THE GEOMETRY OF THE HIGHER TRACES

KENT E. MORRISON

ABSTRACT. The higher traces of a matrix are the coefficients of its characteristic polynomial. We show that for real matrices these coefficients have a geometric interpretation in terms of expected values of oriented volumes, generalizing the volume interpretation of the determinant.

Let *A* be an $n \times n$ matrix over **R**. The higher *k*-trace of *A* is the coefficient τ_k in the characteristic polynomial of *A*

$$\det(\lambda I - A) = \sum_{k=0}^{n} (-1)^k \tau_k \lambda^{n-k}.$$

Note that $\tau_1 = \operatorname{tr} A$ and $\tau_n = \det A$. (We write $\tau_k(A)$ when the dependence on *A* needs to be explicit.)

It is a familiar fact that τ_n is the oriented volume of the image under multiplication by A of a unit cube in \mathbb{R}^n , for example, the cube spanned by any orthonormal basis u_1, \ldots, u_n . The other coefficients τ_k likewise have an interpretation in terms of the change in k-dimensional volumes under multiplication by A.

Let V(n, k) be the Stiefel manifold of orthonormal *k*-frames in \mathbb{R}^n consisting of points $u = (u_1, \ldots, u_k)$ where the u_i are mutually orthogonal unit vectors in \mathbb{R}^n . Let span *u* be the *k*-dimensional subspace spanned by the u_i . The vectors Au_1, \ldots, Au_k span a parallelepiped. Project that parallelepiped orthogonally onto span *u* and define $T_k(u)$ to be the oriented *k*-volume of the result. The aim of this article is to prove that as *u* varies over V(n, k), the average value of $T_k(u)$ is $\binom{n}{k}\tau_k$.

Factor the characteristic polynomial of A over the complex numbers

$$\det(\lambda I - A) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

Then the coefficient of λ^k is

$$(-1)^k \sum_{i_1 < i_2 < \dots < i_k} \prod_{j=1}^k \lambda_j$$

so τ_k is the *k*th elementary symmetric function of the eigenvalues $\lambda_1, \ldots, \lambda_n$.

Date: September 15, 1998. Revised April 12, 2010. Address updated 2015.

Lemma 1. Let $\Lambda^k A$ be the kth exterior power of A. Then $\tau_k = \operatorname{tr}(\Lambda^k A)$.

Proof. Over **C** the matrix *A* is similar to a matrix in Jordan form. Since $\tau_k(A)$ and tr $(\Lambda^k A)$ are invariant under similarity, we can assume that *A* is in Jordan form. Then either $Ae_i = \lambda_i e_i$ or $Ae_i = \lambda_i e_i + e_{i-1}$. Now

$$\operatorname{tr}\left(\Lambda^{k}A\right) = \sum_{(i)} a_{(i)(i)}$$

where (*i*) is the sequence $i_1 < i_2 < \cdots < i_k$, $e_{(i)} = e_{i_1} \land \cdots \land e_{i_k}$, and $(\Lambda^k A)e_{(j)} = \sum_{(i)} a_{(i)(j)}e_{(i)}$. In the expansion of $Ae_{i_1} \land \ldots Ae_{i_k}$, the basis element $e_{(i)} = e_{i_1} \land \cdots \land e_{i_k}$ occurs with coefficient $\lambda_{i_1} \ldots \lambda_{i_k}$. Summing over all (*i*) we get $\tau_k(A)$.

Lemma 2. If A is an $n \times n$ matrix, then τ_k is the sum of all k by k sub-determinants gotten by choosing k rows and the corresponding columns.

Proof. Let $(i) = (i_1, \ldots, i_k)$ where $1 \le i_1 < i_2 < \cdots < i_k \le n$, and let $e_{(i)} = e_{i_1} \land \cdots \land e_{i_k}$ be the basis vectors of $\Lambda^k \mathbf{R}^n$. In the expansion of $(\Lambda^k A)e_{(i)}$ the coefficient of $e_{(i)}$ is the determinant of the $k \times k$ submatrix consisting of the rows and columns indexed by (i). The trace of $\Lambda^k A$, which is τ_k , is the sum of these determinants over all (i).

Define $\Delta_k(A)$ to be the determinant of the upper left $k \times k$ submatrix of A. For σ in the permutation group S_n let P_{σ} be the permutation matrix that has a 1 in the ij position when $\sigma(j) = i$ and 0 otherwise. Thus, P_{σ} is the matrix of the linear transformation that permutes the standard basis vectors e_1, \ldots, e_n of $V = K^n$ sending e_i to $e_{\sigma(i)}$. We note that $P_{\sigma^{-1}} = P_{\sigma}^{-1} = P_{\sigma}^{t}$.

Lemma 3. If $A = (a_{ij})$, then the *ij* entry of $P_{\sigma}^{-1}AP_{\sigma}$ is $a_{\sigma(i),\sigma(j)}$.

Proof. The *ij* entry of $P_{\sigma}A$ is $a_{i,\sigma(j)}$ and the *ij* entry of $P_{\sigma}^{-1}B$ is $b_{\sigma(i),j}$. Combining these we see that the *ij* entry of $P_{\sigma}^{-1}AP_{\sigma}$ is $a_{\sigma(i),\sigma(j)}$.

Lemma 4.

