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Groups of Perfect Shuffles

Some questions are answered but many remain
about the mathematics of card shuffling.
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There are two ways to perfectly shuffle an ordinary deck of cards. First divide the deck in half
and then interleaf the cards. The top card either remains on top or becomes the second card. A
perfect shuffle is difficult but not impossible to perform. There are magicians who can execute a
perfect shuffle and there are even a few who can do eight consecutive perfect shuffles—leaving
the top card on top—to bring the deck back to its original position.

In 1983 a fascinating paper appeared dealing with the mathematics of perfect shuffles [4]. The
work of Persi Diaconis, Ron Graham, and William Kantor completely determines the structure of
the permutation groups generated by the two perfect shuffles of a deck containing an even
number of cards. Incidentally, Diaconis was a professional magician before he became a
mathematician-statistician and is able to perform eight perfect shuffles. Graham is also an
amateur juggler. An interesting account of their work by Gina Kolata appeared in Science [7]. In
this paper we will describe their results briefly but we will focus on problems that generalize
theirs, problems that remain unsolved for the most part and problems that can be attacked in an
experimental way by the tools of undergraduate algebra. We offer the subject of shuffle groups as
a promising area in which to do exploratory group theory.

Shuffle groups

The mathematics of card shuffles has a long history and has been of most interest to
magicians. There are card tricks based on mathematical principles rather than sleight-of-hand, or
a combination of the two. One trick that children pass on to each other is the three-pile. trick
using 27 cards. The paper of Diaconis, Graham, and Kantor has a long section on the history of
the mathematics of shuffles and there are two articles by Martin Gardner ([5], [6]) in his highly
readable style.

What we mean by a perfect shuffle is a particular way of permuting the cards in a deck. We
generalize the usual shuffle, in which the deck is divided into two piles, by allowing the deck to be
divided into several equal piles. Then these piles are interleaved perfectly. For example, consider
a deck of 33 cards. First divide the deck into three equal piles, the top, middle, and bottom piles
each having eleven cards. Put these piles side by side in the order: top, middle, bottom. Next
rearrange the piles in any of the six possible ways. Finally, pick up the cards from left to right,
one at a time. The resulting arrangement is a perfect 3-shuffle (or ternary shuffle). There are six
distinct 3-shuffles. If the cards in our deck are numbered 1,2,...,33, then after dividing into
piles, we envision them like this:
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1 12 23
2 13 24

11 22 33

Now re-position the piles like this (one of six possibilities):

12 1 23
13 2 24
22 11 33

Next pick up the cards from left to right. The new order is 12,1,23,13,2,24,...,22,11,33. In this
way we have six permutations of the numbers 1,...,33 and we ask: what subgroup of the
symmetric group Ss; do they generate? Actually we have already asked this particular question and
managed to answer it, but this is the sort of problem we are interested in. By the way, the answer
is that they generate all of S;;, but it takes quite a bit of work to get the answer.

As you can see from the example, we have an infinite number of groups to study. If we want
to divide our deck into k piles before shuffling, then the deck size must be a multiple of k, say
kn. For positive integers k and n we generate a subgroup of the permutation group S,,. The
generators are the perfect k-shuffles, of which there are k!. We call this subgroup G, ,,, and we
would simply like to know what G, ,,, looks like for all possible k& and n. In our example with 33
cards we know Gj 33 = S;;.

The 2-shuffles, or binary shuffles, are the usual shuffles that we attempt in order to mix up a
deck of playing cards. It is the corresponding family of groups G, ,, that have been completely
determined by Diaconis, Graham, and Kantor. Although we do not normally shuffle cards by
dividing a deck into three or more piles, there are uses of k-shuffles in card tricks. The three pile
trick using 27 cards involves the group G, ,;, which happens to be very much smaller than S;.

Here is a brief summary of what is known about the shuffle groups:

(1) The binary shuffle groups G, ,, are all taken care of. There are five infinite families and
two exceptional cases [4]. We will describe them later.

(2) We have determined G, ,~, and we will describe it in this paper.

(3) Gs 3, is understood for deck sizes up to 63 (that is, for n <21), and we have a solid
conjecture for all n, a classification into three families.

(4) G, 4, is understood for decks up to 32 cards, and we have a conjecture for all n, a
classification into four families.

