THE POLYNOMIAL ANALOGUE OF A THEOREM OF RÉNYI

KENT E. MORRISON

Abstract

Rényi's result on the density of integers whose prime factorizations have excess multiplicity has an analogue for polynomials over a finite field.

Let $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorization of a positive integer n. Define the excess of n to be $\left(\alpha_{1}-1\right)+\cdots+\left(\alpha_{r}-1\right)$, which is the difference between the total multiplicity $\alpha_{1}+\cdots+\alpha_{r}$ and the number of distinct primes in the factorization. An integer with excess 0 is also said to be square-free. Let E_{k} denote the set of positive integers of excess $k, k=0,1,2, \ldots$. Rényi proved that the set E_{k} has a density d_{k} and that the sequence $\left\{d_{k}\right\}$ has a generating function given by

$$
\sum_{k \geq 0} d_{k} z^{k}=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p-z}\right),
$$

where the product extends over the primes. Recall that the density of a set of positive integers E is the limit, if it exists,

$$
\lim _{n \rightarrow \infty} \frac{\#(E \cap\{1,2, \ldots, n\})}{n},
$$

which is the limiting probability that an integer from 1 to n is in E.
The set of square-free integers is E_{0} and setting $z=0$ in the generating function gives $d_{0}=\prod_{p}\left(1-1 / p^{2}\right)$, which is the well-known result that the density of squarefree integers is $1 / \zeta(2)=6 / \pi^{2}$. (This was first proved by Gegenbauer [2] in 1885. A clear, non-rigorous presentation is in [3].) By setting $z=1$ one sees that $\sum_{k} d_{k}=1$, so that the density is countably additive on the specific partition of \mathbf{Z}^{+}given by the E_{k}. Rényi's proof appeared in [7], but an alternative proof was given by Kac in [4, pp. 64-71].

The aim of this paper is to derive an analogue of the generating function for polynomials in one variable over a finite field. Let \mathbf{F}_{q} be the field with q elements and $\mathbf{F}_{q}[x]$ the polynomial ring. The prime elements of $\mathbf{F}_{q}[x]$ are the irreducible monic polynomials. Let f be a monic polynomial with prime factorization $f=$ $\pi_{1}^{\alpha_{1}} \cdots \pi_{r}^{\alpha_{r}}$, and define the excess of f to be $\left(\alpha_{1}-1\right)+\cdots+\left(\alpha_{r}-1\right)$ just as for an integer. Let $e_{n, k}$ be the number of monic polynomials of degree n and excess k. Define

$$
d_{n, k}=\frac{e_{n, k}}{q^{n}},
$$

which is the probability that a monic polynomial of degree n has excess k. Note that $d_{0, k}=0$ for $k>0$. Then define the analogue of the density to be the limiting "probability" as the degree goes to infinity

$$
d_{k}=\lim _{n \rightarrow \infty} d_{n, k} .
$$

Date: May 26, 2004.
2000 Mathematics Subject Classification. Primary 11T06; Secondary 11T55, 05A16.

Define $D(z)=\sum_{k \geq 0} d_{k} z^{k}$ to be the ordinary power series generating function of the sequence $\left\{d_{k}\right\}$. Let $\mathrm{N} f=q^{\operatorname{deg} f}$ be the norm of the polynomial f, which is the cardinality of the residue ring $\mathbf{F}_{q}[x] /(f)$. The main result of this paper is the following theorem concerning $D(z)$.

Theorem 1. The generating function $D(z)$ has a factorization over the prime polynomials given by

$$
D(z)=\prod_{\pi}\left(1-\frac{1}{\mathrm{~N} \pi}\right)\left(1+\frac{1}{\mathrm{~N} \pi-z}\right)
$$

Proof. We begin with the geometric series

$$
\frac{1}{1-q t}=\sum_{n \geq 0} q^{n} t^{n}
$$

which is the generating function for the number of monic polynomials of degree n. Then unique factorization in $\mathbf{F}_{q}[x]$ allows us to factor the generating function formally

$$
\begin{align*}
\frac{1}{1-q t} & =\prod_{\pi} \sum_{j \geq 0} t^{j \operatorname{deg} \pi} \tag{1}\\
& =\prod_{\pi} \frac{1}{1-t^{\operatorname{deg} \pi}}
\end{align*}
$$

