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ABSTRACT. Let G be a Lie group with Lie algebra g. On the trivial princi-
pal G-bundle over g there is a natural connection whose curvature is the
Lie bracket of g. The exponential map of G is given by parallel transport
of this connection. If G is the diffeomorphism group of a manifold M ,
the curvature of the natural connection is the Lie bracket of vectorfields
on M . In the case that G = SO(3) the motion of a sphere rolling on a
plane is given by parallel transport of a pullback of the natural connec-
tion by a map from the plane to so(3). The motion of a sphere rolling on
an oriented surface in R3 can be described by a similar connection.

1. A NATURAL CONNECTION AND ITS CURVATURE

Samelson [5] has shown that the covariant derivative of a connection can
be expressed as a Lie bracket. It is the purpose of this article to show that
the Lie bracket of a Lie algebra can be expressed as the curvature form of
a natural connection. Although it is plausible that this natural connection
has been described before or is known as mathematical folklore, it does not
appear in the standard references (for example, Kobayashi and Nomizu [4]
or Sharpe [6]).

The setting for this result is the following. Let π : P → X be a right prin-
cipal G-bundle with the Lie group G as the structure group. A connection
on P is a smoothG-equivariant distribution of horizontal spaces in the tan-
gent bundle TP complementary to the vertical tangent spaces of the fibers.
The curvature of a connection is a g-valued 2-form on the total space P . A
good reference is Bleecker’s book [2].

LetG be a Lie group and g its Lie algebra. Let P = g×G be the total space
of the trivial right principal G-bundle with projection P → g : (x, g) 7→ x.
The right action of G on P is given by (x, h) · g = (x, hg) and let Rg denote
the action of g on P ; that is, Rg : P → P : (x, h) 7→ (x, hg). Let 1 ∈ G be the
identity element and let ι : g→ g×G : x 7→ (x, 1) be the identity section of
the bundle.

Let Lg : G → G : h 7→ gh and Rg : G → G : h 7→ hg be the left and right
multiplication by g. The context should make it clear whether Rg is acting
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on P or on G. The adjoint action of G on g is the derivative at the identity
of the conjugation action of G on itself. That is,

Adg : g→ g : v 7→ T1(Lg ◦Rg−1)(v)

Finally, we recall the definition of a fundamental vectorfield on a princi-
pal G-bundle P . For ξ ∈ g, let ξ̃ be the vectorfield on P whose value at p is
given by

ξ̃(p) =
d

dt

(
p · exp(tξ)

)∣∣
t=0

The vectorfield ξ̃ is called a fundamental vectorfield. In the case that P is
the trivial bundle g×G, it is routine to check that

ξ̃(x, g) = (0, T1Lg(ξ)) ∈ g× TgG

Theorem 1.1. There is a natural connection on the trivial bundle P = g × G
whose local curvature 2-form (with respect to the identity section ι) is the constant
g-valued 2-form on g whose value on a pair of tangent vectors ξ, η ∈ g is the Lie
bracket [ξ, η].

Proof. We define the connection on P by choosing the horizontal spaces.
For (x, g) ∈ P let H(x,g) be the subspace of T(x,g)P defined by

H(x,g) := {(v, T1Rg(v))|v ∈ g}

It is easy to check that the distribution is right equivariant and that H(x,g)

is complementary to the vertical tangent space at (x, g).
Let α be the g-valued 1-form on P defining this connection. It is charac-

terized by having the horizontal space H(x,g) as the kernel of α(x,g) and by
satisfying the conditions

(i) α(x,g)(ξ̃(x, g)) = ξ

(ii) Rg
∗α = Adg−1 ◦ α

From these properties one can check that α is defined by

α(x,g)(v, ξ) = TgLg−1(ξ)−Adg−1(v)

The curvature of a connection is the g-valued 2-form on the total space P
defined by

dα+
1

2
[α, α]

Pulling α back to g by ι gives the local connection 1-form ω = ι∗α.
The local curvature form Ω is then

Ω = dω +
1

2
[ω, ω]