2

$$\tau_k(A) = \frac{1}{k!(n-k)!} \sum_{\sigma \in S_n} \Delta_k(P_{\sigma}^{-1}AP_{\sigma})$$

Proof. As σ ranges over all permutations each sub-determinant in Lemma 2 is counted k!(n-k)! times in the sum $\sum_{\sigma \in S_n} \Delta_k(P_{\sigma}^{-1}AP_{\sigma})$, because that is the number of σ that permute the first k indices among themselves and the remaining n - k indices among themselves.

Now to compute the average value of T_k on V(n, k) we need to define a probability measure on V(n, k). The orthogonal group O(n) acts transitively on V(n, k) by

$$B \cdot (u_1, \ldots, u_k) = (Bu_1, \ldots, Bu_k),$$

with the stabilizer of a *k*-frame being a subgroup isomorphic to O(n - k). The projection π from O(n) onto V(n, k) maps an orthogonal matrix to the frame consisting of the first *k* columns of the matrix. Let λ be normalized Haar measure on O(n). Then the pushforward measure $\pi_*\lambda$ is the probability measure on V(n, k) that we use to define a random *k*-frame. Thus,

$$\int_{u \in V(n,k)} T_k(u) d(\pi_*\lambda) = \int_{B \in \mathbf{O}(n)} T_k(\pi(B)) d\lambda.$$

Lemma 5. Let B be an orthogonal matrix whose first k columns are u_1, \ldots, u_k . Then $T_k(u_1, \ldots, u_k) = \Delta_k(B^{-1}AB)$.

Proof. Since $B^{-1} = B^t$, the ij entry of $B^{-1}AB$ is $u_i^t A u_j = \langle u_i, A u_j \rangle$ for $1 \leq i, j \leq k$. Thus,

$$\Delta_k(B^{-1}AB) = \det(\langle u_i, Au_j \rangle)_{1 \le i,j \le k},$$

which is exactly the determinant giving the value of the oriented *k*-volume in the definition of $T_k(u)$.

Now we are ready to finish the proof of the main result.

Theorem 6.

$$\tau_k(A) = \binom{n}{k} \int_{u \in V(n,k)} T_k(u) \, d(\pi_* \lambda).$$

Proof. The characteristic polynomial is invariant under similarity transformations, and so $\tau_k(A) = \tau_k(B^{-1}AB)$. Thus,

$$\tau_k(A) = \int_{B \in \mathbf{O}(n)} \tau_k(B^{-1}AB) \, d\lambda.$$

From Lemma 4 applied to $B^{-1}AB$ we have

$$\tau_k(B^{-1}AB) = \frac{1}{k!(n-k)!} \sum_{\sigma \in S_n} \Delta_k(P_{\sigma}^{-1}B^{-1}ABP_{\sigma}),$$

and so

$$\tau_k(A) = \frac{1}{k!(n-k)!} \sum_{\sigma \in S_n} \int_{B \in \mathbf{O}(n)} \Delta_k(P_{\sigma}^{-1}B^{-1}ABP_{\sigma}) \, d\lambda.$$

Since Haar measure on O(n) is both left and right invariant and since P_{σ} and P_{σ}^{-1} are in O(n), it follows that

$$\int_{B\in\mathbf{O}(n)} \Delta_k(P_{\sigma}^{-1}B^{-1}ABP_{\sigma}) \, d\lambda = \int_{B\in\mathbf{O}(n)} \Delta_k(B^{-1}AB) \, d\lambda.$$

Therefore

$$\tau_{k}(A) = \frac{1}{k!(n-k)!} \sum_{\sigma \in S_{n}} \int_{B \in \mathbf{O}(n)} \Delta_{k}(B^{-1}AB) d\lambda$$
$$= \frac{n!}{k!(n-k)!} \int_{B \in \mathbf{O}(n)} \Delta_{k}(B^{-1}AB) d\lambda$$
$$= \binom{n}{k} \int_{B \in \mathbf{O}(n)} T_{k}(\pi(B)) d\lambda \quad \text{(Lemma 5)}$$
$$= \binom{n}{k} \int_{u \in V(n,k)} T_{k}(u) d(\pi_{*}\lambda).$$

Note 7 (April 2010). It has come to my attention that Eberlein [1] proved an almost identical result 30 years ago with the Grassmann manifold G(n, k) of *k*-dimensional subspaces of \mathbf{R}^n in place of the manifold of *k*-frames:

$$\tau_k(A) = \binom{n}{k} \int_{E \in G(n,k)} T_k(E) \, d(\pi_*\lambda).$$

In this formula, $T_k(E) = \det(\operatorname{pr}_E \circ A | E)$, and $\pi_*\lambda$ is the $\mathbf{O}(n)$ -invariant measure on G(n,k) obtained by pushing down Haar measure λ from $\mathbf{O}(n)$ using the natural projection $\pi : \mathbf{O}(n) \to G(n,k)$. The proof can proceed in exactly the same way as the proof of Theorem 6, although Eberlein's proof is somewhat different.

References

[1] Patrick Eberlein, A trace formula, Linear and Multilinear Algebra 9 (1980) 231–236.

CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO, CA 93407

Current address: American Institute of Mathematics, 600 E. Brokaw Road, San Jose, CA 95112

4