By grouping the primes of the same degree and letting ν_{i} denote the number of primes of degree i, we can rewrite the last line above as

$$
\frac{1}{1-q t}=\prod_{i \geq 1}\left(\frac{1}{1-t^{i}}\right)^{\nu_{i}}
$$

From this it follows that

$$
\begin{equation*}
1-q t=\prod_{i \geq 1}\left(1-t^{i}\right)^{\nu_{i}} \tag{2}
\end{equation*}
$$

as a formal power series. In the product on the right there is a finite number of terms for each power of t so that the coefficients make sense. In fact, the coefficient of t^{n} is 0 except for $n=0,1$. However, considered as a function of a complex variable t, the product does not converge for all t. It does converges absolutely for $|t|<1 / q$. This follows from consideration of the series $\sum \nu_{i} t^{i}$ and the fact that ν_{i} is asymptotic to q^{i} / i.

Next we define the two-variable generating function

$$
E(t, z)=\sum_{n, k} e_{n, k} t^{n} z^{k}
$$

Modifying the factorization in (1), we see that

$$
E(t, z)=\prod_{\pi}\left(1+t^{\operatorname{deg} \pi}+t^{2 \operatorname{deg} \pi} z+\cdots+t^{j \operatorname{deg} \pi} z^{j-1}+\cdots\right)
$$

Notice that the variable z appears with a power that is equal to the excess multiplicity. That is, if $f=\pi_{1}^{\alpha_{1}} \cdots \pi_{r}^{\alpha_{r}}$ then the product expansion of $E(t, z)$ has a term
of the form $t^{\alpha_{1} \operatorname{deg} \pi_{1}} \cdots t^{\alpha_{r} \operatorname{deg} \pi_{r}} z^{\alpha_{1}-1} \cdots z^{\alpha_{r}-1}$. Sum the geometric series in each factor to obtain the formal factorization

$$
E(t, z)=\prod_{\pi}\left(1+\frac{t^{\operatorname{deg} \pi}}{1-t^{\operatorname{deg} \pi} z}\right)
$$

Group the irreducibles by degree to get

$$
\begin{equation*}
E(t, z)=\prod_{i}\left(1+\frac{t^{i}}{1-t^{i} z}\right)^{\nu_{i}} \tag{3}
\end{equation*}
$$

Now the product on the right converges absolutely if and only if the series

$$
\begin{equation*}
\sum_{i \geq 1} \nu_{i}\left|\frac{t^{i}}{1-t^{i} z}\right| \tag{4}
\end{equation*}
$$

converges. We claim that (4) converges for $|t|<1 / q$ and $|z|<q$, because the denominators $\left|1-t^{i} z\right|$ are bounded away from 0 and ν_{i} is asymptotic to q^{i} / i. (Actually, it suffices that $\nu_{i}<q^{i}$.)

From (2) and (3) we get

$$
(1-q t) E(t, z)=\prod_{i \geq 1}\left(1-t^{i}\right)^{\nu_{i}} \prod_{i \geq 1}\left(1+\frac{t^{i}}{1-t^{i} z}\right)^{\nu_{i}}
$$

On the domain where both products converge absolutely we can combine the factors for each i to get

$$
\begin{equation*}
(1-q t) E(t, z)=\prod_{i \geq 1}\left(1-t^{i}\right)^{\nu_{i}}\left(1+\frac{t^{i}}{1-t^{i} z}\right)^{\nu_{i}} \tag{5}
\end{equation*}
$$

By multiplying the factors together we can see that the absolute convergence of the infinite product depends on the convergence of the series

$$
\sum_{i} \nu_{i}\left|\frac{t^{2 i} z-t^{2 i}}{1-t^{i} z}\right|
$$

Then reasoning along the same lines as before we see that this series converges for $\left|t^{2}\right|<q$ and $|z|<\sqrt{q}$. In particular, the product converges for $t=1 / q$, and so after carrying out the multiplication of the left side of (5) we arrive at

$$
\sum_{n, k}\left(e_{n, k}-q e_{n-1, k}\right) t^{n} z^{k}=\prod_{i \geq 1}\left(1-t^{i}\right)^{\nu_{i}}\left(1+\frac{t^{i}}{1-t^{i} z}\right)^{\nu_{i}}
$$

