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The asymptotic expansions of Toeplitz determinants of certain symbols with
multiple jump discontinuities are shown to satisfy a revised version of the conjecture of Fisher
and Hartwig. (This paper has appeared in Operator Theory: Advances and Applications, 71,
1994, 16-28.)

§1. Introduction

The Toeplitz matrix Tn[φ] is said to be generated by the function φ if

Tn[φ] = (φi−j), i, j = 0, . . . , n− 1.

where

φn =
1

2π

∫ 2π

0
φ(θ)e−inθdθ

is the nth Fourier coefficient of φ. Define the determinant

Dn[φ] = det(Tn[φ]), i, j = 0, . . . , n− 1. (1)

The Fisher-Hartwig Conjecture [8] concerns the asymptotic behavior of the determinants of

Toeplitz matrices for a certain class of singular symbols. These symbols are of the form

φ(θ) = b(θ)
R∏
r=1

tβr(θ − θr)uαr(θ − θr) (2)



where

tβ(θ) = exp[−iβ(π− θ)], 0 < θ < 2π (3)

uα(θ) = (2− 2 cos θ)α, Reα > −1

2
(4)

and b : T→ C is a smooth non-vanishing function with zero index. Note that the function

φ may have jump discontinuities, zeros, and/or singularities.

The first general results on the conjecture, which we will describe shortly, were

obtained by Widom [9], who showed that it was true for Reαr > −1/2 and βr = 0 for all r.

The conjecture was then extended by several authors to restricted values of the parameters

βr and αr. In particular, it is true if |Reβr| < 1/2 and |Reαr| < 1/2, and true in the case

of one singularity for arbitrary β where α = 0. A history of this work can be found in [7].

Recently, in an investigation of the distribution of eigenvalues of Toeplitz ma-

trices it was shown that in some simple and unexpected cases the original conjecture was

false [3, 2]. Earlier Böttcher and Silbermann [5] had also shown that the conjecture did not

hold in the case of integer parameter values. A revised conjecture subsuming both kinds of

counter-examples was formulated in [3].

The purpose of this paper is to prove the original conjecture in some additional

cases, give an example underpinning the revised conjecture, and to discuss the implications

for Toeplitz eigenvalues. We begin with a description of the new conjecture which takes into

account the possibility of multiple representations of the symbol in the form specified by (2).

Conjecture Suppose

φ(θ) = bi(θ)
R∏
r=1

tβir(θ − θr)uαir(θ − θr) (5)

for values βi1, . . . , β
i
R, αi1, . . . , α

i
R and smooth nonzero functions bi(θ) each with winding num-

ber zero for i = 1, 2, . . .. (When R > 1 there is a countable number of different representa-

tions. Notice that |bi| is independent of i.) Define

Ω(i) =
R∑
r=1

(
(αir)

2 − (βir)
2
)

(6)

Ω = max
i

Re [Ω(i)] (7)

S = {i | Re [Ω(i)] = Ω}. (8)



Then as n→∞,

Dn[φ] =
∑
i∈S

G[bi]
n
nΩ(i)E[bi, αir, β

i
r, θr] + o(G[|b|]nnΩ) (9)

where G[bi] = exp(1/2π
∫ 2π

0 log bi(θ)dθ) is the geometric mean of bi, G[|b|] is the geometric

mean of any of the |bi|, since they are all the same, and where E[bi, αir, β
i
r, θr] is a constant

described as follows. Suppressing the superscript i, we factor

b(θ) = G[b]b+(exp(iθ))b−(exp(−iθ))

where b+ extends analytically inside the unit circle and b− extends analytically outside the

unit circle, and b+(0) = b−(∞) = 1. Define

E[b, αr, βr, θr] = E[b]
R∏
r=1

b−(exp(iθr))
−αr−βrb+(exp(−iθr))

−αr+βr

×
∏

1≤s6=r≤R
[1− exp(i(θs − θr))]

−(αr+βr)(αs−βs)

×
R∏
r=1

G(1 + αr + βr)G(1 + αr − βr)/G(1 + 2αr), (10)

where G is the Barnes G-function, E[b] = exp(
∑∞
k=1 ksks−k), and sk := [log b(θ)]k.