Computing ω we see that

ωx(v) = α(x,1)(v, 0)

= −v
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Hence ω is a constant form, and dω = 0. We evaluate [ω, ω] on a pair of
tangent vectors ξ, η ∈ Txg ∼= g as follows:

[ω, ω](ξ, η) = [ω(ξ), ω(η)]− [ω(η), ω(ξ)]

= [−ξ,−η]− [−η,−ξ]
= 2[ξ, η]

Therefore, the local curvature form Ω is the constant g-valued 2-form that
maps a pair of tangent vectors ξ, η, which are just elements of g, to the Lie
bracket of ξ and η.

Ω(ξ, η) = (dω +
1

2
[ω, ω])(ξ, η) = [ξ, η]

�

For a Lie group homomorphism φ : G1 → G2, let Lφ : g1 → g2 be the
associated Lie algebra homomorphism. (Note that Lφ is T1φ when the Lie
algebras are viewed as the tangent spaces at the identities of the groups.)
Then the map

φ̃ : g1 ×G1 → g2 ×G2 : (x, g) 7→ (Lφ(x), φ(g))

is a morphism of principal bundles, which means that it commutes with
the right actions of G1 and G2:

φ̃(x, hg) = (Lφ(x), φ(hg)) = (Lφ(x), φ(h)φ(g))

Furthermore, it is a morphism that preserves the horizontal spaces of the
natural connections defined in Theorem 1.1. More precisely, T φ̃ maps the
horizontal subspaces in T (g1×G1) to the horizontal subspaces in T (g2×G2)
as follows. Let (v, T1Rg(v)) be in H(x,g) ⊂ T(x,g)(g× TgG1).

T φ̃(v, T1Rg(v)) = (TxLφ(v), Tgφ(T1Rg(v)))

= (Lφ(v), T1(φ ◦Rg)(v))

= (Lφ(v), T1(Rg ◦ φ)(v))

= (Lφ(v), T1Rφ(g)(T1φ(v)))

which is an element of the horizontal space at (Lφ(x), φ(g)) in T (g2 ×G2).
We also note that for a composition of Lie group homomorphisms φ ◦ ψ,

the principal bundle map φ̃ ◦ ψ = φ̃ ◦ ψ̃, and that Ĩ is the identity on the
principal bundle for the identity I : G → G. Hence, we have proved the
following theorem.

Theorem 1.2. There is a covariant functor F from the category of Lie groups to
the category of principal bundles with connection, which is defined on objects so
that F(G) is the trivial principal bundle g × G with its natural connection and
defined on morphisms by F(φ) = φ̃.

Next we consider the relationship between the connection 1-forms of the
two bundles.
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Proposition 1.3. The following diagram commutes

T (g1 ×G1)
T φ̃−−−−→ T (g2 ×G2)

α1

y yα2

g1
Lφ−−−−→ g2

Equivalently,
φ̃∗α2 = Lφ ◦ α1

Proof. Starting with the composition α2 ◦ T φ̃ we have

(α2)φ̃(x,g)T φ̃(v, ξ) = (α2)(Lφ(x),φ(g))(Lφ(v), Tgφ(ξ))

= Tφ(g)Lφ(g)−1(Tgφ(ξ))−Adφ(g)−1(Lφ(v))

= Tg(Lφ(g)−1 ◦ φ)(ξ)−Adφ(g)−1(Lφ(v))

= Tg(φ ◦ Lg−1)(ξ)−Adφ(g)−1(Lφ(v))

= T1φ(TgLg−1(ξ))− Lφ(Adg−1(v))

= Lφ(TgLg−1(ξ))− Lφ(Adg−1(v))

= Lφ(TgLg−1(ξ))−Adg−1(v)

= Lφ((α1)(x,g)(v, ξ))

�

Proposition 1.4. The following diagram commutes

Tg1
T (Lφ)−−−−→ Tg2

ω1

y yω2

g1
Lφ−−−−→ g2

Equivalently,
(Lφ)∗ω2 = Lφ ◦ ω1

Proof. Because Lφ is linear, Tx(Lφ) = Lφ for all x ∈ g1. Thus, for v ∈ Txg1 =
g1,

ω2(Tx(Lφ)(v)) = ω2(Lφ(v)) = −Lφ(v) = Lφ(−v) = Lφ(ω1(v))

�

Also, the local curvature forms commute with the Lie algebra homomor-
phism Lφ.