We evaluate this at $t=1 / q$ to get

$$
\sum_{n, k}\left(e_{n, k}-q e_{n-1, k}\right)(1 / q)^{n} z^{k}=\prod_{i \geq 1}\left(1-(1 / q)^{i}\right)^{\nu_{i}}\left(1+\frac{(1 / q)^{i}}{1-(1 / q)^{i} z}\right)^{\nu_{i}}
$$

The coefficient of z^{k} is the sum $\sum_{n \geq 1}\left(e_{n, k} / q^{n}-e_{n-1, k} / q^{n-1}\right)$. This telescopes to give

$$
\lim _{n \rightarrow \infty} \frac{e_{n, k}}{q^{n}}=\lim _{n \rightarrow \infty} d_{n, k}
$$

which is the definition of d_{k}, and so we have

$$
D(z)=\sum_{k} d_{k} z^{k}=\prod_{i \geq 1}\left(1-(1 / q)^{i}\right)^{\nu_{i}}\left(1+\frac{(1 / q)^{i}}{1-(1 / q)^{i} z}\right)^{\nu_{i}}
$$

Finally, we write the product by indexing over the prime polynomials π and note that the norm of π is $N \pi=q^{\operatorname{deg} \pi}$. With this we have the generating function for the d_{k} in the form that is most directly analogous to Rényi's theorem.

$$
\begin{aligned}
D(z) & =\prod_{\pi}\left(1-(1 / q)^{\operatorname{deg} \pi}\right)\left(1+\frac{(1 / q)^{\operatorname{deg} \pi}}{1-(1 / q)^{\operatorname{deg} \pi z}}\right) \\
& =\prod_{\pi}\left(1-\frac{1}{\mathrm{~N} \pi}\right)\left(1+\frac{1}{\mathrm{~N} \pi-z}\right)
\end{aligned}
$$

The coefficient d_{0} is the limiting "probability" that a monic polynomial is squarefree. To develop the analogy with the density of the square-free integers given by d_{0} in Rényi's generating function, we use the zeta function of $\mathbf{F}_{q}[x]$ (i.e. the zeta function of the affine line over \mathbf{F}_{q})

$$
\zeta(s)=\frac{1}{1-q^{-s}}
$$

which immediately comes from the definition

$$
\zeta(s)=\sum_{\mathfrak{a}} \frac{1}{(\mathrm{Na})^{s}}
$$

where the sum is over all ideals of $\mathbf{F}_{q}[x]$ and the norm Na is the cardinality of the residue ring $\mathbf{F}_{q}[x] / \mathfrak{a}$. It has a factorization over the prime ideals (i.e. irreducible polynomials)

$$
\begin{aligned}
\zeta(s) & =\prod_{\pi} \frac{1}{1-(\mathrm{N} \pi)^{-s}} \\
& =\prod_{i \geq 1}\left(\frac{1}{1-q^{-i s}}\right)^{\nu_{i}}
\end{aligned}
$$

Corollary 1. $d_{0}=\frac{1}{\zeta(2)}=1-\frac{1}{q}$.
Proof. We have

$$
d_{0}=D(0)=\prod_{i \geq 1}\left(1-\frac{1}{q^{2 i}}\right)^{\nu_{i}}
$$

Then in (2) we may let $t=1 / q^{2}$, because the product converges for $|t|<1 / q$, to obtain

$$
1-\frac{1}{q}=\prod_{i \geq 1}\left(1-\frac{1}{q^{2 i}}\right)^{\nu_{i}}
$$

Notice that the product is $1 / \zeta(2)$.
Corollary 1 can be obtained as a special case of much more general results on square-free values of polynomials in one or more variables from the work of Ramsay [6] and Poonen [5]. It turns out that for $n \geq 2$, the value of $d_{n, 0}$ is $1-1 / q$. This can be seen by finding the coefficients $e_{n, 0}$, which count the number of monic, squarefree polynomials of degree n. These polynomials can be counted directly; see, for example, [1].
Corollary 2. The number of square-free monic polynomials of degree $n \geq 2$ is $q^{n}-q^{n-1}$.

