6x F ′(x)3
− 2F ′′(x)− 2F(x)F ′′(x)+ F(x)2 F ′′(x)

F ′′(x)
.

It is possible to to use the numerator of the above differential equation, with the help
of the boundary conditions F(0) = 0 and F(7/9) = 1, to find a power series solution
for F(x). This is done by plugging a function of the form F(x) =

∑
ci x i for some

coefficients ci into the differential equation and finding the coefficients ci recursively.
This process finds the power series in the statement of the theorem.

Solutions to the n-player game with n ≥ 4 can be found generalizing the proof of
Theorem 2.3, although working out the details may be unreasonable. Solving the four-
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person game, for instance, involves repeatedly differentiating an integro-differential
equation in order to back-substitute for unknown terms similar to

∫ 7/9
0 yF ′(y) dy.

Working through these calculations to find a numerical approximation for F with
acceptable accuracy can be a challenge for a computer algebra system running on a
standard desktop computer.

3. THE CLOSEST WINS. In this section, we study the payoff scheme so that the
winner of the guessing game is the player with the guess closest to the random number
r . If the number r is selected uniformly from the interval [0, 1] and k ≥ 1 of the n
players select the same winning number, then the payoff is n/k − 1 to each winner and
−1 to everyone else. This payoff is the result of each player anteing 1, with winning
players sharing the pot.

The two-person game has a saddle point: Each player should always guess 1/2. For
three or more players, however, guessing 1/2 every time is not optimal—if a player
knew that each of his opponents were playing 1/2, then it would be better to deviate
from this strategy by playing 1/2+ ε for a small enough ε.

For the three-person game, a first strategy to check is the uniform distribution on an
interval centered around 1/2.

Theorem 3.1. The uniform distribution on the interval [1/4, 3/4] is optimal for the
three-person game.

Proof. Let A(x, y, z) be the expected payoff to the first player when he guesses x and
his opponents guess y and z. Assuming y < z, we have

A(x, y, z) =


3(x + y)/2− 1 if x < y < z,
3(z − y)/2− 1 if y < x < z,
2− 3(x + z)/2 if y < z < x .

For the other three orders, we use the symmetry A(x, y, z) = A(x, z, y).
Routine integration shows that F(x) = 2(x − 1/2) satisfies the equation

0 =
∫ 3/4

1/4

∫ 3/4

1/4
A(x, y, z)F ′(y)F ′(z) dy dz,

as needed to prove the theorem.

It is possible to use the symmetry of the game about 1/2 to find the solution in
Theorem 3.1. This approach is explained and used in Theorem 3.2 to find a solution to
the four-person game.

Theorem 3.2. A solution to the four person guessing game is for each player to use
the cumulative distribution function given approximately by

F(x) =
1

2
+ 0.636459(2x − 1)+ 0.214848(2x − 1)3

+ 0.144471(2x − 1)5

+ 0.123155(2x − 1)7
+ 0.118372(2x − 1)9

+ 0.122339(2x − 1)11

+ 0.132742(2x − 1)13
+ 0.149142(2x − 1)15

+ · · ·

on the interval [0.174989, 0.825011].
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See Figure 2 for the graph of this function.
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Figure 2. An optimal strategy for the four-player “Closest Wins” guessing game

Proof. Let A(x, y, z, w) be the function giving the expected payoff when players se-
lect x, y, z, w ∈ [0, 1]. Let F be a cumulative distribution function giving an optimal
strategy for each player in the game A. The symmetry of the game A implies that
F(1/2 − x/2) = 1 − F(1/2 + x/2) for all x ∈ [0, 1]; this is simply saying that the
probability that a player selects a number less than 1/2− x/2 should be the same as
the probability of choosing a number greater than 1/2+ x/2.

