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ABSTRACT. We prove that Yang-Mills connections on a surface are character- 
ized as those with the property that the holonomy around homotopic closed 
paths only depends on the oriented area between the paths. Using this we 
have an alternative proof for a theorem of Atiyah and Bott that the Yang-Mills 
connections on a compact orientable surface can be characterized by homomor- 
phisms to the structure group from an extension of the fundamental group of 
the surface. In addition, for M = S2, we obtain the results that the Yang-Mills 
connections on S2 are isolated and correspond with the conjugacy classes of 
closed geodesics through the identity in the structure group. 

In 1954 Kobayashi [K] showed that connections on principal G-bundles over 
a manifold M can be defined in terms of their parallel transport as homo- 
morphisms from the group of closed paths of M to the structure group G. 
More recently Atiyah and Bott [AB] showed that the Yang-Mills connections 
on a compact orientable surface can be characterized by homomorphisms to 
G from an extension of the fundamental group of M. The purpose of this 
paper is to present a new proof of the result of Atiyah and Bott, using the path 
group formulation for connections. We show that Yang-Mills connections are 
characterized as those with the property that the holonomy around homotopic 
closed paths only depends on the oriented area between the paths. In addition, 
for M = S2 we easily obtain the result that the Yang-Mills connections on 
S2 are isolated, a result obtained in [FH] by other means. We can see, too, 
that the equivalence classes of Yang-Mills connections on S2 are in one-to-one 
correspondence with the conjugacy classes of closed geodesics of G through 
the identity. This was described in the introduction of [AB] and worked out in 
detail in [FH]. 
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1. THE PATH GROUP DESCRIPTION OF CONNECTIONS 

Fix a base point xo in M. The path group is defined with reference to 
the base point but up to isomorphism it is independent of the base point. The 
path group consists of equivalence classes of closed, piecewise smooth paths of 
M, where a closed path is the oriented image of a piecewise smooth, base point 
preserving map from S' to M. It may be thought of as the loop space with the 
operations of concatenation and reversal to make it into a group. A path may 
be reparameterized by choosing a different map with the same image as long as 
the orientation does not change. The group operation is concatenation so that 
A1A2 means "traverse A2 and then traverse Al " The inverse of a path A is 
derived by reversing the orientation. This means that AR-1 must be identified 
with the constant path at xo. It also follows that if A*: [O, 1] -+ M is a 
parameterization of A with the property that there exist 0 < t1 ? t2 ? t3 ? 1 
such that A* restricted to [t1 , t2] has exactly the same image as A* restricted 
to [t2, t3] but with opposite orientations, then A is equal in the path group to 
the path parameterized by 

A*() O < t < tl, 

[0,5 1] - M: t A* (tl), tl 3 
[0,*(t), t3 < t < 

The retraced piece of the path has been clipped. 
Let ?D(M) denote the path group. It is a topological group with the compact- 

open topology. The fundamental group 7r (M) is the group of path components 
of ?(M). The main result of [K] is the following. 
Theorem 1.1. The equivalence classes of connections on principal G-bundles over 
M are in one-to-one correspondence with the conjugacy classes of continuous 
homomorphisms from ?D(M) to G. 

Proof. This is an outline of the main steps. From a principal G-bundle with 
a connection the parallel transport around closed paths based at xo defines 
a homomorphism p: ?(M) -+ G called the holonomy. However, equivalent 
connections define holonomy maps that are conjugate (p1 and P2 are conjugate 
if there exists g E G so that P1(A) = gp2(A)g for all A E D(M)). In the 
other direction, given p: ?(M) -+ G we construct a principle G-bundle P and 
a connection as follows: let S(M) be the space of open paths based at xo, i.e. 
oriented images of piecewise smooth maps a: [O, 1] -+ M with a(0) = xo. 
Now ?(M) acts on the right side on S(M) since cA is an open path based at 
xo. (First traverse the closed path A and then a.) Define an action of ?D(M) 
on S(M) x G by (ac, g) * A = (aX, p(A) Ig) . Define P := (S(M) x G)/ID(M) 
to be the orbit space of this action. In fact, S(M) is a principal D(M)-bundle 
over M, where the projection S(M) -+ M maps a path to its endpoint, and 
P is just the principal G-bundle arising from the homomorphism of structure 
groups p: ?(M) -+ G. To describe the connection on P we describe the 
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horizontal lift of any curve c: [0, 1] - M with an initial point p0 E Pc(O, . Let 
c(0) = y0, c(1) = Y1, and suppose p0 is the equivalence class [(a0, g)] where 
co is a path from x0 to y0 and g E G. Pick a one-parameter family of paths 
at, t E [0, 1] so that the endpoint of at is c(t). The horizontal lift of the 
curve c is c: [0, 1] -+ P: t 4 [(at , g)]. It is straightforward to check that e 
is independent of the family at and that the holonomy around a closed path A 
is given by p(A). El 

2. YANG-MILLS CONNECTIONS 

Put a Riemannian metric on M. Let P -+ M be a principal U(n)-bundle. 
(More generally we could consider G-bundles for any compact Lie group G; 
the proofs that follow will work in that generality, but we will explicitly use 
G = U(n) in this paper.) Let (X, Y) := trXY* be the invariant inner product 
on the Lie algebra u(n) of skew-Hermitian matrices. 