We determined the structure of G, ,, and G4, for small values of » using the computer
system for group theory called CAYLEY. The CAYLEY system was invaluable for concrete
knowledge of these groups and gave us the data for the conjectured classification for £ = 3 and 4.
It was also a tremendous amount of fun to use. For access to the program and for help in using it,
we would like to thank John Cannon, who has developed CAYLEY over the last twenty years,
and Charles Sims and the Rutgers University Mathematics Department whose version of
CAYLEY we used. CAYLEY is an immense system of hundreds of algorithms, in 250,000 lines
of code, that is designed for the computational algebra of groups by generators and relations,
permutation groups, finite fields and their polynomial rings, and linear algebra over finite fields.
(CAYLEY is available from John Cannon, University of Sydney, Sydney, Australia, for a modest
fee in both VAX and CYBER implementations. It is an expert system that works best with an
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expert’s hand but is used, too, for laboratory work in undergraduate algebra courses.) We would
also like to thank William Kantor and Martin Gardner for their interest in this work.

The fundamentals

Now it is time to go into the mathematics of the problem we have outlined. First we develop
the notation. Generally, it is more convenient to number the cards beginning with 1 but
sometimes it is better to begin with 0. We also number the piles from 1 to k (sometimes 0 to
k —1). For each permutation ¢ in S,, a permutation of the piles, we have the corresponding
shuffle that we denote s,. The group G, ,, is generated by the elements s, for o € S,. We use
the convention that o is a bijection of the set {1,..., k} and that 0(2) = 3 means that the second
pile is moved to the third position. In cycle notation we would have (2 3...) somewhere in the
expression for o. The shuffle s, can be written as the product of two operations

So = PsS1>

first performing the permutation p, followed by the shuffle s,. Here we define p, to be the
permutation of the deck that is accomplished by dividing it into piles as if to shuffle, permuting
the piles according to o, and then restacking the piles without interleaving with the leftmost pile
on top. The shuffle s, denotes the one in which the piles are not permuted. Thus p, permutes the
piles and s, does the interleaving. Notice that we write our operations left to right. Although it
was not apparent before, now we see that p, is an element of G, ,,,. Furthermore, we see that we
do not need k! generators. All we need are enough elements of the form p,, so that the o’s
generate S, along with the shuffle s,. It is convenient to call s, the standard shuffle and to
denote it by s. We can generate G, ,, with three generators s, p,, p,, where ¢ and 7 are
generators for S,. (It is easy to see that you can generate S, with two generators. For example
you may use (1 2) and (2 3... k).) When k =2, there are only two generators for G, ,,,.

It is true that p,p, = p,, since successive permutation of the piles is a permutation of the piles,
but s,s, is not s,,. If we knew how to write s,s, in a nice way the whole problem would not be
hard.

The first step is to determine the parity of our shuffles so that we know when G, ,, is
contained in the alternating group A4,,,.

LEMMA 1. If n is odd and o € S, is an odd permutation, then p, is odd; otherwise p, is even.

Proof. A permutation of two piles has the effect of interchanging » pairs of cards. Thus each
transposition of ¢ results in » transpositions for p,.

LEMMA 2. If either k or n is congruent to either O or 1 (mod 4) then s is even; otherwise s is odd.
n(n—1) k(k—1)
2 2

Proof. We will show that s can be written as
deck after cutting:

transpositions. Visualize the
1 n+1 2n+1 -+ (k—-1)n+1

n 2n 3n o kn.
Card 1 will stay put. Card 2 will have k — 1 new cards in front of it after shuffling. Card 3 will
have 2(k — 1) new cards in front of it. Thus the cards in the first column will require (k — 1) +
2(k—1)+ --- +(n—1)(k — 1) transpositions of adjacent cards to put them back on top. This
sum is (n(n —1)/2)(k—1). Now analyze the second pile in the same way. The number of
adjacent transpositions required is (n(n — 1) /2)(k — 2). For the rest of the piles we see that

n(n— n(n—1) k(k—-1)
2 2

5 1)[(k—1)+(k—2)+ 4241 =

adjacent transpositions are required to restore the deck to its original order.
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Now we can say when the generators of G, ,, are all even permutations. Lemma 1 requires
that n be even. Lemma 2 shows that if n=0 (mod4) then k can be anything, while if n=2
(mod4), k must be congruent to 0 or 1 (mod4). This proves the following result on parity.

