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A SYMPLECTIC FIXED POINT THEOREM ON OPEN MANIFOLDS 

MICHAEL COLVIN AND KENT MORRISON 

ABSTRACT. In 1968 Bourgin proved that every measure-preserving, orientation- 
preserving homeomorphism of the open disk has a fixed point, and he asked whether 
such a result held in higher dimensions. Asimov, in 1976, constructed counterexam- 
ples in all higher dimensions. In this paper we answer a weakened form of Bourgin's 
question dealing with symplectic diffeomorphisms: every symplectic diffeomorphism 
of an even-dimensional cell sufficiently close to the identity in the C'-fine topology 
has a fixed point. This result follows from a more general result on open manifolds 
and symplectic diffeomorphisms. 

Introduction. Fixed point theorems for area-preserving mappings have a history 
which dates back to Poincare's "last geometric theorem", i.e., any area-preserving 
mapping of an annulus which twists the boundary curves in opposite directions has 
at least two fixed points. More recently it has been proved that any area-preserving, 
orientation-preserving mapping of the two-dimensional sphere into itself possesses at 
least two distinct fixed points (see [N, Si]). In the setting of noncompact manifolds, 
Bourgin [B] showed that any measure-preserving, orientation-preserving homeomor- 
phism of the open two-cell B2 has a fixed point. For Bourgin's theorem one assumes 
that the measure is finite on B2 and that the measure of a nonempty open set is 
positive. Bourgin also gave a counterexample to the generalization of the theorem for 
the open ball in RI35 and asked the question whether his theorem remains valid for 
the open balls in low dimensions. In [As] Asimov constructed counterexamples for 
all dimensions greater than two and actually got a flow of measure-preserving, 
orientation-preserving diffeomorphisms with no periodic points. 

To formulate our results and place the comments above into our framework, we 
need some concepts from symplectic geometry. A smooth manifold is called sym- 
plectic if there exists a nondegenerate, closed, differentiable 2-form w defined on M. 
A differentiable mapping f of M into itself is called symplectic if f preserves the form 
w. We refer to the texts by Abraham and Marsden [A & M] and Arnold [A] for the 
general background in symplectic geometry. 

We reformulate Bourgin's question to ask: does every symplectic mapping of a 
2n-dimensional cell, equipped with a symplectic structure, have a fixed point? Using 
a generalization of a theorem of Weinstein [W2], we answer this question affirma- 
tively for mappings sufficiently close to the identity. 
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1. Preliminaries. All manifolds are assumed to be finite-dimensional, C??-smooth, 
and without boundary. A manifold M is open if M has no compact components. Let 
E(M) denote the ends of M, and let l = M U E(M) be the completion of M. We 
consider manifolds M where the number of ends, denoted by e(M), is finite and 
where Al has a smooth manifold structure without boundary. For the general 
problem of completing an open manifold with finitely many ends see Siebenmann's 
thesis [S]. 

If M is a manifold with symplectic form w, then Diff(M, w) denotes the group of 
symplectic diffeomorphisms of M. The closed one-forms on M are denoted by 
Z'(M). Both of these function spaces are topologized with the C'-fine topology. See 
[H, p. 35] for a good account of the C'-fine topology. 

We require the basic formalism of "cotangent co-ordinates" contained in the 
following theorem of Weinstein. 

THEOREM 1.1 [W1, Proposition (2.7.4) or W2, Theorem 7.2]. If (M, w) is a 
symplectic manifold, then there is a C'-fine neighborhood A C Diff(M, w) containing 
the identity map, a Cl-fine neighborhood B C Z'(M) containing the zero form, and a 
homeomorphism V: A -* B. If f E A, then a point x E lM is a fixed point of f if and 
only if (V(f ))(x) = 0. 

