A SYMPLECTIC FIXED POINT THEOREM ON OPEN MANIFOLDS

MICHAEL COLVIN AND KENT MORRISON

ABSTRACT. In 1968 Bourgin proved that every measure-preserving, orientation-preserving homeomorphism of the open disk has a fixed point, and he asked whether such a result held in higher dimensions. Asimov, in 1976, constructed counterexamples in all higher dimensions. In this paper we answer a weakened form of Bourgin's question dealing with symplectic diffeomorphisms: every symplectic diffeomorphism of an even-dimensional cell sufficiently close to the identity in the C^1 -fine topology has a fixed point. This result follows from a more general result on open manifolds and symplectic diffeomorphisms.

Introduction. Fixed point theorems for area-preserving mappings have a history which dates back to Poincaré's "last geometric theorem", i.e., any area-preserving mapping of an annulus which twists the boundary curves in opposite directions has at least two fixed points. More recently it has been proved that any area-preserving, orientation-preserving mapping of the two-dimensional sphere into itself possesses at least two distinct fixed points (see [N, Si]). In the setting of noncompact manifolds, Bourgin [B] showed that any measure-preserving, orientation-preserving homeomorphism of the open two-cell B^2 has a fixed point. For Bourgin's theorem one assumes that the measure is finite on B^2 and that the measure of a nonempty open set is positive. Bourgin also gave a counterexample to the generalization of the theorem for the open ball in \mathbb{R}^{135} and asked the question whether his theorem remains valid for the open balls in low dimensions. In [As] Asimov constructed counterexamples for all dimensions greater than two and actually got a flow of measure-preserving, orientation-preserving diffeomorphisms with no periodic points.

To formulate our results and place the comments above into our framework, we need some concepts from symplectic geometry. A smooth manifold is called *symplectic* if there exists a nondegenerate, closed, differentiable 2-form ω defined on M. A differentiable mapping f of M into itself is called *symplectic* if f preserves the form ω . We refer to the texts by Abraham and Marsden [A & M] and Arnold [A] for the general background in symplectic geometry.

We reformulate Bourgin's question to ask: does every symplectic mapping of a 2n-dimensional cell, equipped with a symplectic structure, have a fixed point? Using a generalization of a theorem of Weinstein $[W_2]$, we answer this question affirmatively for mappings sufficiently close to the identity.

Received by the editors January 22, 1981 and, in revised form, July 2, 1981; presented to the Society at the annual meeting in San Francisco, January 8, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58D05; Secondary 53C15, 55M20, 70H15. Key words and phrases. Symplectic manifold, fixed points, open manifold, symplectic diffeomorphism.

1. Preliminaries. All manifolds are assumed to be finite-dimensional, C^{∞} -smooth, and without boundary. A manifold M is open if M has no compact components. Let $\varepsilon(M)$ denote the ends of M, and let $\tilde{M} = M \cup \varepsilon(M)$ be the completion of M. We consider manifolds M where the number of ends, denoted by e(M), is finite and where \tilde{M} has a smooth manifold structure without boundary. For the general problem of completing an open manifold with finitely many ends see Siebenmann's thesis [S].

If M is a manifold with symplectic form ω , then $Diff(M, \omega)$ denotes the group of symplectic diffeomorphisms of M. The closed one-forms on M are denoted by $Z^1(M)$. Both of these function spaces are topologized with the C^1 -fine topology. See [H, p. 35] for a good account of the C^1 -fine topology.

We require the basic formalism of "cotangent co-ordinates" contained in the following theorem of Weinstein.

THEOREM 1.1 [**W**₁, Proposition (2.7.4) or **W**₂, Theorem 7.2]. If (M, ω) is a symplectic manifold, then there is a C^1 -fine neighborhood $A \subset \text{Diff}(M, \omega)$ containing the identity map, a C^1 -fine neighborhood $B \subset Z^1(M)$ containing the zero form, and a homeomorphism $V: A \to B$. If $f \in A$, then a point $x \in M$ is a fixed point of $x \in M$ if $x \in M$ is a fixed point of $x \in M$ only if $x \in M$ is a fixed point of $x \in M$.

PROOF. If f is in Diff (M, ω) , then the graph of f is a Lagrangian submanifold of $M \times M$ with the symplectic structure $\pi_1^*\omega - \pi_2^*\omega$, where π_1 and π_2 are the projections. There exists a neighborhood U of the diagonal $\Delta(M) = \{(m, m): m \in M\}$ and a bijection of U onto a neighborhood W of the zero-section in T^*M , taking Lagrangian submanifolds of U onto Lagrangian submanifolds lying in W. If f is close enough to the identity, in the sense that the graph of f is contained in U, then there is a one-form $V(f) \in Z^1(M)$ whose image is contained in W. Clearly, f(x) = x if and only if (V(f))(x) = 0. \square

Various fixed point theorems in symplectic geometry result from Theorem 1.1. For examples see [M, N, S, W₁, and W₂]. Let M be a compact manifold and η a closed one-form. Define $c(\eta)$ to be the number of zeros of η . Define $c(M) = \text{glb } \{c(\eta): \eta \in Z^1(M)\}$. If M is a symplectic manifold with symplectic form ω , then there is a C^1 -neighborhood of id_M in Diff(M, ω), so that if f is in this neighborhood, then V(f) is a closed one-form. Furthermore, the number of fixed points of f is equal to c(V(f)). Now assume M is simply connected, so that every closed one-form is exact. Then $c(M) \ge 2$ since every smooth function on a compact manifold has at least two critical points. Therefore, in this C^1 -neighborhood of id_M every f has at least two fixed points.