THEOREM 1. If either of the following conditions holds, then G, ., is a subgroup of A,
(i) n=0(modd)
(il) niseven and k=0 or1 (mod 4).

Otherwise G, ,,, contains an odd permutation.
COROLLARY. If n=0 (mod 4), then G, 5, is contained in As,,.

Lemma 2 and Theorem 1 are contained in [9] with different notation. Generically, that is for
almost all £ and n, we expect the parity theorem determines the structure of G, ,,, as either S,
or A,,. The cases in which the group is not either of these are the cases of most interest.

We can determine the orders of two of the shuffles: s and s,.,. Here rev denotes the
permutation “reverse” that reverses the order of the piles. Unfortunately we do not know what
the orders of the other shuffles are.

PROPOSITION 1. The order of s in G, ,,, is the order of k (modkn —1), i.e., the smallest power
of k congruent to 1 (modkn — 1), or equivalently, the order of k in the multiplicative group of units of
the ring Z,,,_,.

Proof. Now it is convenient to number the cards from 0 to kn — 1, because s fixes 0 and
kn — 1 and on the rest it acts by the rule s: i = ki (mod kn — 1). Card 1 goes to position k, card 2
goes to position 2k and so on. This formula works for i =0 but not for i = kn— 1. Then the
order of s is the smallest positive integer e such that k¢ =i (mod kn— 1) for all i, but this is
equivalent to k¢=1 (mod kn — 1).

PROPOSITION 2. The order of s,,, is the order of k (modkn + 1).

Proof. This time number the cards from 1 to kn. After cutting, the cards are arranged in the
pattern:

1 n+1
2 n+2
n 2n - - kn.

Now card i in row j and column p satisfies i = (p — 1)n +j. The shuffle s, picks up the cards
from right to left so that s,., picks up all the cards in the rows above and the cards to the right of
the same row before picking up a given card. That means the card in row j and column p will
have k(j— 1) cards in the rows above it and k — p cards to the right so it will be in position
k(j—1)+ k—p+1. A little arithmetic shows that this is congruent to ki(mod kn + 1). Thus
Sey: § = ki (mod kn + 1) and it follows that the order of s,., is as claimed.

rev rev

This proof is not illuminating because we had to know the answer ahead of time. It is a little
easier to see when k=2 and we found that result in [4]. We simply tried out the obvious
generalization for a couple of cases with k=3 and 4. Convinced that it was true, we constructed
a proof.

As we mentioned before, G, ,, has only two generators. Martin Gardner writes in [5] that
Alex Elmsley, a magician, coined the terms “out-shuffle” and “in-shuffle.” The out-shuffle is s,
and it leaves the first card on top or on the outside. The in-shuffle is 5, and it puts the first
card in the second position or inside. For k> 2, we continue to call s; the out-shuffle and s,
the in-shuffle, though there are other shuffles that leave the first card outside and that put the
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first card as deeply as possible inside. Elmsley used the letters O and I to stand for the two
shuffles. He noticed in 1957 that a sequence of shuffles denoted by a sequence of O’s and I’s
had the effect of bringing the top card down to the position whose binary expansion was the
corresponding sequence of zeros and ones. You must number the cards 0,1,2,.... This happy
fact generalizes to k-shuffles. In [6] there is a description of the ternary representation for a deck
of 27 cards. We have not found a published proof for the general case so we give one here.

PROPOSITION 3. To bring the top card to position r, label the cards from 0 to kn — 1, label the
piles from 0 to k — 1, and express r in base k as r=d, k™ + --- +d k+ d,, with 0 <d, < k. For
each i let 7; be any permutation that transposes 0 and d;. Then's, ---s.s, maps 0 tor.

Proof. Let T be any permutation that transposes 0 and d and is otherwise arbitrary. For card i
where 0 <i <n—1, we have s, (i) = ki + d. Now the result follows by induction on m. Assuming
that 5, --- s, has put the top card into position i=d, k" '+ --- +d,k +d,, then s, (i) =
d,k™+ --- +dk+d,=r. Note that i <n—1 since r < kn — 1, and so the rule applies to i.

