THE GEOMETRY OF THE HIGHER TRACES

KENT E. MORRISON

Abstract

The higher traces of a matrix are the coefficients of its characteristic polynomial. We show that for real matrices these coefficients have a geometric interpretation in terms of expected values of oriented volumes, generalizing the volume interpretation of the determinant.

Let A be an $n \times n$ matrix over \mathbf{R}. The higher k-trace of A is the coefficient τ_{k} in the characteristic polynomial of A

$$
\operatorname{det}(\lambda I-A)=\sum_{k=0}^{n}(-1)^{k} \tau_{k} \lambda^{n-k} .
$$

Note that $\tau_{1}=\operatorname{tr} A$ and $\tau_{n}=\operatorname{det} A$. (We write $\tau_{k}(A)$ when the dependence on A needs to be explicit.)

It is a familiar fact that τ_{n} is the oriented volume of the image under multiplication by A of a unit cube in \mathbf{R}^{n}, for example, the cube spanned by any orthonormal basis u_{1}, \ldots, u_{n}. The other coefficients τ_{k} likewise have an interpretation in terms of the change in k-dimensional volumes under multiplication by A.

Let $V(n, k)$ be the Stiefel manifold of orthonormal k-frames in \mathbf{R}^{n} consisting of points $u=\left(u_{1}, \ldots, u_{k}\right)$ where the u_{i} are mutually orthogonal unit vectors in \mathbf{R}^{n}. Let span u be the k-dimensional subspace spanned by the u_{i}. The vectors $A u_{1}, \ldots, A u_{k}$ span a parallelepiped. Project that parallelepiped orthogonally onto span u and define $T_{k}(u)$ to be the oriented k-volume of the result. The aim of this article is to prove that as u varies over $V(n, k)$, the average value of $T_{k}(u)$ is $\binom{n}{k} \tau_{k}$.

Factor the characteristic polynomial of A over the complex numbers

$$
\operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right) .
$$

Then the coefficient of λ^{k} is

$$
(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}} \prod_{j=1}^{k} \lambda_{j}
$$

so τ_{k} is the k th elementary symmetric function of the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Lemma 1. Let $\Lambda^{k} A$ be the kth exterior power of A. Then $\tau_{k}=\operatorname{tr}\left(\Lambda^{k} A\right)$.
Proof. Over \mathbf{C} the matrix A is similar to a matrix in Jordan form. Since $\tau_{k}(A)$ and $\operatorname{tr}\left(\Lambda^{k} A\right)$ are invariant under similarity, we can assume that A is in Jordan form. Then either $A e_{i}=\lambda_{i} e_{i}$ or $A e_{i}=\lambda_{i} e_{i}+e_{i-1}$. Now

$$
\operatorname{tr}\left(\Lambda^{k} A\right)=\sum_{(i)} a_{(i)(i)}
$$

where (i) is the sequence $i_{1}<i_{2}<\cdots<i_{k}, e_{(i)}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$, and $\left(\Lambda^{k} A\right) e_{(j)}=\sum_{(i)} a_{(i)(j)} e_{(i)}$. In the expansion of $A e_{i_{1}} \wedge \ldots A e_{i_{k}}$, the basis element $e_{(i)}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$ occurs with coefficient $\lambda_{i_{1}} \ldots \lambda_{i_{k}}$. Summing over all (i) we get $\tau_{k}(A)$.

Lemma 2. If A is an $n \times n$ matrix, then τ_{k} is the sum of all k by k sub-determinants gotten by choosing k rows and the corresponding columns.

Proof. Let $(i)=\left(i_{1}, \ldots, i_{k}\right)$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, and let $e_{(i)}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$ be the basis vectors of $\Lambda^{k} \mathbf{R}^{n}$. In the expansion of $\left(\Lambda^{k} A\right) e_{(i)}$ the coefficient of $e_{(i)}$ is the determinant of the $k \times k$ submatrix consisting of the rows and columns indexed by (i). The trace of $\Lambda^{k} A$, which is τ_{k}, is the sum of these determinants over all (i).

Define $\Delta_{k}(A)$ to be the determinant of the upper left $k \times k$ submatrix of A. For σ in the permutation group S_{n} let P_{σ} be the permutation matrix that has a 1 in the $i j$ position when $\sigma(j)=i$ and 0 otherwise. Thus, P_{σ} is the matrix of the linear transformation that permutes the standard basis vectors e_{1}, \ldots, e_{n} of $V=K^{n}$ sending e_{i} to $e_{\sigma(i)}$. We note that $P_{\sigma^{-1}}=P_{\sigma}^{-1}=P_{\sigma}{ }^{t}$.

Lemma 3. If $A=\left(a_{i j}\right)$, then the ij entry of $P_{\sigma}^{-1} A P_{\sigma}$ is $a_{\sigma(i), \sigma(j)}$.
Proof. The $i j$ entry of $P_{\sigma} A$ is $a_{i, \sigma(j)}$ and the $i j$ entry of $P_{\sigma}^{-1} B$ is $b_{\sigma(i), j}$. Combining these we see that the $i j$ entry of $P_{\sigma}^{-1} A P_{\sigma}$ is $a_{\sigma(i), \sigma(j)}$.

Lemma 4.

$$
\tau_{k}(A)=\frac{1}{k!(n-k)!} \sum_{\sigma \in S_{n}} \Delta_{k}\left(P_{\sigma}^{-1} A P_{\sigma}\right)
$$

Proof. As σ ranges over all permutations each sub-determinant in Lemma 2 is counted $k!(n-k)!$ times in the sum $\sum_{\sigma \in S_{n}} \Delta_{k}\left(P_{\sigma}^{-1} A P_{\sigma}\right)$, because that is the number of σ that permute the first k indices among themselves and the remaining $n-k$ indices among themselves.

