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Abstract

We consider a one-dimensional random walk beginning at the origin and moving
± cn at time n. If

∑
c2n < ∞ then with probability one the random walk has a fi-

nal location. We describe the distribution of the final location and find the cumulants
and the moments in terms of the power sums of the step sizes. Some interesting def-
inite integrals involving infinite products of trigonometric functions can be evaluated
probabilistically. Similar results hold for random walks with steps chosen uniformly in
[−bn, bn], assuming that

∑
b2n <∞.

1 Harmonic Random Walk

Imagine a random walker who is not only staggering but also tiring. In contrast to a simple
random walker who takes steps of equal length but random direction, our harmonic random
walker first takes a step of length 1, then a step of length 1/2, then a step of length 1/3,
and so on. As in a simple random walk the direction of each step is equally likely to be left
as right and independent of the other steps. Assume the walk begins at the origin at time
zero. What is the distribution of the location as time goes to infinity?

For the simple random walk the location at time n has a binomial distribution with
variance n (assuming steps of unit length), and so there is not a limiting distribution unless
rescaling is done as in the Central Limit Theorem in which the location at time n is scaled
to units of

√
n so that the distribution tends to a standard normal distribution. However,

the harmonic random walk does have a limiting distribution for the location as time goes
to infinity, as do many other random walks with variable steps.

The fundamental probability space Ω consists of countable binary sequences to represent
the sequence of left-right choices in a random walk. We identify Ω with the interval [0, 1]
by means of the binary representation of numbers in [0, 1] and we use Lebesgue measure on
[0, 1] as the probability measure.
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Let cn ≥ 0 be the length of the step at time n and define random variables Xn on Ω to
have the value cn or − cn according to whether the nth step is to the right or to the left.
The random walk is then the countable sequence of random variables

X1, X1 +X2, . . . , X1 +X2 + · · ·+Xn, . . .

and the final location is the random variable S defined by

S =
∞∑
n=1

Xn.

Now in general S converges for some ω in Ω and not for others, but Rademacher proved
that the set {ω ∈ Ω|S converges} has probability one if and only if

∑
c2n <∞. Otherwise it

has probability zero. In [7] Kac presents a proof due to Paley and Zygmund of Rademacher’s
theorem. Some years later Kolmogorov proved a more general theorem: an infinite sum∑

Xn of independent random variables converges with probability one if the sum of the
variances of the Xn converges. These results are illustrative of another well-known theorem
of Kolmogorov, his Zero-One Law. Events (by which we mean measurable subsets) that
depend on the tails of the sequences, such as convergence does, must have probabilistic
measure zero or one.

The harmonic random walk does have a final location, since
∑
n−2 converges, and so

it makes sense to ask, for example, for the probability that the final location is between 1
and 2.

With MATLAB we simulated 10,000 random walks with 200 steps each and plotted a
histogram showing the location at the 200th step.
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Figure 1. Location at step 200 of 10,000 random walks.

Note the sharp fall-off of the distribution around ± 2.
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2 Geometric Random Walks

Let us imagine a random walker who tires much faster than the the harmonic random walker
in that his steps are of length cn = 2−n. The final resting place in this case is the sum

S =
∞∑
n=1

an2−n,

where an ∈ {−1, 1}. We see that S is distributed uniformly in the interval [−1, 1] because

S + 1 =
∞∑
n=1

an2−n +
∞∑
n=1

2−n

1
2

(S + 1) =
∞∑
n=1

1
2

(an + 1)2−n

=
∞∑
n=1

ωn2−n,

where ωn ∈ {0, 1}. Thus (S + 1)/2 is precisely the choice of a point ω in our probability
space Ω, which is the unit interval [0, 1]. Note that the distribution of S has a sudden
drop-off at the ends.

We define a geometric random walk to be one whose step size cn = λn for a fixed λ > 0.
Of course, if λ > 1, then the final location S does not converge and for λ = 1 we have the
simple random walk. Therefore we assume that 0 < λ < 1. Since we already understand
the case of λ = 1/2, let us consider the geometric random walk with λ = 1/3. Then

S =
∞∑
n=1

an3−n, an ∈ {−1, 1}.

