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ABSTRACT. The higher traces of a matrix are the coefficients of its char-
acteristic polynomial. We show that for real matrices these coefficients
have a geometric interpretation in terms of expected values of oriented
volumes, generalizing the volume interpretation of the determinant.

LetA be an n×nmatrix over R. The higher k-trace ofA is the coefficient
τk in the characteristic polynomial of A

det(λI −A) =

n∑
k=0

(−1)kτkλ
n−k.

Note that τ1 = trA and τn = detA. (We write τk(A) when the dependence
on A needs to be explicit.)

It is a familiar fact that τn is the oriented volume of the image under
multiplication by A of a unit cube in Rn, for example, the cube spanned by
any orthonormal basis u1, . . . , un. The other coefficients τk likewise have
an interpretation in terms of the change in k-dimensional volumes under
multiplication by A.

Let V (n, k) be the Stiefel manifold of orthonormal k-frames in Rn con-
sisting of points u = (u1, . . . , uk) where the ui are mutually orthogonal unit
vectors in Rn. Let spanu be the k-dimensional subspace spanned by the ui.
The vectorsAu1, . . . , Auk span a parallelepiped. Project that parallelepiped
orthogonally onto spanu and define Tk(u) to be the oriented k-volume of
the result. The aim of this article is to prove that as u varies over V (n, k),
the average value of Tk(u) is

(
n
k

)
τk.

Factor the characteristic polynomial of A over the complex numbers

det(λI −A) = (λ− λ1) · · · (λ− λn).

Then the coefficient of λk is

(−1)k
∑

i1<i2<···<ik

k∏
j=1

λj

so τk is the kth elementary symmetric function of the eigenvalues λ1, . . . , λn.
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Lemma 1. Let ΛkA be the kth exterior power of A. Then τk = tr (ΛkA).

Proof. Over C the matrix A is similar to a matrix in Jordan form. Since
τk(A) and tr (ΛkA) are invariant under similarity, we can assume that A is
in Jordan form. Then either Aei = λiei or Aei = λiei + ei−1. Now

tr (ΛkA) =
∑
(i)

a(i)(i)

where (i) is the sequence i1 < i2 < · · · < ik, e(i) = ei1 ∧ · · · ∧ eik , and
(ΛkA)e(j) =

∑
(i) a(i)(j)e(i). In the expansion of Aei1 ∧ . . . Aeik , the basis

element e(i) = ei1 ∧ · · · ∧ eik occurs with coefficient λi1 . . . λik . Summing
over all (i) we get τk(A). �

Lemma 2. IfA is an n×nmatrix, then τk is the sum of all k by k sub-determinants
gotten by choosing k rows and the corresponding columns.

Proof. Let (i) = (i1, . . . , ik) where 1 ≤ i1 < i2 < · · · < ik ≤ n, and let
e(i) = ei1 ∧ · · · ∧ eik be the basis vectors of ΛkRn. In the expansion of
(ΛkA)e(i) the coefficient of e(i) is the determinant of the k × k submatrix
consisting of the rows and columns indexed by (i). The trace of ΛkA, which
is τk, is the sum of these determinants over all (i). �

Define ∆k(A) to be the determinant of the upper left k × k submatrix of
A. For σ in the permutation group Sn let Pσ be the permutation matrix that
has a 1 in the ij position when σ(j) = i and 0 otherwise. Thus, Pσ is the
matrix of the linear transformation that permutes the standard basis vectors
e1, . . . , en of V = Kn sending ei to eσ(i). We note that Pσ−1 = P−1σ = Pσ

t.

Lemma 3. If A = (aij), then the ij entry of P−1σ APσ is aσ(i),σ(j).

Proof. The ij entry of PσA is ai,σ(j) and the ij entry of P−1σ B is bσ(i),j . Com-
bining these we see that the ij entry of P−1σ APσ is aσ(i),σ(j). �

Lemma 4.

τk(A) =
1

k!(n− k)!