Instead of analyzing A, we will consider a related game Â by taking the symmetry
about 1/2 into account. Let Â(x, y, z, w) be the game defined by

Â(x, y, z, w) =
1

16

∑
A

(
1± x

2
,

1± y

2
,

1± z

2
,

1± w

2

)
,

where the sum runs over all 16 independent choices for the + or − in each argument.
It is useful to think of Â as the expected payoff for the following game. Four players
select x, y, z, w ∈ [0, 1]. Then, 1/2 + x/2 and 1/2 − x/2 will be played in A with
probability 1/2 each, 1/2+ y/2 and 1/2− y/2 will be played in A with probability
1/2 each, and similarly for z and w. After calculating the expected payoffs, Â satisfies

Â(x, y, z, w) =


(−8+ 16y + 8z + 4w)/16 if x < y < z < w,

(−8− 4x + 8z + 4w)/16 if y < x < z < w,

(−8x − 8z + 8w)/16 if y < z < x < w,

(−8+ 16x − 4z − 8w)/16 if y < z < w < x .

(7)

The other values of Â(x, y, z, w) can be found using symmetry.
If F̂ is a cumulative distribution function giving an optimal solution for Â, then

F̂(x) = (the probability of playing ≤ x in the game Â)

= (the probability of playing in (1/2− x/2, 1/2+ x/2) in the game A)
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= F(1/2+ x/2)− F(1/2− x/2)

= 1− 2F(1/2− x/2)

where the last line used the identity F(1/2+ x/2) = 1− F(1/2− x/2). Solving for
F(x) gives

F(x) =

{
1/2− F̂(1− 2x)/2 if x ∈ [0, 1/2]
1/2+ F̂(2x − 1)/2 if x ∈ [1/2, 1].

If F̂ happens to be an odd function, then

F(x) = 1/2+ F̂(2x − 1)/2. (8)

The function F̂ should satisfy

0 =
∫∫∫

Â(x, y, z, w)F̂ ′(y)F̂ ′(z)F̂ ′(w) dy dw dz,

where the integral is over [0, u] × [0, u] × [0, u]. Evaluating the integral by splitting
it up into 24 regions and using our knowledge of Â displayed in (7), we arrive at the
following equation:

0 = −
1

2
−

3

4
x F̂(x)+

3F̂(x)2

2
−

1

4
x F̂(x)3

+ 3
∫ u

x
y F̂ ′(y) dy

+
3

4
F̂(x)2

∫ u

x
y F̂ ′(y) dy − 3

∫ x

0
y F̂(y)F̂ ′(y) dy

+
3

2
F̂(x)

∫ x

0
y F̂(y)F̂ ′(y) dy − 3

∫ u

x
y F̂(y)F̂ ′(y) dy

+
3

4

∫ u

x
y F̂(y)2 F̂ ′(y) dy. (9)

Differentiating, we obtain

0 = −
3F̂(x)

4
−

F̂(x)3

4
−

15

4
x F̂ ′(x)+ 3F̂(x)F̂ ′(x)−

3

4
x F̂(x)2 F̂ ′(x)

+
3

2
F̂(x)

(∫ u

x
y F̂ ′(y) dy

)
F̂ ′(x)+

3

2

(∫ x

0
y F̂(y)F̂ ′(y) dy

)
F̂ ′(x). (10)

The integral terms in the above equation are annoying. To get rid of them, differenti-
ate (10), solve for

∫ u
x y F̂ ′(y) dy, and use the result to replace the

∫ u
x y F̂ ′(y) dy terms

in (10). Then take that equation, differentiate it, solve for
∫ x

0 y F̂(y)F̂ ′(y) dy, and re-
place the

∫ x
0 y F̂(y)F̂ ′(y) dy terms. After doing this and simplifying, we can find the

differential equation

0 = −18F̂(x)F̂ ′(x)4
− 12x F̂ ′(x)5

+ 21F̂ ′(x)2 F̂ ′′(x)+ 9F̂(x)2 F̂ ′(x)2 F̂ ′′(x)