Adding 1/2 to S is the same as adding 1 to each an since 1/2 =
∑∞

n=1 3−n. Thus,

S + 1/2 =
∞∑
n=1

tn3−n, tn ∈ {0, 2}.

This is the ternary representation of a number in [0, 1] that uses only 0 and 2, and we
see that S + 1/2 ranges over the Cantor set. Thus, S is distributed over the Cantor set
constructed from [−1/2, 1/2] by removing the middle thirds. The distribution of S is a
measure µ whose cumulative distribution function F (x), defined by F (x) = µ([−1/2, x)),
is continuous and non-decreasing with F (−1/2) = 0, F (1/2) = 1 and F ′(x) = 0 almost
everywhere. The measure µ is singular with respect to Lebesgue measure.

What about other λ? The full story is not yet known. For 0 < λ < 1/2 the distribution
of S is a singular measure supported on a (generalized) Cantor set. However, for 1/2 < λ < 1
it is not known exactly which values of λ define random walks for which S has a singular
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distribution. A strong conjecture is that there are only a countable number for which this
happens. This problem has a long history beginning in the 30’s when Jessen and Wintner
proved that the distribution of S is either singular or absolutely continuous. In 1939 Erdös
[3, 4] showed that the distribution is singular for values of λ that are reciprocals of PV
numbers. (A Pisot-Vijayaraghavan number is an algebraic integer whose Galois conjugates
are all less than one in absolute value.) No other singular λ are known. In 1995 Solomyak
[12, 10] showed that almost every λ between 1/2 and 1 gives rise to a distribution for S that is
absolutely continuous with respect to Lebesgue measure and that the corresponding density
function is in L2(R). Some explicit values that give absolutely continuous distributions are
λ = 2−1/k for k a positive integer. (See Example 3.)

3 The Characteristic Function of S

The function φ defined by
φ(t) = E(eitS)

is the characteristic function of S. It is easy to see that

φ(t) = E(eit
P
Xn)

= E(
∏

eitXn)

=
∏

E(eitXn)

=
∏ 1

2
(eitcn + e−itcn)

=
∏

cos cnt.

Let µ be the distribution of S, so that µ is a probability measure on R. Then we also have

φ(t) =
∫ ∞
−∞

eitx dµ(x).

Theorem 3.1 Assume that the sequence {cn} is square-summable. Consider the product∏
cos cnt. Then the following hold.

(a) The product converges absolutely for all t.

(b) The product converges uniformly on compact sets.

(c) The function φ(t) =
∏

cos cnt is continuous, in fact, uniformly continuous.

(d) The function φ has a Fourier transform in the distributional sense and its transform
is the measure µ.
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Proof (a) and (b) Choose ε to satisfy

1− ε2

2
< cos ε ≤ 1.

For t in [a, b], and n sufficiently large (say n > n0) cnt is in (−ε, ε), and so

1− (cnt)2

2
< cos cnt ≤ 1.

We may as well assume that 0 ≤ a < b since the product of cosines is an even function.
Thus, for n > n0

1− (cnb)2

2
< cos cnt ≤ 1

and hence the tail of the product satisfies

∞∏
n>n0

(
1− (cnb)2

2

)
<

∞∏
n>n0

cos cnt ≤ 1.

The product
∏∞
n>n0

(
1− (cnb)2

2

)
converges because (cnb)2

2 is summable. This shows that
the tail of the product goes to 1 uniformly on [a, b] and therefore the product converges
uniformly on [a, b].

(c) Use the Dominated Convergence Theorem.
(d) Follows from the Continuity Theorem. See, for example Breiman [1, Theorem 8.28]

or Durrett [2, Chapter 2, (3.4)] or Feller [5, XV.3, Theorem 2]. 2

From (a) it follows that the order of the cn does not matter in the distribution of S. This
might seem surprising because rearranging the cn certainly changes the sequences ω ∈ Ω for
which convergence occurs. We may as well assume that the cn are arranged monotonically:
cn ≥ cn+1.