PROOF. If f is in Diff(M, w), then the graph of f is a Lagrangian submanifold of 
M X M with the symplectic structure 7Tw - 72 w, where g, and 7T2 are the projec- 
tions. There exists a neighborhood U of the diagonal Al(M) = {(m, m): m E M) 
and a bijection of U onto a neighborhood W of the zero-section in T*M, taking 
Lagrangian submanifolds of U onto Lagrangian submanifolds lying in W. If f is 
close enough to the identity, in the sense that the graph of f is contained in U, then 
there is a one-form V(f ) E Z'(M) whose image is contained in W. Clearly, 
f(x) = x if and only if (V(f ))(x) = 0. D 

Various fixed point theorems in symplectic geometry result from Theorem 1.1. For 
examples see [M, N, S, W1, and W2]. Let M be a compact manifold and q a closed 
one-form. Define c(Qq) to be the number of zeros of rj. Define c(M) = 
glb {c( q): rz E Z'(M)}. If M is a symplectic manifold with symplectic form w, then 
there is a C'-neighborhood of idM in Diff(M, w), so that if f is in this neighborhood, 
then V( f) is a closed one-form. Furthermore, the number of fixed points of f is 
equal to c( V( f )). Now assume M is simply connected, so that every closed one-form 
is exact. Then c(M) > 2 since every smooth function on a compact manifold has at 
least two critical points. Therefore, in this C'-neighborhood of idM every f has at 
least two fixed points. 

2. The main theorem. When the manifold M is not compact there are functions 
with no critical points, and hence there are closed one-forms with no zeros. 
Therefore, c(M) = 0. In this section we extend the fixed point theorem of Weinstein 
to open symplectic manifolds. Note that while M may be a symplectic manifold, its 
completion M may carry no symplectic structure at all. In particular, for the open 
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2n-cell B2n = {x E R2n: lix < 1) the completion is homeomorphic to S2 n, which 
has no symplectic structure for n > 1. The open manifold B2n has the standard 
symplectic structure induced from R2n. 

THEOREM 2.1. If (M, w) is a symplectic manifold with e(M) < c(M), then there 
exists a Cl-fine neighborhood A of idM in Diff(M, o) such that every f E A has at 
least c(M) - e(M) fixed points. 

PROOF. Assume M is embedded in M as an open submanifold. Let 0: M -- R be a 
nonnegative function vanishing only on the ends of M, 4(x) = 0 if and only if 
x C Al - M. Let B C Z'(M) be the set of one-forms defined by +, 

B = {71 C Z'(M): ILq(x)II < +(x), IIDq(x)II < 0(x)} 
where the norms arise from a riemannian metric on M. So B is an open subset and 
every q E B extends to a form i1 on Al such that r(x) = 0 for x cEAl - M. By 
taking an intersection, if necessary, we may assume that B satisfies the conclusions 
of Theorem 1.1. Since c(M) - e(M) > 0 and c(n) > c(M), it follows that c(7) - 

e(M) > 0, so that X has more zeros than there are points in Al - M. Therefore 
q(x) = 0 for some x C M. Now we use Theorem 1.1 to get a C'-fine neighborhood 
A in Diff(M, w) containing the identity and a homomorphism V: A -* B. Forf E A, 
the one-form V( f) is in B and so f has a fixed point x in M. O 

We now restrict our attention to manifolds M diffeomorphic to R2n. Let X be any 
symplectic structure on M. Clearly, e(M) = 1 and by picking a point N C S2n, we 
can embed M onto S2n - {N}, so that A S2n. With this construction and the fact 
that C(S2,) = 2, we have 

COROLLARY 2.2. Let (M, o) be a symplectic manifold where M is diffeomorphic to 
R2n. Then there is a neighborhood in the C'-fine topology of Diff(M, w) which contains 
idM, such that every mapping in this neighborhood has a fixed point. 

One should be aware that there are symplectic diffeomorphisms of R2n with 
symplectic structure l: dxi A dyi that have no fixed points, in particular the transla- 
tions, but there are C'-fine neighborhoods of the identity containing no translations. 
Let 4: R2n -* R+ be a function vanishing at infinity and use 4 to define an open 
neighborhood consisting of the diffeomorphismsf such that II f(x) - x II < +(x) and 
11 Df(x) -I 11 < +(x) for all x E R2W. 
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