− 9F̂(x)F̂ ′′(x)2
− 3F̂(x)3 F̂ ′′(x)2

+ 3F̂(x)F̂ ′(x)F̂ ′′′(x)+ F̂(x)3 F̂ ′(x)F̂ ′′′(x).
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It is possible to find a power series solution for F̂ using this differential equation.
When this is done, we find

F̂(x) = ax + 0.208333a3x3
+ 0.0864583a5x5

+ 0.0454861a7x7

+ 0.026982a9x9
+ 0.0172103a11x11

+ 0.0115247a13x13

+ 0.00799137a15x15
+ 0.0056886a17x17

+ · · · (11)

where a = F̂ ′(0). This function is odd.
Now we only need to find the unknown constants a and u. Since F̂ ′(0) ≥ 0, we

know that a = F̂ ′(0) > 0 or else F̂ would be the zero function. All coefficients in
F̂ are positive, so there is exactly one real root to the equation F̂(x/a) = 1; it is
approximately 0.82742. The constant u satisfies F̂(u) = 1, giving u = 0.82742/a.
Now we have a relationship between u and a.

Taking x = u in (9) yields

0 = 1− u −
3

2

∫ u

0
y F̂(y)F̂ ′(y) dy.

Substituting (11) and u = 0.82742/a into this expression, we find 0 = 1− 1.27292/a,
implying that a ≈ 1.27292. This gives u ≈ .650021. Putting everything together (us-
ing (8) to simplify since F̂ is odd), we find the function F given in the statement of
the theorem.

The method used in Theorem 3.2 can be used to find the solution in Theorem 3.1.
Hypothetically, the solution for n person games for n ≥ 5 can be worked out in a
similar manner, but the calculations may prove to be unreasonable.

4. NUMERICAL APPROXIMATIONS. Since our derivations of the optimal solu-
tions in Sections 2 and 3 were sufficiently complicated, we found it reassuring to find
numerical support for our results. In this section, we describe an algorithm used to find
an approximate solution for a discrete analogue of the three-person “Price Is Right”
guessing game. Similar algorithms will work for more players and for the “Closest
Wins” guessing game. Our idea is similar to that of fictitious play [2], but we will not
attempt to prove that our approximations converge to an optimal strategy.

We make the game finite by letting the target number be uniformly chosen among
the integers from 1 to N where N is reasonably large. A mixed strategy is a probability
vector p = (p1, . . . , pN ), where pi gives the probability of selecting the number i .

Let a(i, j, k) be the payoff to the first player when the three guesses are i, j , and k.
Let p be the current candidate for an optimal solution. When player 1 guesses i and
the other players both use the mixed strategy p, then the payoff to player 1, denoted by
vi (p), is given by

vi (p) =
∑

j,k

a(i, j, k)p j pk .

If p is an optimal solution, then vi (p) = 0 for each i such that pi > 0. However, if
p is not optimal, then vi (p) > 0 for some i , and so it would be advantageous to the
other players to increase the probability that they guess those values i . So we increase
pi by a quantity that is proportional to vi (p). This is our new candidate for an optimal
solution.
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Let ε > 0 be a small constant of proportionality. From p, we compute the vector r =
(r1, . . . , rN ) with ri = pi + ε max(0, vi (p)). The components of r are nonnegative, but
r may not be a probability vector and so we rescale it to be p′ = r/(r1 + · · · + rn).

For an initial p, we use the uniform probability pi = 1/N . We found that if ε is too
large, then the plot of p does not settle down, and if ε is too small, then convergence
is too slow. For the three-player game and N = 50, we found that with ε = 0.001 and
running 5000 iterations, we arrived at a very good approximation to the exact solution,
whose graph is shown in Figure 3. It nicely approximates the solution displayed in
Figure 2.

0.25 0.5 0.75 1
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0.5

0.75

1

Figure 3. An approximation of an optimal strategy for three players with N = 50 and 5000 iterations
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