From this it follows that the group G, ,, acts transitively on the set of cards. That means for
any two cards / and j there is an element of the group that moves i to j.

Card tricks can be based on the algorithm of Proposition 3. A deck of kn cards is used from
which the spectator draws a card. The card is replaced in the deck without letting the magician
see it. The magician deals out k piles of n cards face up and asks the spectator to identify the
pile containing the card. The magician gathers the cards and repeats the process. After several
repetitions, the unknown card appears on the top of the deck. Dealing out the cards and stacking
up the pile is the inverse of a shuffle, (s,)”!, where ¢ is the permutation corresponding to the
order in which the piles are picked up. The magician picks up the piles so that the pile with the
card and the top pile have their positions interchanged. This procedure inverts the algorithm of
Proposition 3 and brings the spectator’s card to the top. The cards must be dealt out m times
where m is the smallest integer such that kn < k™. For maximum effect for the same amount of
work the magician should use a deck with k™ cards.

Deck size a power of k

An ancient trick going back centuries is the “three-pile trick” using 27 cards. In this version
the mystery card appears in the middle—the thirteenth card—after three rounds. A generaliza-
tion of this trick using m™ cards and an analysis of the trick were given by M. Gergonne in 1813.
They are discussed in [1] and can be done with any values of k£ and n. However, the 27 card deck
does seem to have a special fascination. It turns out that the shuffle groups G, ,», where the deck
size is a power of k, are quite special. They are quite small compared to the other shuffle groups
because there is a lot of rigidity in the deck for these shuffles.

As a senior project at Cal Poly, one of us (Medvedoff) set out to find out anything he could
about G, ,, for k=3, only having seen [7], a brief account of the work of Diaconis, Graham,
and Kantor on binary shuffle groups. Soon he noticed that there was something special about
G; ¢ and G; ,; and all the groups G, ,~. The main result in the senior project is the calculation of
the order of G, ,~. It is m(k!)™. After Medvedoff explained the results to his advisor
(Morrison), both of us worked on the structure of the group. Without the CAYLEY program or
any electronic computer, we found that a deck of cards—a primitive cellulose computer—was
essential in understanding the group. In particular, we figured out G, ,,, whose order is 648, and
then abstracted the key features. We strongly advise you to prepare a deck of 27 cards using the
ace through nine of three suits. Arrange them from ace to nine in each suit and stack the suits.
This is your initial order. Now start shuffling. Divide the deck into suits. Move the suits around
and then pick up the cards from left to right. Keep the cards face up and pick up the cards so
that the first one picked up is the top card. Doing this you will develop an understanding of G; ,,
so that you will know what the possible configurations are and how to arrive at them. Then you
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may finish reading this note.

We label the cards with m-tuples whose entries are the integers 1,2,..., k and arrange them
‘lexicographically’ so that the first card is (1,1,...,1), the second is (1,1,...,1,2), and the last
card is (k, k,..., k). After executing the shuffle s, the cards are arranged in the following order:

(o7'(1),1,...,1)
(671(2),1,...,1)

(o‘l(k).,l,...,l)
(e7'(1),1,...,1,2)

(o‘l(k),.l,.‘.,1,2)

(o‘l(k),'k,...,k).

The card labeled (iy,...,I,) is now in position (i,,...,i,,0d(i;)). The sequence of shuffles
Sq, * S, puts cards (iy,..., i,,) into position (0,(i), ..., 6,,(i,,)). The elements of G of the form
Sg, * " S, make up a subgroup N of G that we will show to be normal. With 27 cards, the first
digit determines the suit. After any three shuffles the suits are back together, although they may
be moved around. To see that N is normal, we conjugate any element of N by any shuffle s,. We
determine s, (s, 5,, = * s(,m)s:1 by its effect on (iy,...,i,,). First s, sends it to (i,,..., i,,, T(i1)).
Then the sequence of m shuffles sends that to (a,(i,), 6,(i3),-.., 6,,_1(i,,), 6,,(7(i;))). Then s 1

maps to the (T_l(am(’r(il)))’ ol(i2)5 62(i3)" s Gm—l(im))' Thus,

... 41 = ...
S‘r(sul sum)sT S-rum‘r*ISQ Sam,l‘

Notice that we write 7~ !e g, o7 as 70,7 ! because our convention is to write operations from
left to right. This element is in N because it is a product of m shuffles.

