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1 Introduction

Consider these remarkable facts about the integers:

1. The probability that an integer between 1 and n is prime is asymptotic
to 1/ log n.

2. The probability that two integers are relatively prime is 6/π2.

3. The probability that an integer is square-free is 6/π2.

These are classical results from the last quarter of the nineteenth century.
The first, of course, is an informal statement of the Prime Number Theorem,
which was proved independently in 1895 by Hadamard and de la Vallée
Poussin. The second is due to Mertens in 1874 and the third is credited
to Gegenbauer in 1885. In fact, Gegenbauer proved the more general result
that the probability an integer is not divisible by an rth power, r ≥ 2, is
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1/ζ(r). And, as is well known, thanks to Euler, 1/ζ(2) = 6/π2. In 1900
D. N. Lehmer extended Mertens’s result to show that the probability that
r random integers are relatively prime is also 1/ζ(r). The last word so far
appears to be the theorem of Benkoski in 1976 that combines both threads
by showing that the probability that k integers do not have a common rth
power factor is 1/ζ(kr).

For an account of the earlier results along with historical notes an ex-
cellent source is Hardy and Wright [5]. A short, accessible proof for the
square-free probability is given by Nymann [10]. Lehmer’s result appears in
[8] and a more recent proof in Nymann [9]. Benkoski’s unified generalization
appears in [1].

In this paper we consider the analogues of these number theoretical re-
sults by replacing the ring of integers with the ring of polynomials over a
finite field. Like the integers the polynomial ring is a principal ideal domain
whose prime elements are the monic, irreducible polynomials. For simplicity
we will refer to these polynomials as ”prime.” Since our focus will be on
the analogues of the relatively prime and the square-free probabilities and
their generalizations, we briefly mention the analogue of the Prime Number
Theorem. Let q be a prime power and Fq the finite field of order q. Then
the number of prime polynomials of degree n is given by

1
n

∑
d|n

µ(n/d)qd,

where the sum is over divisors of n and µ is the Möbius function. This
theorem was first proved by Gauss in the case q is prime. The probabilistic
equivalent of our first classical result is that the probability that a monic
polynomial of degree n is prime is asymptotic to 1/n.

In the remainder of this article we consider the polynomial analogues of
the other results. In section 2 we find the probability that r monic polynomi-
als of degree n are relatively prime, and in section 3 we find the probability
that a monic polynomial of degree n is not divisible by an rth power. In
section 4 we unify both results into an analogue of Benkoski’s theorem [1].
In section 5 we show that these probabilities are values of a zeta function
for polynomials.

There are other problems and results from number theory with polyno-
mial analogues that we do not examine in this paper. These include Gold-
bach’s Conjecture, the twin-prime conjecture, The Waring problem, and the
3-primes theorem. The interested reader may consult Effinger and Hayes [4]
for the polynomial analogues and Hardy and Wright [5] for the classical
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results and history. Finally, we should mention that the probabilities for
relatively prime integers and for square-free integers may also be considered
for the Gaussian integers and for other rings of algebraic integers. In [2]
Collins and Johnson determine the probability that two Gaussian integers
are relatively prime in terms of a zeta function.

2 Relatively prime polynomials

Polynomials f and g in Fq[x] are relatively prime if they have no common
factor of positive degree. Alternatively, the smallest ideal containing both
f and g is all of Fq[x]. Define the greatest common divisor of f and g,
denoted gcd(f, g), to be the unique monic polynomial that generates the
ideal generated by f and g. Extend these definitions to more than two
polynomials. The greatest common divisor of f1, . . . , fr is the unique monic
polynomial that generates the ideal generated by f1, . . . , fr. (Such a unique
polynomial exists because Fq[x] is a principal ideal domain.) It is no more
difficult to count the relatively prime r-tuples than the relatively prime pairs.

Theorem 1 Let an be the number of r-tuples of monic polynomials of degree
n over the field Fq whose greatest common divisor is 1. Then for n ≥ 1

an = qrn − qrn−r+1.