The original statement of Fisher-Hartwig was very similar except that the

function φ was assumed to be of one fixed form (2). It is important to note that in the

previous work cited only one representation yielded the maximum in Ω. In what follows we

will show that (9) holds for a function φ with α = 0 and −1 < Re βr ≤ 0 (or with α = 0 and

0 ≤ Re βr < 1). This is done in section 2. In section 3 we will show that (9) also holds in

some examples and discuss the implications for eigenvalues. The results for section 2 agree

with the original conjecture; however, the results of section 3 agree only with the revised

conjecture.

§2. Localization theorem for −1 < Re βr < 0

We begin this section by showing that in the case αr = 0 and −1 < Re βr ≤ 0,

there is only one representation in (5). It is thus not surprising that section 2 uses an

adaptation of older techniques.



Consider a symbol of the form

φ(θ) = b(θ)
R∏
r=1

tβr(θ − θr). (11)

Other representations of φ correspond to changing βr to β ′r = βr+jr, where jr ∈ Z such that∑
jr = 0. Now assume that −1 < Re βr < 0 and we will show that this representation is the

only one that gives the maximum in (6). Let βr = xr + iyr. To maximize (6) is equivalent

to minimizing

f(j) :=
R−1∑
r=1

(xr + jr)
2 + (xR −

R−1∑
r=1

jr)
2 (12)

over all j = (j1, . . . , jR−1) ∈ ZR−1. Expanding this out we obtain

f(j) = 2
R−1∑
r=1

j2
r + 2

R−1∑
r=1

(xr − xR)jr + 2
∑
l<r

jljr. (13)

Routine algebra rewrites this as f(j) = jTAj + 2bT j, where

A =



2 1 1 . . . 1

1 2 1 . . . 1
...

1 1 . . . 1 2


(14)

and b = (x1 − xR, . . . , xr − xR, . . . , xR−1 − xR).The matrix A is positive definite, so that

we have a standard linear algebra problem of minimizing a function which is quadratic plus

linear. The minimum over RR−1 is given by −A−1b, but we need the minimum on the integral

lattice points. Because of the convexity of the function being minimized, the minimal integer

points occur at the those integer points surrounding the minimum −A−1b. Computing A−1,

(either by noting that A is a circulant matrix, by Cramer’s Rule, or by guessing), we find

A−1 =
1

R



R − 1 −1 −1 . . . −1

−1 R− 1 −1 . . . −1
...

−1 −1 . . . −1 R − 1


= I +

1

R


−1 . . . −1

...

−1 . . . −1

 (15)

Let the minimum in RR−1 be the vector z = −A−1b. Then

zr =
R− 1

R
xr −

1

R
(x1 + . . . + x̂r + . . . + xR), (16)



where the hat indicates xr is omitted. From the assumption that −1 < xr < 0 we see that

−1 < zr < 1, and that the minimal integer point j must have jr = 0,−1, 1. The expression

f(j) = jTAj + 2bT j is 0 for j = 0, and we will show that for any other choice of j the

expression is positive. First, this is easy to check for R = 2. Next, if any jr = 0, then the

problem reduces to the case of R − 1 variables. This leaves us the situation in which all

the jr are 1 or −1. If all of them have the same sign, then it is also easy to see that f(j)

is positive. Therefore, let us assume that m of the jr’s are −1 and p of them are 1, with

m + p = R− 1. The third term in f(j), formula (13), is

2
∑
l<r

jljr = 2(

(
p

2

)
+

(
m

2

)
− pm) (17)

Using the restrictions on the xr we show that

f(j) > 2(m +

(
p

2

)
+

(
m

2

)
− pm) (18)

Now the right side factors as (p−m)(p−m−1), from which we see that it is not possible for

positive integer values of p and m to make this expression negative. Thus, f(j) > 0 for all

integer points j whose components are 0,1, or −1. This means that 0 is the unique minimum

for (6) as j ranges over ZR−1.

We now restrict our attention to piecewise continuous symbols of the form

φ(θ) = b(θ)
R∏
r=1

tβr(θ − θr) (19)

where b(θ) is non-zero, sufficiently smooth, has winding number zero, and −1 < Reβr < 0.

The Toeplitz operator T [φ] is represented by the matrix (φi−j), i, j ≥ 0. The important

properties of the Toeplitz operator T [φ] and the corresponding finite matrices are summarized

in [7]. We list some of these below and state some simple consequences.