Next, G/N=1Z,, because any group element can be written as s, --- s, sf, uniquely if
0 < e <m. This is because s, cyclically permutes (i;,..., i,,) by moving the first component to
the end, and any sequence of shuffles maps (i,...,i,) to some cyclic permutation of
(01(i1)y--.,0,(i,)). We identify Z  with the subgroup of G consisting of the powers of s,
which has order m. The subgroup N is the product (S;) X - -+ X(S;), m times. If we multiply
(Sg, " Sg, W8z =+ 5, ), Wegets, -5, . by considering what happens to (i;,...,1,).

We will describe the possible arrangements of the 27 card deck whose original order is 4 to 9
in the suits spades, hearts, clubs. The normal subgroup N is easy to describe, since an element of
N leaves all cards in the same suit together. For example, the element 5,553, acts as shown in
FIGURe 1. Here, s, permutes the suits by interchanging the first—spades—with the
second—hearts. Then 5,5, permutes the subsuits of the suits, the second subsuit 4,5,6 is

@ QO Ve

original order: A23 456 789 A23 456 789 A23 456 789
new order: A23 789 456 A23 789 456 A23 789 456
FIGURE 1.
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interchanged with the third subsuit 7,8,9. This takes place in each of the suits. Finally, the last
shuffle s, leaves the cards in each subsuit alone. The arrangement within each suit is the same.
An arbitrary element of the group is something in N followed by s?, s, or s?. Of course, s?
leaves well enough alone. A single power of s, leaves the deck with the suits changing every card,
while s? puts three cards of the same suit together. Then s; puts 9 cards of each suit together,
which brings the deck back to N. To determine whether a given arrangement is in Gj ,; and what
it is, first determine the power of s, that is required. Then shuffle by s, as many times as needed
to reach N. You can recognize the element s, 5,5, in N by noting how the suits are permuted
by o,, the subsuits by o,, and the individual cards in the subsuits by o;.

Now that we see G= G, ,; has a normal subgroup N =S; X S; X S; and quotient group
K =1Z,, we have to put them together to get G. G is not the direct product of N and K, but
rather a semidirect product. There are two standard ways to describe semidirect products, both
useful. The first is that a group G with normal subgroup N and quotient K=G/N is a
semidirect product of N by K if there is a homomorphism i: K— G that identifies K with a
subgroup of G and such that the composition K - G — G/N = K is the identity map on K. In
our example, the quotient G/N can be identified with the cyclic subgroup generated by the
standard shuffle s,. The second definition of a semidirect product begins with groups K and N
and builds G. If we have a group homomorphism §: K — Aut(N) where Aut(N) is the group of
automorphisms of N, then we define a group G = N X, K called the semidirect product of N by
K. As a set, G is the Cartesian product N X K. We define the group operation (n,, k;)(n,, k,) =
(n,0(ky)(n,), ki k,). If the homomorphism @ is not explicitly given, the notation N X K is also
used, emphasizing that N is the normal subgroup. Identify N and K with the subgroups N X {1}
and KX {1}. Then N will be normal and (k) will correspond to conjugation of (1, k) on
N x{1}.

Now the action § of K=1Z,, on N=S§, X --- XS, is easy to describe. The generator s, of Z,,
conjugates an element of N, say s, --- g5 DY

... -1 = E—
sl(sul Sa,,,)sl Sumsol som_l'

So we have our theorem.

THEOREM 2. The shuffle group G, ,» is the semidirect product of S; X - -+ XS, m factors, by
Z,, acting by cyclic permutation of the factors. In particular, the generator of Z,, corresponding to

m

s; permutes S X --- XS, by (0,...,0,)~(0,,0,...,0,_,). The order of the group is m(k*)™.

Additional comment. This semidirect product is an example of a wreath product. The binary
shuffle groups are wreath products or very close to wreath products. The symmetry group of
Rubik’s cube is a wreath product, too. A wreath product is constructed from a group H and a
permutation group P C §,, by taking the semidirect product of H X --- X H, m factors, with P
acting by permuting the factors. Thus we can say G, ,» is the wreath product of S, with Z .