2. The main theorem. When the manifold M is not compact there are functions with no critical points, and hence there are closed one-forms with no zeros. Therefore, c(M) = 0. In this section we extend the fixed point theorem of Weinstein to open symplectic manifolds. Note that while M may be a symplectic manifold, its completion \tilde{M} may carry no symplectic structure at all. In particular, for the open

2n-cell $B^{2n} = \{x \in \mathbb{R}^{2n}: ||x|| < 1\}$ the completion is homeomorphic to S^{2n} , which has no symplectic structure for n > 1. The open manifold B^{2n} has the standard symplectic structure induced from \mathbb{R}^{2n} .

THEOREM 2.1. If (M, w) is a symplectic manifold with $e(M) < c(\tilde{M})$, then there exists a C^1 -fine neighborhood A of id_M in $\mathrm{Diff}(M, \omega)$ such that every $f \in A$ has at least $c(\tilde{M}) - e(M)$ fixed points.

PROOF. Assume M is embedded in \tilde{M} as an open submanifold. Let $\phi \colon \tilde{M} \to \mathbf{R}$ be a nonnegative function vanishing only on the ends of M, $\phi(x) = 0$ if and only if $x \in \tilde{M} - M$. Let $B \subset Z^1(M)$ be the set of one-forms defined by ϕ ,

$$B = \{ \eta \in Z^{1}(M) \colon ||\eta(x)|| < \phi(x), ||D\eta(x)|| < \phi(x) \}$$

where the norms arise from a riemannian metric on \tilde{M} . So B is an open subset and every $\eta \in B$ extends to a form $\tilde{\eta}$ on \tilde{M} such that $\tilde{\eta}(x) = 0$ for $x \in \tilde{M} - M$. By taking an intersection, if necessary, we may assume that B satisfies the conclusions of Theorem 1.1. Since $c(\tilde{M}) - e(M) > 0$ and $c(\tilde{\eta}) \ge c(\tilde{M})$, it follows that $c(\tilde{\eta}) - e(M) > 0$, so that $\tilde{\eta}$ has more zeros than there are points in $\tilde{M} - M$. Therefore $\eta(x) = 0$ for some $x \in M$. Now we use Theorem 1.1 to get a C^1 -fine neighborhood A in Diff (M, ω) containing the identity and a homomorphism $V: A \to B$. For $f \in A$, the one-form V(f) is in B and so f has a fixed point x in M. \square

We now restrict our attention to manifolds M diffeomorphic to \mathbb{R}^{2n} . Let ω be any symplectic structure on M. Clearly, e(M) = 1 and by picking a point $N \in S^{2n}$, we can embed M onto $S^{2n} - \{N\}$, so that $\tilde{M} \approx S^{2n}$. With this construction and the fact that $c(S^{2n}) = 2$, we have

COROLLARY 2.2. Let (M, ω) be a symplectic manifold where M is diffeomorphic to \mathbb{R}^{2n} . Then there is a neighborhood in the C^1 -fine topology of Diff (M, ω) which contains id M, such that every mapping in this neighborhood has a fixed point.

One should be aware that there are symplectic diffeomorphisms of \mathbf{R}^{2n} with symplectic structure $\sum dx_i \wedge dy_i$ that have no fixed points, in particular the translations, but there are C^1 -fine neighborhoods of the identity containing no translations. Let $\phi \colon \mathbf{R}^{2n} \to \mathbf{R}^+$ be a function vanishing at infinity and use ϕ to define an open neighborhood consisting of the diffeomorphisms f such that $||f(x) - x|| < \phi(x)$ and $||Df(x) - I|| < \phi(x)$ for all $x \in \mathbf{R}^{2n}$.

REFERENCES

[A & M] R. Abraham and J. E. Marsden, Foundations of mechanics, Benjamin/Cummings, Reading, Mass., 1978.

[A] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978.

[As] D. Asimov, On volume preserving homeomorphisms of the open n-disk, Houston J. Math. 2 (1976), 1-3.

[B] D. G. Bourgin, Homeomorphisms of the open disk, Studia Math. 31 (1968), 433-438.

[H] M. W. Hirsch, Differential topology, Springer-Verlag, New York, 1976.

[M] J. Moser, A fixed point theorem in symplectic geometry, Acta Math. 141 (1978), 17-34.

[N] N. Nikishin, Fixed points of diffeomorphisms on the two sphere that preserve area, Funkcional. Anal. i Priložen 8 (1974), 84–85.

- [S] L. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension ≥ 5 , Thesis, Princeton Univ., Princeton, N.J., 1965.
- [Si] C. P. Simon, A bound for the fixed point index of an area preserving map with applications to mechanics, Invent. Math. 26 (1974), 187–200 and 32 (1976), 101.
- [W₁] A. Weinstein, *Periodic orbits of hamiltonian systems via critical point theory*, manuscript, Univ. of California, Berkeley, 1971.
 - [W₂] _____, Lagrangian submanifolds and hamiltonian systems, Ann. of Math. (2) 98 (1973), 377-410.

DEPARTMENT OF MATHEMATICS, CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO, CALIFORNIA 93407