Example 3.2 Here is a quick proof of a classic identity. Let cn = 2−n, which gives a
distribution for S that is uniform on [−1, 1]. The characteristic function of this measure is

φ(t) =
∫ ∞
−∞

eitx dµ(x)

=
1
2

∫ 1

−1
eitx dx

=
sin t
t
.

Thus,
∞∏
n=1

cos
t

2n
=

sin t
t
. (1)

2
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Example 3.3 Consider the geometric random walk with λ = 1/
√

2. Separating the factors
of φ(t) =

∏
cosλnt according to the parity of the power of λ we see that

φ(t) =
∞∏
m=1

cos
t

2m

∞∏
m=1

cos
√

2t
2m

.

Using the cosine product identity (1) we see that

φ(t) =
sin t
t

sin
√

2t√
2t

.

The first factor is the characteristic function for the uniform distribution on [−1, 1] and the
second factor is the characteristic function for the uniform distribution on [−

√
2,
√

2]. The
convolution of the two uniform distributions is a “triangular” distribution whose density
is shown in Figure 2. Similar reasoning shows that for λ = 2−1/k, k a positive integer,
the characteristic function is a product of k factors, each of which is the characteristic
function of a uniform distribution. The density is a the convolution of k uniform densities
on the intervals [−1, 1], [−21/k, 21/k],. . . , [−2(k−1)/k, 2(k−1)/k]. One can show the density is
k − 2 times continuously differentiable and that the derivative of order k − 1 is piecewise
continuous. These values of λ give distributions that are absolutely continuous with respect
to Lebesgue measure. Figure 2 shows the density for λ = 1/ 3

√
2.
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Figure 2. Densities for geometric random walks with
λ = 1√

2
(dashed) and λ = 1

3√2
(solid).

2

Via the Fourier transform, properties of φ are reflected in properties of the distribution
of S. If φ is in L1(R), then µ = f(x)dx with f continuous and vanishing at infinity. And
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if φ is in L2(R), then µ = f(x)dx with f in L2(R). In either case, the distribution of S
is absolutely continuous with respect to Lebesgue measure. Solomyak’s result shows that
the product

∏
cosλnt is extraordinarily sensitive to changes in λ. For almost every λ in

(1/2, 1), the product
∏

cosλnt is in L2(R), but every once in a while it is not in L2 and
not in L1. What tends to make µ singular is gaps in the distribution of S and that can
occur if the step sizes cn go to 0 too rapidly. A good example is the Cantor measure that
comes from cn = 3−n. If the sequence cn is square-summable but not summable, then for
each s ∈ R there are sign sequences ω ∈ Ω for which s =

∑
ωncn. For a given s > 0

we construct ω by setting ωn = 1, 1 ≤ n ≤ k, where k is the smallest index for which∑k
n cn > s. Then set ωn to − 1 until the partial sum drops below s. Continue like this

with the partial sums going over and under s. Since the cn are going to 0, the partial sums
approach s. One can also see that there are a multitude of ω for which the sum is s because
the same construction can be applied to the sequence after any arbitrary initial segment of
ω. This gives a heuristic argument that the distribution of S is absolutely continuous with
respect to Lebesgue measure when cn is square-summable but not summable, but a solid
proof of this is not available. A rigorous treatment beyond the level of this article appears
in Offner [9]. With further assumptions about the growth of the cn he shows that the
distribution of S is very smooth and decays rapidly at infinity. Offner’s results do include
the case of the random harmonic series cn = 1/n, and so we know that the final position
of the harmonic random walk is smoothly distributed and decays rapidly as shown by the
histogram in Figure 1 and by the plot of the density in Figure 3.

Although the distribution of S can be singular with respect to Lebesgue measure, it
cannot be so singular as to have any point masses or atoms. That is, the measure of a
singleton set is always 0. This means S is known as a continuous random variable, the term
“continuous” coming from the fact that the cumulative distribution function (defined later
in §4) of S is continuous.

Theorem 3.4 Let µ be the distribution of the random variable S. Then µ({s}) = 0 for
every s ∈ R.