Proposition 1.5. Let Ωi, i = 1, 2, be the local curvature 2-form for the natural
connection on gi ×Gi. Then Lφ ◦ Ω1 = Ω2 ◦ Lφ.

Proof. This is simply restating the fact that Lφ is a homomorphism of Lie
algebras: Lφ([ξ, η]) = [Lφ(ξ),Lφ(η)]. �
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Remark 1.6. Let G be the diffeomorphism group of a manifold M with g
being the space of vectorfields on M . Although G is not, strictly speaking,
a Lie group, the natural connection on g × G still makes sense, and so the
curvature of this connection is given by the Lie bracket of vectorfields.

Given a smooth curve c : [0, 1]→ g, parallel transport along c is horizon-
tal lift (c(t), g(t)) with initial condition g(0) = 1. Therefore, g is a solution
of the differential equation

g′(t) = T1Rg(t)(c
′(t))

which simply says that (c′(t), g′(t)) is in the horizontal subspace at the point
(c(t), g(t)).

Theorem 1.7. Let ξ be an element of the Lie algebra g and define c(t) = tξ. Then
parallel transport along c is given by g(t) = exp(tξ).

Proof. It suffices to show that g(t) = exp(tξ) satisfies the differential equa-
tion g′(t) = T1Rg(t)(c

′(t)) with initial condition g(0) = 1. The derivative of
exp(tξ) is given by

d

dt
exp(tξ) =

d

ds
exp((t+ s)ξ)|s=0

=
d

ds
(exp(sξ) exp(tξ)) |s=0

=
d

ds

(
Rexp(tξ) exp(sξ)

)
|s=0

= T1Rexp(tξ)(ξ)

= T1Rg(t)(c
′(t))

�

Remark 1.8. With this result there is another way to see that the Lie bracket
is the curvature, since

[ξ, η] =
1

2

d2

dt2
exp(tξ) exp(tη) exp(−tξ) exp(−tη)

∣∣∣
t=0

is the infinitesimal parallel transport around the parallelogram spanned by
ξ and η, which, in turn, is the curvature tensor applied to ξ and η.

Corollary 1.9. Let η and ξ be elements of g and define c(t) = η + tξ. Let g(t) be
the horizontal lift of c with g(0) = g0 ∈ G. Then g(t) = exp(tξ)g0.

Proof. Since c′(t) = ξ, the value of η does not matter. Therefore, let η = 0.
By the theorem γ(t) = exp(tξ) is the horizontal lift of c with γ(0) = 1. The
right-invariance of the horizontal spaces implies that g(t) = γ(t)g0. �

Remark 1.10. Parallel transport along c is also known as the time-ordered
(or path-ordered) exponential of c′. One of the equivalent ways to define
the time-ordered exponential of a curve a(t) ∈ g is to define it as the so-
lution of the differential equation g′(t) = T1Rg(t)(a(t)) with g(0) = 1. For
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a(t) = c′(t) this is the differential equation defining parallel transport along
c. To understand the use of the phrase “time-ordered exponential,” we use
a piecewise linear approximation to c starting at c(0) and consisting of the
line segments connecting c(ti−1) and c(ti) where ti = (i/n)t, i = 0, 1, . . . , n.
Let ∆t = t/n. Then by repeated use of the corollary g(t) is approximated
by

g(t) ≈ exp(c(tn)− c(tn−1)) exp(c(tn−1)− c(tn−2)) · · · exp(c(t1)− c(t0))
≈ exp(∆t c′(tn−1)) exp(∆t c′(tn−2)) · · · exp(∆t c′(t0))

Therefore, g(t) is the limit as n goes to infinity of this product of exponen-
tials, which are ordered according the parameter value.