∑
σ∈Sn

∆k(P
−1
σ APσ)

Proof. As σ ranges over all permutations each sub-determinant in Lemma
2 is counted k!(n − k)! times in the sum

∑
σ∈Sn

∆k(P
−1
σ APσ), because that

is the number of σ that permute the first k indices among themselves and
the remaining n− k indices among themselves. �
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Now to compute the average value of Tk on V (n, k) we need to define
a probability measure on V (n, k). The orthogonal group O(n) acts transi-
tively on V (n, k) by

B · (u1, . . . , uk) = (Bu1, . . . , Buk),

with the stabilizer of a k-frame being a subgroup isomorphic to O(n − k).
The projection π from O(n) onto V (n, k) maps an orthogonal matrix to the
frame consisting of the first k columns of the matrix. Let λ be normalized
Haar measure on O(n). Then the pushforward measure π∗λ is the proba-
bility measure on V (n, k) that we use to define a random k-frame. Thus,∫

u∈V (n,k)
Tk(u) d(π∗λ) =

∫
B∈O(n)

Tk(π(B)) dλ.

Lemma 5. Let B be an orthogonal matrix whose first k columns are u1, . . . , uk.
Then Tk(u1, . . . , uk) = ∆k(B

−1AB).

Proof. Since B−1 = Bt, the ij entry of B−1AB is utiAuj = 〈ui, Auj〉 for
1 ≤ i, j ≤ k. Thus,

∆k(B
−1AB) = det(〈ui, Auj〉)1≤i,j≤k,

which is exactly the determinant giving the value of the oriented k-volume
in the definition of Tk(u). �

Now we are ready to finish the proof of the main result.

Theorem 6.

τk(A) =

(
n

k

)∫
u∈V (n,k)

Tk(u) d(π∗λ).

Proof. The characteristic polynomial is invariant under similarity transfor-
mations, and so τk(A) = τk(B

−1AB). Thus,

τk(A) =

∫
B∈O(n)

τk(B
−1AB) dλ.

From Lemma 4 applied to B−1AB we have

τk(B
−1AB) =

1

k!(n− k)!

∑
σ∈Sn

∆k(P
−1
σ B−1ABPσ),

and so

τk(A) =
1

k!(n− k)!

∑
σ∈Sn

∫
B∈O(n)

∆k(P
−1
σ B−1ABPσ) dλ.
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Since Haar measure on O(n) is both left and right invariant and since Pσ
and P−1σ are in O(n), it follows that∫

B∈O(n)
∆k(P

−1
σ B−1ABPσ) dλ =

∫
B∈O(n)

∆k(B
−1AB) dλ.

Therefore

τk(A) =
1

k!(n− k)!

∑
σ∈Sn

∫
B∈O(n)

∆k(B
−1AB) dλ

=
n!

k!(n− k)!

∫
B∈O(n)

∆k(B
−1AB) dλ

=

(
n

k

)∫
B∈O(n)

Tk(π(B)) dλ (Lemma 5)

=

(
n

k

)∫
u∈V (n,k)

Tk(u) d(π∗λ).

�

Note 7 (April 2010). It has come to my attention that Eberlein [1] proved an
almost identical result 30 years ago with the Grassmann manifold G(n, k)

of k-dimensional subspaces of Rn in place of the manifold of k-frames:

τk(A) =

(
n

k

)∫
E∈G(n,k)

Tk(E) d(π∗λ).

In this formula, Tk(E) = det(prE ◦ A|E), and π∗λ is the O(n)-invariant
measure on G(n, k) obtained by pushing down Haar measure λ from O(n)

using the natural projection π : O(n) → G(n, k). The proof can proceed in
exactly the same way as the proof of Theorem 6, although Eberlein’s proof
is somewhat different.

REFERENCES

[1] Patrick Eberlein, A trace formula, Linear and Multilinear Algebra 9 (1980) 231–236.

CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO, CA 93407
Current address: American Institute of Mathematics, 600 E. Brokaw Road, San Jose, CA

95112