Proof Let cnk
be a subsequence with the property that cnk+1

< (1/2)cnk
. Define S1 to be

the random variable
S1 =

∑
k

Xnk

and define S2 = S − S1. Let µ, µ1, and µ2 be the distributions of S, S1, and S2. Then S1

and S2 are independent and so µ = µ1 ∗ µ2. In order for µ to have a point mass at s, there
must be points s1 and s2 at which µ1 and µ2 have mass with s = s1 + s2. But µ1 has no
point masses because the possible values that occur for S1 occur for just one sequence of
signs on account of the restriction on the size of the steps. 2
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4 The probability that S lies in an interval

We will derive an integral formula for the probability that S lies in a given interval and
then apply it to give simple justifications for some rather complicated integrals.

Theorem 4.1 For S =
∑
Xn

P(0 < S < a) =
1
π

∫ ∞
0

sin at
t

∞∏
n=1

cos cnt dt.

Proof For all the probabilities involving S it does not matter whether the intervals are
open, closed, or half-open, because the distribution of S has no point masses. We will find
a formula for P(−a < S < a) and from that we will easily obtain others. Let χ denote the
characteristic function of the interval (−a, a). Then

P(−a < S < a) =
∫ ∞
−∞

χ(x) dµ(x).

The Fourier transform of χ is

χ̂(t) =
1
π

sin at
t

.

We write χ in terms of its Fourier transform

χ(x) =
∫ ∞
−∞

1
π

sin at
t

eitx dt.

Then

P(−a < S < a) =
1
π

∫ ∞
−∞

∫ ∞
−∞

sin at
t

eitx dt dµ(x)

=
1
π

∫ ∞
−∞

∫ ∞
−∞

sin at
t

eitx dµ(x) dt

=
1
π

∫ ∞
−∞

sin at
t

φ(t) dt

=
1
π

∫ ∞
−∞

sin at
t

∞∏
n=1

cos cnt dt.

Since the integrand is even,

P(−a < S < a) =
2
π

∫ ∞
0

sin at
t

∞∏
n=1

cos cnt dt.

And since the distribution of S is symmetric about the origin,

P(0 < S < a) =
1
π

∫ ∞
0

sin at
t

∞∏
n=1

cos cnt dt.

2
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Corollary 4.2

P(a < S < b) =
1
π

∫ ∞
−∞

sin bt− sin at
t

∞∏
n=1

cos cnt dt.

P(0 ≤ a < S < b) =
1
π

∫ ∞
0

sin bt− sin at
t

∞∏
n=1

cos cnt dt.

The cumulative distribution function of a random variable X is defined by

F (x) = P(X ≤ x), −∞ < x <∞.

Corollary 4.3 Let F (x) be the distribution function of S. Then for x > 0

F (x) =
1
2

+
1
π

∫ ∞
0

sin at
t

∞∏
n=1

cos cnt dt

F (−x) = 1− F (x).

Proof Use the symmetry of the distribution of S and the theorem. 2

Because the distribution of S has no point masses, the function F is continuous. In case
the measure µ is absolutely continuous with respect to Lebesgue measure, the derivative
of F is the density associated to S and to µ. In general, however, there is the Lebesgue
decomposition µ = µs + µa with µs singular and µa absolutely continuous with respect to
Lebesgue measure. Then F ′(x) is the density of µa. In the last corollary we sweep all the
analytic difficulties and unknown behavior under the rug.

Corollary 4.4 If the distribution of S is absolutely continuous with respect to Lebesgue
measure and if it is allowable to differentiate under the integral sign, then for x > 0

f(x) =
1
π

∫ ∞
0

cosxt
∞∏
n=1

cos cnt dt.

Example 4.5 For the harmonic random walk the results of [9] show that the distribution
of S is absolutely continuous and that the density is in fact

f(x) =
1
π

∫ ∞
0

cosxt
∞∏
n=1

cos
t

n
dt.

See Figure 3 for a plot of this density. The integration was done numerically. Compare
with the histogram in Figure 1.
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Figure 3. Graph of the density f(x) for the harmonic random walk.

2

We can use these results to evaluate some rather difficult integrals.