Remark 1.11. The holonomy subgroup (at a point x0 in the base space) of a
connection on a principal G-bundle is the subgroup of G consisting of the
results of parallel transporting around closed curves starting and ending at
x0. The null holonomy group is the subgroup resulting from transporting
around null-homotopic curves. By the Ambrose-Singer Theorem [1] the
Lie algebra of the null holonomy group is generated by the values of the
curvature tensor. Now g is simply connected and so the null holonomy
group is the holonomy group and its Lie algebra is the derived algebra
[g, g]. Assuming G is connected, the holonomy group is the derived group
of G.

2. EXAMPLES

2.1. The Special Orthogonal Group. Let G be the rotation group SO(3)
with g = so(3), the Lie algebra of infinitesimal rotations. We identify so(3)
with R3 in the standard way so that the vector v in R3 corresponds to the
infinitesimal rotation with axis v that goes counter-clockwise with respect
to an observer with v pointing towards him. The angular velocity is the
magnitude of v. If v = (v1, v2, v3), then the corresponding matrix ρv in
so(3) is

ρv =

 0 −v3 v2
v3 0 −v1
−v2 v1 0


Then ρv×w = [ρv, ρw], so that the map ρ is an isomorphism of Lie algebras
(R3,×)→ (so(3), [ , ]).

Given a curve c : [0, 1] → R3, parallel transport along c is given by the
curve g : [0, 1] → SO(3), which is the unique solution to the differential
equation

g′(t) = ρc′(t)g(t), g(0) = I

In other words, the infinitesimal rotation at t has for its axis of rotation the
vector c′(t). One can visualize this as a sphere of radius 1 rotating at the
head of a screw (with right hand threads) that is tunneling through space
following the trajectory given by the curve c. Note that the spherical head
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is not rigidly attached to the screw because the axis of rotation must be free
to vary.

2.2. A Rolling Sphere on a Plane. A variation of this natural connection
can be used to describe the geometry of a sphere rolling without slipping
on a horizontal plane. The plane is R2 embedded in R3 as the set of points
{(x1, x2, 0)} and a sphere of radius 1 sits on top of the plane. Let c : [0, 1]→
R2 be a smooth curve with initial point c(0) = (x1(0), x2(0)). Roll the
sphere along the curve c until it reaches the endpoint c(1) = (x1(1), x2(1)).
As the sphere rolls along, the point of contact is c(t) and the configuration
of the sphere is given by a curve g(t) in SO(3). At each point c(t) the in-
finitesimal rotation is about the axis J(c′(t)), where J : R2 → R2 is π/2
rotation counter-clockwise defined by J(x1, x2) = (x2,−x1). We can for-
mulate the differential equation satisfied by g(t) as

g′(t) = ρJ(c′(t))g(t), g(0) = I

(Briefly, g(t+dt) = (I+ρJ(c′(t))) g(t) dt, from which the differential equation
follows.) In order to see this differential equation as the parallel transport
equation for the curve c with initial condition g(0) = I , we define a connec-
tion on R2 × SO(3) with horizontal space at the point (x, g) in R2 × SO(3)
given by

H(x,g) = {(v, ρJ(v)g)|v ∈ R2} ⊂ R2 × TgSO(3)

The connection 1-form α is defined by

α(x,g)(v, ξ) = g−1ξ − g−1ρJ(v)g
Let ω = ι∗α be the local connection 1-form. Since

ωx(v) = α(x,I)(v, 0) = −ρJ(v)
we see that ω is constant, i.e., dω = 0. Then the local curvature 2-form acts
on a pair of tangent vectors u, v ∈ TxR2 = R2 ⊂ R3 by

(dω +
1

2
[ω, ω])(u, v) = 0 +

1

2
[ω, ω](u, v)

=
1

2
([ω(u), ω(v)]− [ω(v), ω(u)])

= [ω(u), ω(v)]

= [−ρJ(u),−ρJ(v)]
= [ρJ(u), ρJ(v)]

= [ρu, ρv]

For the last step note that [ρJ(u), ρJ(v)] = ρJ(u)×J(v) because ρ is an iso-
morphism of Lie algebras. Also, J(u) × J(v) = u × v from the geometric
properties of the cross product . Finally, ρu×v = [ρu, ρv].