The binary shuffle groups

To understand G, ,, there is an important symmetry principle called central symmetry.
Number the cards 1,2,...,n—1,n,n’,(n—1),...,2/,1". After shuffling, the order is:

out shuffle: 1,n,2,(n—1),...,n—1,2,n,1".
in shuffle: »’,1,(n-1),2,...,2',n—1,1,n.

The centrally symmetric pair {,i’} is now in the pair of positions { j, j*} for some j. So the
cards i and i’ that are the same distance from the center remain the same distance from the
center. Thus the shuffle group G, ,, is a subgroup of the group B, C S,, consisting of centrally
symmetric permutations. B, is the Weyl group of a simple Lie algebra and has other descriptions.
It is the symmetry group of the n-dimensional cube with vertices +e;,...,+e,. A symmetry
must map the pair of vertices te, to a pair of vertices +e; for some j. Such a linear map on R"
is represented by a signed permutation matrix: each row and column has only one nonzero entry

VOL. 60, NO. 1, FEBRUARY 1987 9



and that entry is 1 or —1. There is a surjective homomorphism B, -» S, that forgets the signs in
the permutation matrix. With our card deck it means we only keep track of the induced
permutation on the set of n symmetric pairs. Therefore, we can consider the parity of the induced
permutation in S, as well as the parity of the permutation in S,,. We have group homomor-
phisms sgn and sgn from B, to the group {+1}:

sgn: Bn‘—)Sln_){i_l} Sg—n: Bn—»Sn_){_—}_]‘}

We also have the product of these homomorphisms, sgnsgn: B, — {+1}, which is a group
homomorphism. The binary shuffle groups G, ,, are given by B, and various kernels of these
three homomorphisms. They consist of five families and two special cases.

(0) If n=0 (mod4), n> 12 and not a power of 2, then G = Kersgn N Kersgn.
1) If n=1 (mod4), then G = Kersgn.

(2) If n=2 (mod4), then G=B,.

(3) If n=3 (mod4), then G =Kersgnsgn.

(4) If 2n=2" then G=(Z,)" X4 Z,,, where Z,, acts cyclically on the factors.
(5) The two anomalous cases

(i) If n=6, then G is the semidirect product (Z,)° X PGL(2,5). See [4] for a description
of the action.

(i) If n=12, then G is the semidirect product of (Z,)'* by the Mathieu group M,,. The
group M, is a subgroup of S, and so it acts naturally on (Z,)'? by permuting the
factors. This action restricts to the subspace of vectors whose components sum to zero.
The subspace is 11-dimensional, hence isomorphic to (Z,)!!.

For the ordinary deck of 52 cards, n is 26 and 26 = 2 (mod 4). The shuffle group is all of B,,. The
only restriction on possible configurations is that of central symmetry. We can count the order
directly. There are 52 places for the first card, but then the last one must go to a determined
location. There are 50 remaining places for the second card, and so on. There are 52-50-48 - - -
4 -2 arrangements possible. This is 226(26)!, a large number, but a small fraction of (52)!.

Ternary shuffle group

TABLE 1, compiled with the aid of CAYLEY, points to an obvious conjecture about Gj ;,. The

3n Gy.3, 3n G35,
3 S, 39 Sy3
6 Se 42 Sk
9 (8)2%Z, 45 Sus
12 Ajp 48 Agg
15 Sis 51 Ss,
18 Sig 54 Ss4
21 Sy 57 Ss7
24 Az, 60 Ago
27 (8)*xz, 63 Se3
30 S50
33 Sy3
36 Asg
TABLE 1
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evidence shows that G, s, is as large as possible subject to the parity theorem as long as » is not
a power of 3.

CONJECTURE. The classification of G, 5, is given by three families:

V) If n is a multiple of 4, then G, 3, = As,,.

(2) If n is not a multiple of 4 and not a power of 3, then G ;,=S;,.
(3) If 3n=3", then G 5, = (Sy)" X Z5.

Part (3) has been proved, but we include it for a complete statement.

We have been able to verify the computer results by hand in any of the individual cases, but
we have not been able to prove the conjecture. Each case looks a little different but the strategy is
the same. We will present a proof that G; ,; = S,; to illustrate how you can verify the results.