Proof We partition the qrn r-tuples of monic polynomials of degree n
into subsets according to the degree k of their greatest common divisor. If
gcd(f1, . . . , fr) = h and deg h = k, then (f1/h, . . . , fr/h) is a relatively prime
tuple of polynomials of degree n−k. Thus, the number of tuples with a gcd
of degree k is qkan−k, the product of the number of monic polynomials of
degree k and the number of relatively prime r-tuples of degree n− k. From
this we obtain the recursion formula

qrn =
n∑

k=0

qkan−k.
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We construct a generating function in order to solve this recursion. Multiply
both sides by tn and sum over n:

∞∑
n=0

qrntn =
∞∑

n=0

n∑
k=0

qkan−kt
n

=
∞∑

k=0

qktk
∞∑

m=0

amtm

= (1− qt)−1
∞∑

m=0

amtm.

Therefore,
∞∑

n=0

antn = (1− qt)
∞∑

n=0

qrntn. (1)

Equating coefficients of tn shows that

an = qrn − qrn−r+1.

2

Corollary 2 The probability that r monic polynomials of degree n are rel-
atively prime is 1− 1/qr−1.

Proof The probability is an/qrn. 2

Setting r = 2 gives the probability of 1−1/q that two monic polynomials
of the same degree are relatively prime, which is the analogue of 6/π2 for
integers.

Counting the number of relatively prime tuples of polynomials can be
seen as an example in a more general setting of prefabs, which are combina-
torial families in which each object uniquely decomposes into prime objects.
In [3] this more general approach is worked out and the polynomials are
given as one example. The authors remark that for polynomials over F2,
there are just as many relatively prime pairs of degree n as non-relatively
prime pairs, and they ask for a simple bijection to demonstrate that result.
In [11] a bijection is given, although it is not especially simple.

3 Square-free polynomials, cube-free polynomials,
and so on

A polynomial f is square-free if it is not divisible by the square of a
polynomial of positive degree. Alternatively, the prime factorization of f has
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no repeated factors. Generalizing this, we can fix a positive integer r ≥ 2
and consider the polynomials not divisible by any rth power of a polynomial
of positive degree. Alternatively, these are the polynomials whose prime
factorization has no factors of multiplicity r or more.

Theorem 3 Fix r ≥ 2 and let bn be the number of monic polynomials of
degree n not divisible by an rth power. Then

bn =
{

qn 0 ≤ n ≤ r − 1
qn − qn−r+1 n ≥ r

Proof Clearly, bn = qn for n = 0, 1, . . . , r − 1 because the lowest degree of
an rth power is r. For n ≥ r partition the qn monic polynomials of degree
n according to the degree k of their maximal factor that is an rth power.
That is, factor f as f = hrf0, where deg h = k and f0, which has degree
n − rk, is not divisible by any rth power. From this partition we get the
recursion

qn =
∑
k≥0

qkbn−rk.

Multiply both sides by tn and sum over n. Then let m = n− rk and change
the order of summation:

∞∑
n=0

qntn =
∞∑

n=0

∑
k≥0

qkbn−rkt
n

=
∞∑

k=0

qktrk
∞∑

m=0

bmtm

= (1− qtr)−1
∞∑

m=0

bmtm

Therefore,
∞∑

n=0

bntn = (1− qtr)
∞∑

n=0

qntn (2)

Comparing the coefficients of tn gives the formula for bn. 2

Corollary 4 The probability that a monic polynomial of degree n ≥ r is not
divisible by an rth power is 1− 1/qr−1.

Proof The probability in question is bn/qn. 2
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Taking r = 2 we see that the probability that a polynomial is square-
free is 1 − 1/q. Furthermore, taking q = 2 we see that among the monic
polynomials of degree n half of them are square-free and half of them are
not. We wonder whether there is a natural bijection between the two sets.

4 m-tuples with no common rth power factors

Fix positive integers m and r. We will count the number of m-tuples of
monic polynomials of degree n with no common rth power factor. When
r = 1 we are counting m-tuples of relatively prime polynomials, and when
m = 1 we are counting the polynomials not divisible by an rth power.

Theorem 5 Let cn be the number of m-tuples (f1, . . . , fm) of monic poly-
nomials of degree n such that there is no common factor of the form hr with
deg h > 0. Then

cn =
{

qmn 0 ≤ n ≤ r − 1
qmn − qmn−mr+1 n ≥ r

.

Proof Partition the qmn m-tuples (f1, . . . , fm) into subsets according to
the degree k of the monic polynomial h where hr is the greatest common
rth power divisor. Then (f1/hr, . . . , fm/hr) is a tuple with no common rth
power divisors. There are cn−kr such m-tuples. Therefore,

qmn =
∑
k≥0

qkan−kr.