Theorem 4.6 Suppose that
∑
cnis finite and that a >

∑
cn. Then∫ ∞

0

sin at
t

∞∏
n=1

cos cnt dt =
π

2
.

Proof It is impossible for S to be larger than the sum
∑
cn. Therefore P(0 < S < a) = 1/2

and our result follows from the previous proposition. 2

Corollary 4.7 If
∑
c2n <∞, then

lim
a→∞

∫ ∞
0

sin at
t

∞∏
n=1

cos cnt dt =
π

2
.

5 Sums of Uniform Random Variables

We consider a fatigued random walker whose nth step is chosen uniformly from the interval
[−bn, bn]. We can assume that bn is a positive sequence tending monotonically to 0. We
define the final position to be the sum

R =
∞∑
n=1

Yn

10



where Yn is uniform on [−bn, bn]. Since the variance of Yn is b2n/3, it follows that R converges
if and only if {bn} is square-summable. It is easy to compute the characteristic function of
Yn to see that

E(eitYn) =
sin bnt
bnt

and so the characteristic function of R is

E(eitR) =
∞∏
n=1

sin bnt
bnt

.

Following the same steps as for the random variable S in the previous section we see that

Theorem 5.1

P(0 < R < a) =
1
π

∫ ∞
0

sin at
t

∞∏
n=1

sin bnt
bnt

From this it follows that

Corollary 5.2 If the bn are summable and a >
∑
bn, then∫ ∞

0

sin at
t

∞∏
n=1

sin bnt
bnt

=
π

2
.

Theorem 5.3 (Gradshteyn and Ryzhik [6, 3.746 and 3.836]) If a > c1 + · · · + cm + b1 +
· · ·+ bn, then ∫ ∞

0

sin at
t

cos c1t · · · cos cmt
sin b1t
t
· · · bnt

t
dt = b1b2 · · · bn

π

2

Proof We have a probabilistic proof for this. In fact, it proves a more general result
by considering the sum S + R =

∑
Xn +

∑
Yn, with the assumption that cn and bn are

summable and that a ≥
∑
cn +

∑
bn. Then the characteristic function of S + R is the

product

E(eit(S+R)) =
∞∏
n=1

cos cnt
∞∏
n=1

sin bnt
bnt

and

P(0 < S +R < a) =
∫ ∞

0

1
π

sin at
t

∞∏
n=1

cos cnt
∞∏
n=1

sin bnt
bnt

but with our assumptions Pr(0 < S +R < a) = 1/2. This shows that

1
π

∫ ∞
0

sin at
t

∞∏
n=1

cos cnt
∞∏
n=1

sin bnt
bnt

=
1
2
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from which obtain the integral in Gradshteyn and Ryzhik by specializing to the case of
finite sequences. 2

Let us look again at the harmonic random walk with cn = 1/n and characteristic function
φ(t) =

∏
cos cnt. Each positive integer n has the form n = 2km where m is odd. Thus, we

can factor φ(t) as

φ(t) =
∏
m odd

∞∏
k=0

cos
t

2km
.

Recall the identity (1), which gives the identity

∞∏
k=0

cos
t

2km
=

sin 2
m t

2
m t

.

Thus,

φ(t) =
∞∏
n=1

sin bnt
bnt

(2)

where bn = 2/(2n− 1). This means that φ is the characteristic function of R =
∑
Yn, with

Yn uniform in [−2/(2n− 1), 2/(2n− 1)].
In an earlier paper [8] we noticed that numerical integration of the density

f(x) =
1
π

∫ ∞
0

cosxt
∞∏
n=1

cos
t

n
dt (3)

gave a value for f(0) suspiciously close to 1/4 and a value for f(2) suspiciously close to 1/8
and we wondered whether those are the actual values. We will show that they are not the
actual values and explain why they are so close. Using (2) and (3) we have

f(0) =
1
π

∫ ∞
0

sin 2t
2t

∞∏
m≥3, odd

sin 2
m t

2
m t

dt.