The derived algebra of so(3) is so(3) because each of the basis elements
e1, e2, e3 in R3 is a cross product. The group SO(3) is connected, and so, by
the Ambrose-Singer Theorem, the holonomy subgroup is all of SO(3). In
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other words, any rotation of a sphere can be achieved by rolling the sphere
around some closed path in the plane. An elementary proof (without the
apparatus of modern differential geometry) of this old result has recently
appeared [3].

The connection just defined is actually just a pull-back of the natural
connection on so(3)× SO(3).

Theorem 2.1. Define

f : R2 → so(3) : x 7→ ρJ(x) =

 0 0 x1
0 0 x2

−x1 x2 0


Then the connection on R2×SO(3) associated to the rolling sphere is the pullback
by ρJ of the natural connection on so(3)× SO(3).

Proof. The pullback bundle of the trivial bundle is also trivial. Let f̂ denote
the bundle map R2 × SO(3) → so(3) × SO(3) : (x, g) 7→ (f(x), g). Then it
suffices to compute f̂∗α, the pullback of the connection 1-form α on so(3)×
SO(3), to see that it is the connection 1-form of the rolling sphere. At a
point (x, g) ∈ R2 × SO(3) we have

(f̂∗α)(x,g)(v, ξ) = α(f(x),g)(Df(x)(v), ξ)

= α(f(x),g)(f(v), ξ) (since f is linear)

= g−1ξ − g−1f(v)g

= g−1ξ − g−1ρJ(v)g
�

2.3. A Rolling Sphere on a Surface. Now more generally, we consider a
sphere rolling on a surface in R3. We will construct a connection on the
trivial SO(3)-bundle over the surface whose parallel transport describes
the rotation of the sphere. However, in this generality the connection need
not be a pull-back of the natural connection on so(3) × SO(3). Let X be
a smooth orientable surface in R3 and let n be the unit normal vectorfield
pointing to the side on which the sphere rolls. Let J be the automorphism
of the tangent bundle TX that rotates each tangent space counterclockwise
π/2 with axis of rotation given by the unit normal n. With the natural iden-
tification of TxX with R2, Jx(v) = n(x) × v. As compared with the planar
surface it is now more complicated to describe the infinitesimal rotation at
a point x ∈ X in the direction v ∈ TxX because of the twisting and turning
of the tangent spaces of the surface.

The unit normal vectorfield is a map n : X → R3. The derivative of
n at x is a linear map Dn(x) : TxX → R3. Differentiating the constant
function 〈n(x),n(x)〉 = 1 shows that 〈n(x), Dn(x)(v)〉 = 0. Therefore,
Dn(x)(v) ∈ TxX and hence v +Dn(x)(v) also lies in TxX . Then the vector
J(v + Dn(x)(v)) is the axis of the infinitesimal rotation of the sphere at x
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in the direction v. We define a connection on the trivial bundle X × SO(3)
whose horizontal space at (x, g) is

H(x,g) = {(v, ρJ(v+Dn(x)(v))g)|v ∈ TxX} ⊂ TxX × TgSO(3)

The connection 1-form α is given by

α(x,g)(v, ξ) = g−1ξ − g−1ρJ(v+Dn(x)(v))g

Let ω = ι∗α be the local connection 1-form. Thus,

ωx(v) = α(x,I)(v, 0) = −ρJ(v+Dn(x)(v))

2.4. A Rolling Sphere on a Sphere. When the surface X is itself a sphere
it is possible to explicitly compute the local curvature form. Let X be the
sphere of radius r centered at the origin. Then n(x) = x/r,Dn(x)(v) = v/r,
and v +Dn(x)(v) = (1 + 1/r)v. Recall that Jx(v) = n(x)× v, and so