For generators, we use s =s;, p, and ¢, where p permutes the first and second piles of 7 cards
and ¢ cyclically permutes all three piles. Notice that p and ¢ are not shuffles but permutations
that we earlier called p,. Number the cards from 0 to 20 and recall that s is multiplication by 3
modulo 20 and s fixes 20. The cycle forms of the generators are:

s=(1,3,9,7)(2,6,18,14)(4,12,16,8)(5,15)(11,13,19,17)
p=(7,14)(8,15)(9,16)(10,17)(11,18)(12,19)(13, 20)
q=1(0,7,14)(1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20).

Let G= G, 5 ; G is transitive by Proposition 3. Now s and p both fix the top card 0 so they lie in
the stabilizer subgroup of 0. The subgroup generated by s and p permutes 1,2,...,20 and by
looking at the cycles of s and p we can see that this subgroup is transitive on 1,2,...,20. Thus G
is doubly transitive, meaning that any pair (i;,i,) can be mapped to any other pair (j;, j,) by
some g€ G: g(i;) =j; and g(i,) =j,. A doubly transitive group is primitive, meaning that there
is no way to partition the deck into subsets of equal size Xj,..., X, (other than the singleton
subsets and the whole set) so that the permutations map each X; to some X;. (It may help to note
that the binary shuffle groups are not primitive because the deck partitions into the central
symmetric pairs which have this property.) A classical theorem of Jordan states that a primitive
group containing a transposition is the symmetric group and one containing a 3-cycle is at least
the alternating group [11]. We compute sq and find

sq=(0,7,8,11,20,6,4,19,3,16,15,12,2,13,5,1,10,17,18)(9,14).

The long cycle has length 19, so that (sq)!° = (9,14). Hence G contains a transposition and by
Jordan’s theorem, G = S,,.

The strategy that works on these particular groups is to show that G is doubly transitive,
hence primitive, and to exhibit a transposition or a 3-cycle, which is found by experimentation. In
general, to show that G, ;, is doubly transitive it would suffice to show that the subgroup
generated by s and p, 4 is transitive on {1,...,3n— 1} as both of them fix 0. Here p, , is the
permutation of piles 2 and 3, where the piles are numbered 1,2,3. For n < 21, we know that this
subgroup, denoted by (s, p, 3)), is transitive on {1,...,3n — 1}, having checked those cases with
CAYLEY. In fact, in these cases (s, p 3 ) is either the alternating or the symmetric group,
A, _, or S;,_;, the alternating group occurring when # is a multiple of 4.
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There are two ways to proceed to get a full proof of the structure conjecture.
(1) Show (s, p, 3)) is transitive and then show that G; ;, always contains a 3-cycle.
(2) Show (s, pp3)) is As,_; or S;,_;. From this it follows that Gj ;, is 43, or S;,,.

k = 4 and beyond

What happens for k>4? We believe that, generically, G, ,, is 4, or S;, according to
Theorem 1, but not so generically as the case of G; 3, indicates. We found that G, ; is not the
expected Ag and G, 5, is not the expected A4;,. The order of G, g is 1344, whereas | 44| = 20,160,
and the group is isomorphic to the semidirect product of (Z,)® by GL(3,2), the group of
invertible 3 X 3 matrices over the field Z,, which acts linearly on the vector space (Z,)3. This is
just the affine group of the 3-dimensional vector space V over Z, consisting of the maps f:
V — V of the form f(x)=@(v) + v, for an invertible linear map ¢ and with vy, € V. GL(3,2) is
also the same as PGL(3,2) or PL(3,2) since the general linear groups and the projective (general)
linear groups are the same over fields of characteristic 2. GL(3,2) is a simple group of order 168,
the smallest nonabelian simple group larger than A of order 60. Likewise, G, ;, is the affine
group of the 5-dimensional vector space over Z,, so G, 3, =(Z,)> X GL(5,2). Both of these
results come from using CAYLEY and we have only verified G, by hand. Our data are
summarized in TABLE 2.

4n Gy 4n
8 Z3 X GL(3,2)
12 Si2
16 (8,)’°XZ,
20 Sxo
24 Ay
28 Syg
32 Z3X GL(5,2)
TABLE 2

CONJECTURE. There are four families classifying G, 4,,.

(1) Ifnis a power of 4, let 4n=4". Then G, 4, is (S4)" X Z,,.