Now the right side is (1/2)P(0 < R < 2) where R = Y3 + Y5 + Y7 + · · · and Ym is uniform
on [−2/m, 2/m]. But it is very unlikely that the value can be as large as 2 because the
distribution of R is the same as for the harmonic random walk with all steps omitted for n
a power of 2. Even using the largest possible steps it requires the partial sum 1/3 + 1/5 +
1/7+ · · ·+1/30 with 25 steps to surpass 2. This gives an idea that it is exceedingly difficult
for the sum to be as much as 2.

To see why f(2) is so close to 1/8 but not quite equal to it, proceed as follows:

f(2) =
1
π

∫ ∞
0

cos 2t
∏
n≥1

cos
t

n
dt

=
1
π

∫ ∞
0

cos 2t
sin 2t

2t

∞∏
m≥3, odd

sin 2
m t

2
m t

dt
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=
1

4π

∫ ∞
0

sin 4t
t

∞∏
m≥3, odd

sin 2
m t

2
m t

dt

=
1
4
P(0 < R < 4),

where R is the random variable just defined.

6 The moments of S

In this section we compute the moments of S using cumulants. Let X be a random variable
with characteristic function φX(t) = E(eitX). Expand log φX(t) in a power series

log φX(t) = κ1(it) + . . .+ κn
(it)n

n!
+ . . .

The coefficient κn is called the nth cumulant of X. Cumulants have the virtue of being
additive for a sum of independent random variables, whereas the moments are not. Fur-
thermore, the moments can be gotten from the cumulants. For us the following is the most
important example, because the cumulants of S are sums of the cumulants of the inde-
pendent steps. Let X be the random variable that is ± a with equal probability. Then
φX(t) = cos at and the cumulants are gotten from the series of log cos at.

Lemma 6.1

log cos t =
∞∑
n=1

(−1)n−1B2n22n(22n − 1)
2n(2n)!

t2n

Proof Of course, this is ancient history, but to derive it from the beginning one starts
with the series defining the Bernoulli numbers

t

et − 1
=
∞∑
n=0

Bn
n!
tn. (4)

Also,

t

et − 1
+
t

2
=

t(et + 1)
2(et − 1)

=
te−t/2(et/2 + e−t/2)
2e−t/2(et/2 − e−t/2)

=
t cosh t/2
2 sinh t/2

=
t

2
coth

t

2
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With this identity and the power series (4) we also use the identity cot t = i coth it to obtain

t cot t =
∞∑
n=0

B2n(−4)nt2n

(2n)!
.

Next, we use the identity
tan t = cot t− 2 cot 2t

to obtain the series

tan t =
∞∑
n=1

B2n(−4)n(1− 4n)t2n−1

(2n)!
.

Integrating this we arrive at

log cos t =
∞∑
n=1

B2n(−4)n(1− 4n)t2n

2n(2n)!

from which the lemma follows. 2

Lemma 6.2 Let X be the random variable having value ± a with equal probability. The
odd cumulants of X are 0 and the even cumulants are given by

κ2n =
22n−1(22n − 1)B2na

2n

n

or by the equivalent

κ2n =
(−1)n−1(22n − 1)(2n)!ζ(2n)a2n

nπ2n

where ζ(x) is the Riemann zeta function.

Proof The first formula results from rewriting the series for log cos at in the previous
lemma in powers of it. The second formula follows from the first using the classical formula

B2n =
(−1)n−1(2n)!ζ(2n)

22n−1π2n
.

This formula can be found in Whittaker and Watson [13, §13.151, but beware the difference
in notation for the Bernoulli numbers]. 2

Lemma 6.3 The odd cumulants of S are 0 and the even cumulants are given by

κ2n =
22n−1(22n − 1)B2n

n
p2n

where p2n =
∑

k c
2n
k .

Proof This follows from the additivity of the cumulants of the individual steps Xk, which
are given by Lemma 6.2. 2
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Lemma 6.4 (Moments from the cumulants) The nth moment mn is related to the cu-
mulants κj by the formula

mn

n!
=

∑
α∈P(n)

∏
j

(
κj
j!

)αj 1
αj !

.

In this formula α = (α1, . . . , αn) is a partition of n where αj counts the number of j’s so
that n =

∑
jαj.