J(v +Dn(x)(v)) =
x

r
× (v +

v

r
) =

1

r

(
1 +

1

r

)
(x× v)

In order to compute the local curvature form dω + 1
2 [ω, ω] in coordinates

we use the isomorphism ρ between R3 and so(3) in order to treat ω as an
R3-valued 1-form. Hence,

ωx(v) = −1

r

(
1 +

1

r

)
(x× v)

With coordinates x = (x1, x2, x3) and v = (v1, v2, v3),

ωx(v) = −1

r

(
1 +

1

r

)
(x2v3 − x3v2, x3v1 − x1v3, x1v2 − x2v1)

Hence,

ω = −1

r

(
1 +

1

r

)
(x2dx3 − x3dx2, x3dx1 − x1dx3, x1dx2 − x2dx1)

dω = −2

r

(
1 +

1

r

)
(dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2)

Evaluating dω on a pair of tangent vectors u, v gives

dω(u, v) = −2

r

(
1 +

1

r

)
u× v

Next we evaluate 1
2 [ω, ω]. Recall that [ω, ω] is defined so that its value on a

pair of tangent vectors u and v is

[ω, ω](u, v) = [ω(u), ω(v)]− [ω(v), ω(u)] = 2[ω(u), ω(v)]

Therefore, 1
2 [ω, ω](u, v) = [ω(u), ω(v)]. In this case the bracket operation is

the cross product and so

1

2
[ω, ω]x(u, v) = ωx(u)× ωx(v)
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=

(
1 +

1

r

)2 (x
r
× u
)
×
(x
r
× v
)

=

(
1 +

1

r

)2

(u× v)

For the last step above we use the geometry of the cross product with x/r
being a unit vector normal to both u and v to conclude that (x/r × u) ×
(x/r × v) = u× v. Putting the pieces together we see that

(dω +
1

2
[ω, ω])(u, v) =

(
1− 1

r2

)
u× v

As the radius goes to infinity the curvature form approaches the curva-
ture form for the sphere rolling on a plane–as one would expect. For the
sphere rolling on the outside of a sphere of radius 1, the curvature vanishes
and so the connection is flat and the holonomy is trivial around any null-
homotopic path and hence around any closed path because S2 is simply-
connected. Fix a basepoint x0 ∈ S2. There is a global section of the trivial
bundle S2 × SO(3)→ S2 mapping x ∈ S2 to the holonomy along any path
from x0 to x. Antipodal points take the same value as can be seen by rolling
the sphere along a great circle from the north to south pole. This section is
an integral surface for the horizontal distribution of the connection. It is
possible to describe this map in coordinates explicitly and it is especially
nice using unit quaternions, i.e., S3, to represent rotations. The quaternion
q defines a rotation by mapping v = (v1, v2, v3) ∈ R3 to q(iv1+jv2+kv3)q

−1.
The Lie group homomorphism S3 → SO(3) has kernel {±1}. In fact, S3 is
the universal cover of SO(3) and this homomorphism is the projection. Us-
ing (0, 0, 1) for the basepoint, the holonomy map from S2 to SO(3) lifts to
a map to S3 given by (x, y, z) → z − iy + xj. This represents the counter-
clockwise rotation through the angle 2 cos−1 z about the axis (−y, x, 0). One
can easily check that rolling the unit sphere from the north pole (0, 0, 1) to
(x, y, z) does indeed turn the sphere through twice the angle between the
two points and with axis that is normal to (x, y, 0).

To roll the sphere on the inside of a sphere of radius r simply change the
unit normal to −x/r and follow the same calculations. The local curvature
form dω + 1

2 [ω, ω] turns out to be exactly the same

(dω +
1

2
[ω, ω])(u, v) =

(
1− 1

r2

)
u× v

Although the curvature forms are equal, the connections are not the same
and parallel transport is not the same. This can be seen easily for r = 1.
Rolling inside the sphere produces no movement at all; the rolling sphere
stays fixed. Rolling the sphere on the outside does change the configuration
along non-constant paths.
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