Now to compute the average value of T_{k} on $V(n, k)$ we need to define a probability measure on $V(n, k)$. The orthogonal group $\mathbf{O}(n)$ acts transitively on $V(n, k)$ by

$$
B \cdot\left(u_{1}, \ldots, u_{k}\right)=\left(B u_{1}, \ldots, B u_{k}\right),
$$

with the stabilizer of a k-frame being a subgroup isomorphic to $\mathbf{O}(n-k)$. The projection π from $\mathbf{O}(n)$ onto $V(n, k)$ maps an orthogonal matrix to the frame consisting of the first k columns of the matrix. Let λ be normalized Haar measure on $\mathbf{O}(n)$. Then the pushforward measure $\pi_{*} \lambda$ is the probability measure on $V(n, k)$ that we use to define a random k-frame. Thus,

$$
\int_{u \in V(n, k)} T_{k}(u) d\left(\pi_{*} \lambda\right)=\int_{B \in \mathbf{O}(n)} T_{k}(\pi(B)) d \lambda
$$

Lemma 5. Let B be an orthogonal matrix whose first k columns are u_{1}, \ldots, u_{k}. Then $T_{k}\left(u_{1}, \ldots, u_{k}\right)=\Delta_{k}\left(B^{-1} A B\right)$.

Proof. Since $B^{-1}=B^{t}$, the $i j$ entry of $B^{-1} A B$ is $u_{i}^{t} A u_{j}=\left\langle u_{i}, A u_{j}\right\rangle$ for $1 \leq i, j \leq k$. Thus,

$$
\Delta_{k}\left(B^{-1} A B\right)=\operatorname{det}\left(\left\langle u_{i}, A u_{j}\right\rangle\right)_{1 \leq i, j \leq k},
$$

which is exactly the determinant giving the value of the oriented k-volume in the definition of $T_{k}(u)$.

Now we are ready to finish the proof of the main result.
Theorem 6.

$$
\tau_{k}(A)=\binom{n}{k} \int_{u \in V(n, k)} T_{k}(u) d\left(\pi_{*} \lambda\right) .
$$

Proof. The characteristic polynomial is invariant under similarity transformations, and so $\tau_{k}(A)=\tau_{k}\left(B^{-1} A B\right)$. Thus,

$$
\tau_{k}(A)=\int_{B \in \mathbf{O}(n)} \tau_{k}\left(B^{-1} A B\right) d \lambda
$$

From Lemma 4 applied to $B^{-1} A B$ we have

$$
\tau_{k}\left(B^{-1} A B\right)=\frac{1}{k!(n-k)!} \sum_{\sigma \in S_{n}} \Delta_{k}\left(P_{\sigma}^{-1} B^{-1} A B P_{\sigma}\right)
$$

and so

$$
\tau_{k}(A)=\frac{1}{k!(n-k)!} \sum_{\sigma \in S_{n}} \int_{B \in \mathbf{O}(n)} \Delta_{k}\left(P_{\sigma}^{-1} B^{-1} A B P_{\sigma}\right) d \lambda .
$$

Since Haar measure on $\mathbf{O}(n)$ is both left and right invariant and since P_{σ} and P_{σ}^{-1} are in $\mathbf{O}(n)$, it follows that

$$
\int_{B \in \mathbf{O}(n)} \Delta_{k}\left(P_{\sigma}^{-1} B^{-1} A B P_{\sigma}\right) d \lambda=\int_{B \in \mathbf{O}(n)} \Delta_{k}\left(B^{-1} A B\right) d \lambda .
$$

Therefore

$$
\begin{aligned}
\tau_{k}(A) & =\frac{1}{k!(n-k)!} \sum_{\sigma \in S_{n}} \int_{B \in \mathbf{O}(n)} \Delta_{k}\left(B^{-1} A B\right) d \lambda \\
& =\frac{n!}{k!(n-k)!} \int_{B \in \mathbf{O}(n)} \Delta_{k}\left(B^{-1} A B\right) d \lambda \\
& =\binom{n}{k} \int_{B \in \mathbf{O}(n)} T_{k}(\pi(B)) d \lambda \quad \text { (Lemma 5) } \\
& =\binom{n}{k} \int_{u \in V(n, k)} T_{k}(u) d\left(\pi_{*} \lambda\right) .
\end{aligned}
$$

Note 7 (April 2010). It has come to my attention that Eberlein [1] proved an almost identical result 30 years ago with the Grassmann manifold $G(n, k)$ of k-dimensional subspaces of \mathbf{R}^{n} in place of the manifold of k-frames:

$$
\tau_{k}(A)=\binom{n}{k} \int_{E \in G(n, k)} T_{k}(E) d\left(\pi_{*} \lambda\right) .
$$

In this formula, $T_{k}(E)=\operatorname{det}\left(\operatorname{pr}_{E} \circ A \mid E\right)$, and $\pi_{*} \lambda$ is the $\mathbf{O}(n)$-invariant measure on $G(n, k)$ obtained by pushing down Haar measure λ from $\mathbf{O}(n)$ using the natural projection $\pi: \mathbf{O}(n) \rightarrow G(n, k)$. The proof can proceed in exactly the same way as the proof of Theorem 6, although Eberlein's proof is somewhat different.

References

[1] Patrick Eberlein, A trace formula, Linear and Multilinear Algebra 9 (1980) 231-236.

California Polytechnic State University, San Luis Obispo, CA 93407
Current address: American Institute of Mathematics, 600 E. Brokaw Road, San Jose, CA 95112