Proof We have

log E(eitX) =
∞∑
n=0

κn(it)n

n!

and

E(eitX) =
∞∑
n=0

mn(it)n

n!

from which it follows that

exp

( ∞∑
n=0

κn(it)n

n!

)
=
∞∑
n=0

mn(it)n

n!

and hence that
∞∏
n=0

exp
(
κn(it)n

n!

)
=
∞∑
n=0

mn(it)n

n!
.

Now let
λn =

inκn
n!

and νn =
inmn

n!
so that we are considering

∞∏
n=0

exp(λntn) =
∞∑
n=0

νnt
n.

Expanding the exponentials on the left gives

∞∏
n=0

∞∑
k=0

(λntn)k

k!
=
∞∑
n=0

νnt
n.

From this we see that νn only depends on λ1, . . . , λn and that νn is the sum

νn =
∑ λα1

1

α1!
λα2

2

α2!
· · · λ

αn
n

αn!

where the sum is over n-tuples (α1, . . . , αn) such that α1 + 2α2 + · · ·+ nαn = n. Of course,
such an n-tuple is a partition of n. The lemma follows easily from the definition of λn and
νn. 2
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In order to apply this lemma to S the sum over partitions need only be taken over even
partitions into even parts. Let Pev(2n) denote the partitions of 2n into even parts. An
element of Pev(2n) is a 2n-tuple (α1, . . . , α2n) of non-negative integers such that α2j+1 = 0
and

∑n
j=1 α2j(2j) = 2n.

Theorem 6.5 Let The odd moments of S are 0 and the even moments are given by

m2n = (2n)!
∑

α∈Pev(n)

∏
j

(
22j−1(22j − 1)B2jp2j

2j(2j)!

)α2j 1
α2j !

.

Proof Substitute the formula for the cumulants of S from Lemma 3 into the formula for
the moments in Lemma 4. 2

The formula just derived is quite complicated. As an aid to understanding it, some of
the low order moments are

m2 = p2

m4 = 3p2
2 − 2p4

m6 = 15p3
2 − 30p2p4 + 16p6.

Example 6.6 For the harmonic random walk the moments are expressible in terms of the
Riemann zeta function because the power sums are values of the zeta function

p2k =
∞∑
n=1

1
n2k

= ζ(2k).

Therefore

m2 = ζ(2)
m4 = 3ζ(2)2 − 2ζ(4)

Recalling that ζ(2) = π2/6 and ζ(4) = π4/90,

m2 =
π2

6

m4 =
11
180

π4

Example 6.7 The distribution for the harmonic random walk looks approximately normal,
and one may wonder whether it is possible for any of our fatigued random walks to have a
normally distributed final location.

The normal distribution with mean 0 and variance σ2 has vanishing odd moments and
even moments M2n given by

M2n = (2n− 1)(2n− 3) · · · (3)(1)σ2n.
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One can look up the moments or find M2n+2 in terms of M2n using integration by parts.
Now we can see that it is impossible for the distribution of S =

∑
Xn to be normal by

comparing fourth moments. For the normal distribution the fourth moment is M4 = 3σ4,
but for S the fourth moment is m4 = 3p2

2 − 2p4, which is 3σ4 − 2p4, and these clearly are
not equal.

Even allowing random walks that are a sum of Xn and Yn as in §5, a similar argument
shows the final location cannot be normally distributed. 2

7 The Distribution of |S|
How far does the fatigued random walker travel before he rests? We do not care whether
he ends up to the right or to the left of the origin and so it is the distribution of |S| that
concerns us. In particular we might want to know the average of |S|.

Let µ be the distribution (measure) of S, F the cumulative distribution function, and
if S has a density with respect to Lebesgue measure let f be that density. Likewise let ν,
G, and g be the corresponding objects for |S|. We have the following relationships.

Theorem 7.1

(a) For 0 ≤ a ≤ b, ν((a, b)) = 2µ((a, b)).

(b) For x ≥ 0, G(x) = 2F (x)− 1.

(c) For x ≥ 0, g(x) = 2f(x).

Proof Use the symmetry of the distribution of S. 2

Thus, if we know the distribution of S visually, in the sense of having a plot of its
density, then we “know” the distribution of |S|.

