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We construct a complete, infinitesimally symplectic vectorfield on the open unit 
ball in R4 with no zeros. This shows that there are symplectic diffeomorphisms of 
the ball with no fixed points. 

INTRODUCTION 

In an earlier paper [4] we raised the question: Does every symplectic 
diffeomorphism of the open unit ball, B2”, in R”’ have a fixed point? We 
showed that there is an open neighborhood of the identity map in the C’ line 
topology for which the answer is yes. In this paper it is shown that the 
answer is no in general. There is a complete, infinitesimally symplectic 
vectorfield on B4 without any zeros. Thus there are symplectic 
diffeomorphisms in any C’ weak neighborhood of the identity with no fixed 
points. This shows that the two-dimensional results are special, for in the 
open disk every symplectic diffeomorphism has a fixed point, a result 
Bourgin proved in greater generality for orientation preserving 
homeomorphisms that preserve a finitely additive measure that is positive on 
open sets [3]. Furthermore, a complete, infinitesimally symplectic vectorfield 
on B2 has a zero, as we show in Section 2. 

The question of volume preserving, orientation preserving diffeomorphisms 
on the open ball was resolved in 1976 by Asimov [2] with his construction 
of a divergent free vectorfield on B3, which is complete and has no zeros. 
This easily extends to all dimensions. In particular, on B4 one had a volume 
and orientation preserving diffeomorphism with no fixed point, but not a 
symplectic diffeomorphism. 

1. THE EXAMPLE 

In this section we construct a complete, infinitesimally symplectic 
(Hamiltonian) vectorfield on B4, the open unit ball in R4. A vectorfield will 
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be complete on B4 if it extends to a vectorfield on the closure B4 and is 
tangent to the boundary. So we look for a real valued function f on B4 such 
that the Hamiltonian vectorfield 

xf = way, 1 aflaY2T -wax,, -wax,) 

is tangent to the unit sphere. The coordinates on R4 are (x, , x2, y, , y2) and 
the symplectic form is o = dx, A dy, + dx, A dy,. 

It is also convenient to use compiex coordinates in R4 = C*, zj = xj + iyj, 
j = 1,2. Then Xr= -i(grad f) and X, is tangent to the unit sphere when 
-i(grad f) h z = 0, for each z on the unit sphere. Here the dot means the real 
inner product, which is the real part of the Hermitian inner product. This 
condition is equivalent to (grad f) . iz = 0. Thus, grad f is perpendicular to 
the linear vectorfield J(z) = iz when restricted to the unit sphere. The integral 
curves of J on the unit sphere are the circles of the Hopf fibration, and so f is 
constant on those circles. 

The Hopf fibration is the projection of S3 onto S’, where S2 is identified 
with CP’, given by 

?r:S3-+CP’: (z, 1 z2) + (z, : z2>* 

The point z on S3 is mapped to the complex line in C2 containing z. Now we 
collapse g4 by identifying boundary points if they lie in the same fiber of 7t, 
while leaving the interior points <alone. The quotient space is CP2 and the 
quotient map may be given explicitly 

h :Ba-+CP2 : (Zl,Z2)’ (1 --Jz12 :z, :z2). 

One may check that for IzI < 1, h(z) = h(w) implies that t = w or 1 WI < 1. 
This shows that h is one-tonne on the interior. On the boundary S3, h(z) = 

(0 : z, : z2) and so h is the Hopf fibration onto the CP’ given by z0 = 0. 
To see that h is a diffeomorphism from the open ball to the complement of 

z0 = 0, we can show that the closed disks through the origin whose boun- 
daries are the circles in the libration are each mapped onto a complex 
projective line through (1 : 0 : 0). Let (z, , z2) be a point on S3. The unit disk 
spanned by its fiber and (0,O) is mapped onto the CP’ containing (1 : 0 : 0) 
and h(z,, z2) = (0 : z1 : z2). The boundary circle is mapped to the single 
point (0 : z, : z2). 

Thefunction~:CP2~R:(z,,z,,z2)~~z,~2f2~z,~Z+3~z2~ZisaMorse 
function with three critical points p. = (1 : 0 : 0), p, = (0 : 1 : 0), p2 = 
(0 : 0 : 1). From 4 we construct a function whose critical points all lie in 
h(S3). Pick a point q in h(S3) distinct from pI and p2, say, q = (0 : 1 : 1). 
Construct an isotopy of diffeomorphisms Ft : CP* + CP* such that F, = I, 
while F, fixes p, and p2 and F,(p,) = q. The family FI can be constructed by 
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connecting p0 with q by a narrow tube. Let Ft be the identity outside the tube 
and let F, push p,, toward q inside the tube. 

The function $ o F;’ has three critical points p, , p,, and q, all lying in 
h(S3). Hence the function f = Q 0 F;’ o h has no critical points in the 
interior of the ball B4, and it is constant on the fibers of the Hopf tibration. 
The vectorfield X, has no zeros in B4 and is complete. Thus the flow @, of 
X, consists of symplectic diffeomorphisms with no fixed points for values of t 
close enough to 0. 

In higher dimensions the same construction, mapping Bzn onto CP” with 
the boundary SZn-’ fibering over a complex hyperplane CP”-‘, enables us 
to give complete, Hamiltonian vectorfields on B2” with no zeros. 

Remark. In an earlier article 14) we showed that there is a 
neighborhood of the identity in the C’ fine topology on the space of 
symplectic diffeomorphisms Diff(B2”, w) such that any map in this 
neighborhood has a fixed point. However, the example constructed above 
shows that there is no neighborhood of the identity in the C’ weak topology 
with the same property, since the one parameter group @ : R + Diff(B4, w) : 
t + @, is continuous in the weak topology and @, has no fixed points for t 
small enough. 

2. Two DIMENSIONS 

In this section we show that a complete, infinitesimally symplectic vector- 
field on the open disk has at least one zero. Again the results are special in 
the two dimensional setting. See the article by Simon [ 51 and Appendix 9 in 
Arnold’s book [ 11. 

Let X=X, be an infinitesimally symplectic vectortield on the open unit 
disk D c R2. In polar coordinates X,(r, ~9) = (l/r)(8J/M, -af/ar) so that 
Hamilton’s equations are 

i = (l/r) aflae, 
f3= (-l/r) afar. 

Assume Xr is complete. Thus, as one approaches the boundary of the disk 
the r: component of the vectorfield must go to zero. Thus, af/lat? goes to zero 
at the boundary. From this it follows that f has the same limit at all 
boundary points, whether finite or infinite. Let J‘: o-, R U {co) be the 
continuous extension offto the closed disk. NowTattains both its maximum 
and its minimum. If they are both on the boundary then f is constant and 
X,= 0. Otherwise f has an extreme point in the interior D and X, has a zero 
at that point. We conclude that X, has at least one zero in D. 
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Questions. Let G be a connected, abelian Lie group (a product of Rk 
with a torus). Does every symplectic action of G on the disk D have a fixed 
point? Is it true for an open, dense set of actions? Such an action comes 
from a finite set of functionsf, ,..., f, in involution. One can show that if one 
of them has an isolated critical point, then that point is a fixed point of the 
action, but when none of the critical points is isolated the analysis is more 
complicated. 

Are there compact Lie groups acting symplectically on D with no fixed 
points? 
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