(2) If nis an odd power of 2, let 4n=2*"*1.Then G, ,, is (Z,)*"*' X\ GL2m +1,2).
(3) If n is even and not a power of 2, then G, 4, = Ay,.

(4) Ifnis odd, then G ,4,=S,,.

Part (1) is proved already. Part (2) is an obvious target to attack, but to understand G, 3 using
pencil, paper, and cards is tedious. The eight cards correspond to the eight points in the
3-dimensional vector spaces (Z,)?, the top card being the origin (0,0,0). We express each of the
three generators as an affine map so that we know G, ; is a subgroup of the affine group. This is
straightforward but does not suggest a way of generalizing to 22 *! cards. Finally we check that
each of the eight translations is in G, ; and that we can fix the top card and map the three basis
cards (0,0,1), (0,1,0), and (1,0,0) to any three linearly independent positions. For the last part,
working with a deck of eight cards has been convincing and we have to admit we have not written
out the details. There must, however, be a better way to do it. You do not want to go on to G, 3,
and the larger groups in the same way.

Conjecturing that Gy ,, might be something along the line of G,5, we checked it with
CAYLEY but found that G ,, = S,; and was not an affine group over the field Z ;. Some shuffle
groups for k > 5 are in TABLE 3.
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William Kantor reports that he has shown that G, ,, is 4,, or S,, when k>4 and k does
not divide n. We have not seen his argument. This leaves open the case k = 3. It also suggests
that when k? divides the deck size as in G, g or Gy ,; you must be more careful. '

S. B. Morris, in his 1974 thesis [8], and together with R. E. Hartwig in [9], consider generalized
shuffles of decks of size kn + m, 0 < m < n. Shuffle by dividing the deck into k piles, m of them
having n+ 1 cards and the rest having »n cards. They consider the out-shuffle or “generalized
faro shuffle” and the permutation called the “simple cut” that moves the top card to the bottom
of the deck. They determine when the group generated by these two permutations is the
symmetric group or the alternating group. They also determine the order of the generalized
in-shuffle. (We gave a proof in Proposition 2 for m=0.)

M. Davio and C. Ronse, both of the Philips Research Laboratories in Brussels, have
generalized the shuffles using a mixed-radix formalism (mixed-base notation). Their generaliza-
tions are in a different direction than ours but could fit into a common generalization of the
notion of shuffling. They are interested in shuffles for their application to problems in parallel
processing and switching network design. We refer the interested reader to [3] and [10].
Incidentally, the structure of G, ,» is of interest in the computational scheme of the Fast Fourier
Transform. See [4] for a description.

One last question

You probably have noticed the big difference between the binary shuffle groups, k =2, and
the groups with k > 3. We cannot resist mentioning that the groups generated by the out-shuffle
s; and the in-shuffle s, may be more like the binary shuffle groups which have just those
generators. Let H, ,, C G, ,, be the subgroup generated by s, and s,,. Our final question is:
What is the structure of H, ,, for all k and n? Of course, for k=2 we know the answer since
H,,,= G,,,, but for k>3 this is a much more difficult question. For Hj, ;, we have data from
CAYLEY up to 69 cards. There is some tantalizing regularity but not enough. The whole
situation is much more complicated than the case k = 2 or the case G; ;,. One intriguing result is
that H; ,, = H, ,,, which is a semidirect product of (Z,)!" by the Mathieu group M;,. We have
also heard indirectly that H,,, = H, ,, for any d a proper divisor of 24. The groups H, ,, have
central symmetry, the key feature in the binary shuffles, and so it is not surprising they bear so
much resemblance.
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“Such a really remarkable discovery. I wanted your opinion on it. About God. You know the
formula: m over nought equals infinity, m being any positive number? Well, why not reduce the
equation to a simpler form by multiplying both sides by nought? In which case, you have m
equals infinity times nought. That is to say that a positive number is the product of zero and
infinity. Doesn’t that demonstrate the creation of the universe by an infinite power out of
nothing? Doesn’t it?”...

““Well, began Lord Edward, at the other end of the electrified wire, forty miles away, his
brother knew, from the tone in which the single word was spoken, that it was no good. The
Absolute’s tail was still unsalted.”

—ALDOUS HUXLEY, Point Counter Point,
Chapter XI
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