Let `µp , 1 < p < ∞, be the weighted space of sequences x = {xn} satisfying∑∞
n=1 |xn|p(n + 1)pµ < ∞. The class Mµ

p is the collection of all functions a ∈ L1 such that

the convolution a ∗ x ∈ `µp for all sequences x with finite support and

‖a‖Mµ
p

:= sup{‖a ∗ x‖µp/‖x‖µp : x 6= 0} <∞. (20)

It is clear that the Toeplitz operator T [a] = (ai−j), i, j ≥ 0, and the Hankel operator

H[a] = (ai+j), i, j ≥ 0, are bounded on `µp if a ∈Mµ
p , and it also can be shown that Mµ

p is a

Banach algebra under the above norm.



The closure of the trigonometric polynomials in Mµ
p is denoted by Cµ

p and is

contained in the set of continuous functions in L1. Likewise, PCp,µ is the closure of the

piecewise constant functions in Mµ
p . While the exact description of PCp,µ is not known, it

is true that if −1/p < µ < 1/q, then a function of the form (19) is in PCp,µ if b has finite

total variation. Also, define W α,β
r,s to be all functions in L1(T) satisfying {fn, n ≥ 0} ∈ `βs

and {fn, n ≤ 0} ∈ `αr . It is known that W α,β
1,1 ∩W γ,δ

p,q is an algebra when γ > 1/q, δ > 1/p,

α ≥ 0, β ≥ 0, and 1/p + 1/q = 1. From now on it will be assumed that b does not vanish,

has index zero, and is sufficiently smooth.

The next question to address is the invertibility of the Toeplitz operators

T [φ] and the applicability of the finite section method to these operators. The answers are

contained in the following theorems.

Theorem 1 Let p > 1, 1/p + 1/q = 1, −1/p < µ < 1/q. Suppose

(a) b does not vanish, has index zero and has finite total variation.

(b) −1/p < µ + Re βr < 1/q for all r.

Then T [φ] is invertible on `µp .

Proof. The operators T [b], T [tbr] are invertible on `µp due to Proposition 6.24 of [7], and

thus, by Propositions 6.29 and 6.32 of [7], the operator T [φ] is Fredholm of index zero, and

hence, invertible.

Theorem 2 Let p > 1. Suppose b satisfies (a) of the hypothesis of Theorem 1 and, in

addition, −Re βr < 1/q, −Reβr − 1/p < µ < 1/q. Then Tn[φ] is invertible for all n

sufficiently large and Tn[φ]−1 converges strongly to T [φ]−1 on `µp .

Proof. This is immediate from Theorem 7.45 in [7].

Theorem 3 If p > 2, ε > 0, then the embeddings `µp → `
µ−1/2+1/p−ε
2 , `µ2 → `µ−1/2+1/p−ε

q ,

`µ2 → `µp , `µq → `µ2 are continuous.

Proof. See [6].

The Hankel operator H[φ] is represented by the matrix (φi+j+1), i, j ≥ 0, and

enjoys the following properties.



Theorem 4 Let p > 2, −1/p < µ < 1/q. Suppose φ, ψ are of the form (19), have no

common discontinuities and that there exists a smooth partition of unity f, g such that φf

and ψg have Fourier coefficients an satisfying
∑∞
−∞ |an|n3 < ∞. Let ψ̃(θ) = ψ(−θ). Then

H[φ]H[ψ̃] can be realized as a sum of bounded operators which are compositions of the form

AB : `
µ−1/2+1/p−ε
2 → `µp (21)

where B : `
µ−1/2+1/p−ε
2 → `µ2 , B is trace class, and A : `µ2 → `µp for some sufficiently small ε.

Proof. Consider the identity found in [1]

H[φ]H[ψ̃] = H[φf ]H[ψ̃] + H[φ]H[g̃ψ] + H[φ]H[f̃]T [φ] + H[φ]H[g̃]T [ψ]. (22)

We will show that the operator H[h] is trace class from `
µ−1/2+1/p−ε
2 to `µ2 , where h is one of

the functions φf , f̃ , g̃, or g̃ψ. The operators H[h] can be factored as CD where

D : `
µ−1/2+1/p−ε
2 → `µ2 , Djk = hj+k+1(j + 1) (23)

C : `µ2 → `µ2 , Cjk =
δjk

j + 1
(24)

are both Hilbert-Schmidt, as is easily seen by noting that

∑
j,k

|aj+k+1|2(j + 1)2+2µ(k + 1)−2µ+1−2/p+2ε <∞. (25)

Choosing ε sufficiently small, the operators H[ψ̃], T [ψ], and T [φ] are bounded on `
µ−1/2+1/p−ε
2 .