Proof. The generating function $\sum_{n \geq 0} e_{n, 0} t^{n}=E(t, 0)$. From (3) we see that

$$
E(t, 0)=\prod_{i \geq 1}\left(1+t^{i}\right)^{\nu_{i}}
$$

Using (2) we see that

$$
\begin{aligned}
E(t, 0)(1-q t) & =\prod_{i \geq 1}\left(1+t^{i}\right)^{\nu_{i}}\left(1-t^{i}\right)^{\nu_{i}} \\
& =\prod_{i \geq 1}\left(1-t^{2 i}\right)^{\nu_{i}} \\
& =1-q t^{2}
\end{aligned}
$$

Therefore,

$$
E(t, 0)=\frac{1-q t^{2}}{1-q t}
$$

from which it follows that $e_{n, 0}=q^{n}-q^{n-1}$ for $n \geq 2$.

From the expression

$$
D(z)=\prod_{i \geq 1}\left(1-\frac{1}{q^{i}}\right)^{\nu_{i}}\left(1+\frac{1}{q^{i}-z}\right)^{\nu_{i}}
$$

we can see that $D(z)$ has poles at $z=q^{i}$ of multiplicity ν_{i}. In particular the pole at $z=q$ has multiplicity $q-1$. Elementary analysis of the singularity there, along the lines of Kac [4] in his discussion of Rényi's result, enables us to describe the asymptotic behavior of the d_{k} as $k \rightarrow \infty$.

Corollary 3. As k goes to infinity, d_{k} is asymptotic to

$$
A \frac{k^{q-2}}{q^{k}}
$$

where the constant A is given by

$$
A=\frac{1}{(q-2)!}\left(\frac{1}{q}-\frac{1}{q^{2}}\right)^{q-1} \prod_{i \geq 2}\left(1-\frac{1}{q^{i}}\right)^{\nu_{i}}\left(1-\frac{1}{q^{i}-q}\right)^{\nu_{i}}
$$

One may contrast this asymptotic result with the classical case of Rényi. Although the generating functions have clearly analogous form, the generating function for the number-theoretic version has only a simple pole $z=2$, which is the pole of smallest absolute value. The asymptotic analysis shows that

$$
d_{k} \sim \frac{\delta}{2^{k}}
$$

where

$$
\delta=\frac{1}{4} \prod_{p \geq 3} \frac{(p-1)^{2}}{p(p-2)}
$$

The referee has observed that Theorem 1 of this article can be extended naturally to function fields over finite fields by using S-zeta functions and their residues at $t=1 / q$. Let K be a function field over the constant field \mathbf{F}_{q}. Let S be a finite, non-empty set of places on K and let $\mathcal{O}_{K, S}$ denote the ring of S-integers of K.

Then for every integer $k \geq 0$, the density $d_{k, S}$ of ideals in $\mathcal{O}_{K, S}$ with excess k exists and the following analytic identity holds:

$$
\sum_{k \geq 0} d_{k} z^{k}=\prod_{v \notin S}\left(1-\frac{1}{\mathrm{~N} v}\right)\left(1+\frac{1}{\mathrm{~N} v-z}\right)
$$

where for each place v on K the norm $\mathrm{N} v=q^{\operatorname{deg} v}$ is the cardinality of the residue field at v.

Finally, the referee has pointed out that by generalizing Kac's proof of Rényi's theorem [4, pp. 64-71], there should also be an analogue of the theorem for the density of ideals with excess k in the ring of algebraic integers (or ring of S-integers) of any number field.

References

[1] L. Carlitz. An application of a theorem of Stickelberger, Simon Stevin 31 (1956) 27-30; MR $18,285 \mathrm{~g}$
[2] L. Gegenbauer. Asymptotische Gesetze der Zahlentheorie, Denkshcriften Akad. Wien 49 (1885) 37-80.
[3] G. A. Jones. 6/ π^{2}, Mathematics Magazine 66 (1993) 290-298; MR 94m:11002
[4] M. Kac. Statistical Independence in Probability, Analysis and Number Theory. Carus Monographs, no. 12. Mathematical Association of America, Washington, D.C., 1959; MR 22 \#996
[5] B. Poonen. Squarefree values of multivariable polynomials, Duke Math. J. 118 (2003), no. 2, 353-373; MR 2004d:11094
[6] K. Ramsay. Square-free values of polynomials in one variable over function fields, Internat. Math. Res. Notices, no. 4 (1992) 97-102; MR 93b:11115
[7] A. Rényi. On the density of certain sequences of integers, Acad. Serbe Sci. Publ. Inst. Math. 8 (1955), 157-162; MR 17, 944f

Mathematics Department, California Polytechnic State University, San Luis Obispo, CA 93407

E-mail address: kmorriso@calpoly.edu