We construct the generating function and change indices by letting j =
n− kr: ∑

n≥0

qmntn =
∑
n≥0

∑
k≥0

qkcn−krt
n

=
∑
n≥0

∑
k≥0

qktkrcn−krt
n−kr

=
∑
j≥0

∑
k≥0

qktkrcjt
j

=
∑
j≥0

cjt
j
∑
k≥0

qktkr

From this we see that ∑
n≥0

cntn = (1− qtr)
∑
n≥0

qmntn.
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Comparing the coefficients of tn gives the formula.

5 Zeta functions

The Riemann zeta function

ζ(s) =
∑
n≥1

1
ns

has a factorization over the primes

ζ(s) =
∏
p

(1− p−s)−1

which can be seen by expanding each factor as a geometric series and using
the Fundamental Theorem of Arithmetic to see that the term n−s occurs
exactly once.

Consider this heuristic derivation of the probability that two integers
are relatively prime. For a fixed prime p the probability that an integer is
divisible by p is 1/p. Selecting two integers independently, the probability
that both are divisible by p is 1/p2, and so the probability that p does not
divide both is 1 − 1/p2. Now for integers to be relatively prime it must
be that for all primes p, it is not the case that p divides both. Therefore,
treating the events as independent for distinct primes, we conclude that the
probability of being relatively prime is the product over all primes∏

p

(
1− 1

p2

)
,

which is 1/ζ(2) using the product representation above. The same heuristic
gives the probability that r integers are relatively prime as∏

p

(
1− 1

pr

)
=

1
ζ(r)

.

In a similar manner the probability that an integer is not divisible by pr is
(1− 1/pr) and so the probability that an integer is not divisible by any rth
power is the product over all primes of (1− 1/pr), which is again 1/ζ(r).

Now we apply the analogous heuristics to Fq[x]. Let φ be a prime poly-
nomial of degree d. Among the qn monic polynomials of degree n, assuming
n ≥ d, there are qn−d divisible by φ. Thus, the probability that a polyno-
mial is divisible by φ is 1/qd, and the probability that a polynomial is not
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divisible by φ is 1−1/qd. Then we would expect the probability that r poly-
nomials are relatively prime, as well as the probability that a polynomial is
not divisible by an rth power, is the product over all prime polynomials∏

φ

(
1− 1

qr deg φ

)
.

Now take the reciprocal of this product and expand each factor as a geo-
metric series∏

φ

(
1− 1

qr deg φ

)−1

=
∏
φ

(
1 +

1
qr deg φ

+
1

q2r deg φ
+ · · ·

)
In the full expansion of the product, there is exactly one term of the form
1/qrn for each monic polynomial of degree n because of unique factorization.
Hence ∏

φ

(
1− 1

qr deg φ

)−1

=
∞∑

n=0

qn

qrn
=

1
1− q1−r

. (3)

This function 1/(1− q1−r), then, is the analogue of the Riemann zeta func-
tion, but it has a compact closed form while the original one does not.

Make the substitution t = q−r in (3) to see that the ordinary generating
function for the number of monic polynomials of degree n is

1
1− qt

=
∏
φ

(
1− tdeg φ

)−1
. (4)

Now we can use this to rediscover the generating function for the number of
monic polynomials not divisible by an rth power. In (4) write each factor
as a geometric series to see that

1
1− qt

=
∏
φ

(
1 + tdeg φ + t2 deg φ + · · ·

)
(5)

On the right side we eliminate all the terms of the form tk deg φ, where k ≥ r,
so that when everything is multiplied we get only terms tn corresponding to
monic polynomials of degree n whose prime factors occur with multiplicity
less than r. Let bn be the number of such degree n monic polynomials. We
have shown that

∞∑
n=0

bntn =
∏
φ

(
1 + tdeg φ + t2 deg φ + · · ·+ t(r−1) deg φ

)
.
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Therefore,

∞∑
n=0

bntn =
∏
φ

1− tr deg φ

1− tdeg φ

=

∏
φ(1− tr deg φ)∏
φ(1− tdeg φ)

.

Using (4) for both the numerator and the denominator we have

∞∑
n=0

bntn =
1− qtr

1− qt
,

which is the generating function in (2).
From (1) we see that the closed form for the generating function for the

number of relatively prime r-tuples is

∞∑
n=0

antn =
1− qt

1− qrt
.

The generating function for the number of m-tuples with no common
rth power factors is ∑

n≥0

cntn =
1− qtr

1− qmt
.
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