Finally, the operators H[φf ] and H[φ] are bounded from `µ2 to `µp since the inclusion is

bounded from `µ2 to `µp and the Hankel operators are bounded on `µp .

We now show how the conjecture holds in the case −1 < Reβr < 0 and b

sufficiently nice. The proof follows exactly that found in [1] or [4] with the appropriate

modifications of the spaces. The idea of using cleverly chosen spaces goes back to Böttcher

and Silbermann in [6]. The method used in the previous papers hinges on the fundamental

identity

Tn[φψ] = Tn[φ]Tn[ψ] + PnT [φ]QnT [ψ]Pn + PnH[φ]H[ψ̃]Pn. (26)

Here Pn is the projection defined on any `µp as

Pn(a0, a1, . . . , an−1, an, . . .) = (a0, a1, . . . , an−1, 0, 0, . . .)



and Qn = I − Pn. Formula (26) above can be rewritten as

Tn[ψ]−1Tn[φ]−1Tn[φψ] = In + An + Bn (27)

= (In + Bn)(In + An)− BnAn (28)

An = Tn[ψ]−1Tn[φ]−1PnH[φ]H[ψ̃]Pn (29)

Bn = Tn[ψ]−1Tn[φ]−1PnT [φ]QnT [ψ]Pn. (30)

We now assume φ(θ) has the form given in (19) such that b(θ) does not vanish and has index

zero. Suppose b ∈ W 3,3
1,1 and −1 < Re βr < 0. Then we can first find p > 2 and µ so that

Theorem 2 holds. Consider first the matrix An as an operator on `
µ−1/2+1/p−ε
2 by seeing it

as the composition of the following operators:

PnH[φ]H[ψ̃]Pn : `
µ−1/2+1/p−ε
2 → `µp

Tn[ψ]−1Tn[φ]−1 : `µp → `µp

i : `µp → `
µ−1/2+1/p−ε
2

From Theorem 4, the operator H[φ]H[ψ̃] is trace class with the appropriate choice of ε.

Thus, the sequence of operators An converges in the trace norm. Since Bn converges to zero

strongly, the product BnAn will also converge to zero in the trace norm. Thus, just as in [1]

or [4]

detTn[φ]−1Tn[ψ]−1Tn[φψ] ∼ det(In + An) det(In + Bn). (31)

This last statement yields the localization needed to prove (9) by induction on the number

of singularities; since An converges in the trace norm to an operator A on `
µ−1/2+1/p−ε
2 and

det(In + Bn) = det(In + B ′n), where, again as in [1], B ′n converges to an operator B ′ which

is trace class on `
−(µ−1/2+1/p−ε)
2 . To summarize, we have

Theorem 5 Suppose φ(θ) = b(θ)
∏R
r=1 tβr(θ − θr) where

(i) b(θ) does not vanish and has index zero,

(ii) −1 < Reβr ≤ 0,

(iii) b ∈W 3,3
1,1 .



Then (9) holds.

The above localization shows that the asymptotic formula in (9) holds. The

fact that the constants agree follows from the validity of the conjecture for |Re βr| < 1/2

and the fact that the constants must be analytic functions of βr. Also, note that by taking

conjugates the conjecture also holds if 0 < Reβr < 1.

§3. Some Special Cases

Let us consider φ(θ) = tβ1(θ)tβ2(θ + π) with any arbitrary β1 and β2. A simple calculation

shows there is more than one contributing representation in (9) if and only if Reβ2 − Re β1

equals some odd integer. To see this, first note that if we pick one representation in (5), say

using β1 and β2, then any other must be of the form β1 + k and β2 − k where k is some

integer. Let β1 = u1 + iv1 and β2 = u2 + iv2. Then

Re Ω(k) = −2k2 − 2u1k + 2u2k − u1
2 + v1

2 − u2
2 + v2

2.