Theorem 7.2 Let φ and ψ be the characteristic functions of S and |S|. Let F and F−1

denote the Fourier transform and inverse transform. Let χ(0,∞) be function that is 1 for
x > 0 and 0 for x ≤ 0. Then

ψ = 2F−1(χ(0,∞)F(φ)).

Proof We know that F(φ) = µ and F(ψ) = ν and ν = 2χ(0,∞)µ. 2

Corollary 7.3 Let h be the measure

h(t) =
i

t
+ πδ(t).

Then
ψ =

1
π

(h ∗ φ).
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Proof One knows (or computes) that

F(h) = χ(0,∞)

and then use
F−1(ĥφ̂) =

1
2π

(h ∗ φ).

2

Corollary 7.4

ψ(t) =
i

π

∫ ∞
−∞

φ(t− τ)
τ

dτ + φ(t).

From this we can develop a formula for the expectation of |S|.

Theorem 7.5

E(|S|) =
2
π

∫ ∞
0

∞∑
n=1

cn sin cnτ
τ

∏
m6=n

cos cmτ dτ.

Proof Expand ψ(t) = E(eit|S|) as a power series in t to see that ψ′(0)/i = E(|S|). Using
the corollary above we see that

E(|S|) =
d

dt

(
1
π

∫ ∞
−∞

φ(t− τ)
τ

dτ +
φ(t)
i

)∣∣∣∣
t=0

=
1
π

∫ ∞
−∞

φ′(−τ)
τ

dτ +
φ′(0)
i

Since φ is an even function we have φ′(0) = 0. Differentiating we find that

φ′(t) =
∑
n

−cnsin cnt
∏
m 6=n

cos cmt.

Therefore
E(|S|) =

1
π

∫ ∞
−∞

∑
n

cn sin cnτ
τ

∏
m 6=n

cos cmτ dτ.

The integrand is an even function and so we can integrate from 0 to ∞ to conclude the
proof. 2

An alternative formula is available for the expectation of |S|.

Theorem 7.6

E(|S|) = 2
∫ ∞

0
(1− F (x)) dx.
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Proof We will prove this under the additional assumption that the distribution of S (and
hence that of |S|) is absolutely continuous with respect to Lebesgue measure. This means,
of course, that

F (x) =
∫ x

−∞
f(u) du.

(For a proof and discussion in the general case and a formula for all the moments see Feller
[5, V.6]. It requires integration by parts for Lebesgue-Stieltjes integrals.) Then

E(|S|) =
∫ ∞

0
xg(x) dx

= 2
∫ ∞

0
xf(x) dx

= 2
∫ ∞

0
xF ′(x) dx.

Now integrate by parts using F (x)− 1 as the antiderivative of F ′(x).

E(|S|) = 2x(F (x)− 1)|∞0 − 2
∫ ∞

0
(F (x)− 1) dx

= 2
∫ ∞

0
(1− F (x)) dx.

2

This theorem gives a nice geometric picture of the average as twice the area above the
graph of F (x) and below 1 and to the right of x = 0, but we have not found a compact
formula that tells us the expectation of |S| in terms of the cn. So we know the even moments
of |S|, since they are the same as the even moments of S, in terms of the cn and the power
sums, but we do not know the odd moments in the same way.

We note that Jensen’s Inequality gives an upper bound for E(|S|)

E(|S|) = E(
√
S2) ≤

√
E(S2) =

√∑
cn2.

Example 7.7 For the harmonic random walk we resort to numerical integration to ap-
proximate E(|S|). Using the same values for the density f(x) used for the plot in Figure 3
we estimate

E(|S|) = 2
∫ ∞

0
xf(x) dx ≈ 1.0758.

Jensen’s inequality gives an upper bound

√
E(S2) =

√
π2

6
= 1.2825 . . . .

A simulation of 10,000 random sums (partial sums up to n = 200) gives an estimate of

E(|S|) ≈ 1.0761
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and the same random sums give
E(S2) ≈ 1.6403,

which compares favorably with the exact value

E(S2) =
π2

6
= 1.6449 . . . .

2
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