This quadratic function of k has exactly two maxima for integer values of k when u1− u2 is

some odd integer. Conversely, if u1−u2 = 2j +1, then the pairs β1 +j, β2− j and β1 +j +1,

β2 − j + 1 yield two maximizing representations. If Reβ2 −Re β1 = 2j + 1 for an integer j,

then the two maximizing representations are, up to a sign, given by

φ(θ) = t(β1+j)(θ)t(β2−j)(θ + π) (32)

and

φ(θ) = (−1)t(β1+j+1)(θ)t(β2−j−1)(θ + π) (33)

Let us assume that we have picked one of those representations as a starting point, i.e. that

the βr’s differ by one. Then for this new choice Re β2 − Reβ1 = 1.

The prediction from the Extended Fisher-Hartwig Conjecture is that

Dn[φ] ∼ n−β1
2−β2

2

22β1β2G(1 + β1)G(1− β1)G(1 + β2)G(1− β2)

×
(

1 + (−1)n(2n)2(Im β2−Im β1) Γ(1 + β1)Γ(1− β2)

Γ(−β1)Γ(β2)

)
(34)



We can also easily compute the Fourier coefficients for this function.

φn =


1

π(β2+β1−n)
(sinβ2π + sinβ1π) if n is even

1
π(β2+β1−n)

(sinβ1π − sinβ2π) if n is odd
(35)

Thus, if β1 and β2 satisfy β2 = β1 + 1, we have

φn =

 0 if n is even

2 sin β1π
π(β2+β1−n)

if n is odd
(36)

Now by rearranging the rows and columnms in an obvious way so that even and odd coef-

ficients occur in blocks one can easily see that Dn[φ] = 0 for n odd. For n even, this same

arrangement yields

Dn[φ] = Dn/2[tγ1]Dn/2[tγ2] (37)

where γ1 = β1+β2+1
2

and γ2 = β1+β2−1
2

, from which it follows that γ1 = β1 + 1 and γ2 = β1. A

routine computation shows that this agrees with (9). Thus we have proved (9) in the case

that β2 = β1 + 2j + 1 and θ2 = θ1 + π.

We now turn to some examples which illustrate the implication of the Extended

Fisher-Hartwig Conjecture for the distribution of eigenvalues of Toeplitz matrices. Consider

the function

φ(θ) =

 ei(3π/4−θ) if 0 < θ < π

ei(−3π/4−θ) if π < θ < 2π
(38)

If we look at the equation det(Tn[φ] − λIn) = 0, we see that the values of the βr’s in the

canonical product for φ− λ will be given by the correct choice of the parameters

β1(λ) =
1

2πi
log(

φ(0−)− λ

φ(0+)− λ
)

β2(λ) =
1

2πi
log(

φ(π−)− λ

φ(π+)− λ
). (39)

A quick computation of the arguments shows that for all functions of the form φ− λ with λ

not in the image, either Theorem 5 applies or that −1/2 < Re βr < 1/2, in which case earlier

results can be used. Since the determinant does not vanish asymptotically, this implies that

the eigenvalues will cluster around the image. The following figure shows that the numerical



approximation of the eigenvalues for T50[φ] nicely illustrates the results of section 2.
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Figure 1. Eigenvalues of T50[φ].

Another interesting example, described more fully in [2], is one with symbol

φ(θ) =

 θ + i if 0 < θ < π

θ + 2i if π < θ < 2π
(40)

This function has two discontinuities and the range is two disjoint line segments. The

extended conjecture would imply, as was pointed out earlier, that detTn[φ−λ] 6= 0, for large

n, except when λ is in the image of φ or when −Reβ1(λ) + Reβ2(λ) = l, where l is odd.

The real parts of β1(λ) and β2(λ) are given by an appropriate choice of arguments for the

logarithms found in formula (39). Let λ = x + iy and solve for the arguments. Then take

the tangents of both sides of the equation

−Reβ1(λ) + Re β2(λ) = l

to arrive at this cubic equation that x and y must satisfy:

2y3 + 2yx2 − 4πxy − 9y2 − 3x2 + 5πx + (13 + 2π2)y − 2π2 − 6 = 0. (41)

The parameter l disappears here since tan 2πl = 0.

The next two pictures show that there are some “stray” eigenvalues that do

not lie close to the image.
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Figure 2. Eigenvalues of T101[φ].
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Figure 3. Eigenvalues of T102[φ].

The next diagram shows a plot of the cubic curve in formula (41). Notice that

the stray eigenvalues in the previous plots are near this cubic curve.
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Figure 4. Eigenvalues lie near this cubic curve.
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