The ingredients necessary to define the Yang-Mills functional on the space of 
unitary connections of P -+ M are the integral over M of the norm squared of 
the curvature. The Yang-Mills connections are, by definition, the critical points 
of the Yang-Mills functional. Flat connections are zeros of the functional and 
are obviously the absolute minima on a bundle admitting flat connections. 

The Euler-Lagrange equations asserting that the derivative of the Yang-Mills 
functional vanishes at a critical connection is the first of the Yang-Mills equa- 
tions: 

JdA *F(A = 0 

ldAF(A) = O. 

The second is the Bianchi identity that holds for all connections. The notation 
here is that of [AB]: A is a connection, dA its covariant derivative, F(A) the 
curvature of A, which is a section in Q 2(M, ad P), and * is the Hodge star 
operator 

*: n(M, adP) _ Q (M, adP) 

extended from scalar forms to ad P-valued forms using the invariant inner prod- 
uct of u(n). 

Define the subgroup ?,<,(M) c ?(M) to consist of the contractible paths 
enclosing area zero. More precisely, a is in ?,<,(M) when fs c = 0 where S 
is the interior of a. The quotient group D(M)/(,<,(M) is the group of equiva- 
lence classes of closed paths; two paths are equivalent if they are homotopic and 
the area between them is zero. The main result of this paper is the following 
characteristic of Yang-Mills connections by their holonomy. 

Theorem 2.1. The gauge equivalence classes of Yang-Mills connections on all 
principal U(n)-bundles over M are in one-to-one correspondence with the con- 
jugacy classes of homomorphisms from D(M)/(,<,(M) to U(n). 
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Proof. First we prove that for an irreducible connection the following two state- 
ments are equivalent: 

(1) A is a Yang-Mills connection on a U(n)-bundle. 
(2) F(A) = iAIn (? a) for some A E R. 
(1) =X (2) Consider an irreducible connection A satisfying dA * F(A) = 

0, with holonomy representation p: 42(M) -+ U(n), also irreducible. Then 
*F(A) E Q&(M, adP) is an infinitesimal automorphism of the connection A; 
meaning that it is in the Lie algebra of the automorphism group of A, but 
that it is just the subgroup of U(n) that stabilizes the representation p under 
conjugation. (More precisely the two groups are identified because a covariant 
constant section is determined by its value at a single point of M.) Since p is 
irreducible its stabilizer is the subgroup isomorphic to U(1) consisting of the 
scalar multiples of the identity, the center of U(n). This means *F(A) has 
the form iAIn for some A E R. Assume that the area element co has been 
normalized to have total area 1. Then F(A) = i EI0 w e Q2 (M, adP). 

(2) =- (1) dA* F(A) = dA * (iXIn ?& w)) = dA(i)Jn) = 0. 
A connection on a U(n)-bundle can be split into a direct sum of irreducible 

connections. The holonomy representation, the curvature, and the Hodge star 
operator also split in the same way, so that a connection is Yang-Mills if and 
only if each of its irreducible components is Yang-Mills. Next we show the 
equivalence of the following three statements for a connection A on a U(n)- 
bundle. 

(3) The holonomy of A factors through FD(M)/(D,(M). 
(4) F(A) = A ? co for some A E u(n) . 
(5) A is a Yang-Mills connection. 

(3) =# (4) Let DO(M) c @(M) be the subgroup of contractible paths. This 
subgroup is the connected component of the identity and contains the subgroup 
F(,,(M). When the genus of M is positive, the quotient group D0(M)/1),,(M) 
is isomorphic to R, since the enclosed area characterizes each coset. When 
M = S2 the quotient is isomorphic to U(1). (See Theorem 2.3.) In either 
case the restricted holonomy is a homomorphism P: FD0(M)/F(,(M) -+ U(n) 
and hence describes a one-parameter subgroup of U(n). Let A E u(n) be 
the infinitesimal generator of the one-parameter subgroup p, so that p(t) = 
exp(tA). For a matrix group A = limt 0(p(t) - I)/t. We will show that 
F(A)= A?w a. 

At xo E M let u, v be tangent vectors. Recall that F(A)(u, v) is given 
by infinitesimal parallel translation around the rectangle spanned by u and v . 
Choose coordinates (xl, x2) so that the area form co = dxl A dx2 in a neigh- 
borhood of xo (Darboux's Theorem). For each t in some interval containing 
0, define at to be the closed parallelogram spanned by tu and tv. Then 
F(A)(u, v) = lim o(p(at) -I)/t2 . Now p(at) = 7(aw(tu, tv)) =7(t2w(u, v)), 
since the area of the parallelogram spanned by u and v is wo(u, v) . Making 
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the substitution s = t 2o(u, v), the limit becomes 

lim w ( ) co(u, v) = Awo(u, v). 
S-*+0 5 

Therefore F(A) A X Xw. 
(4) = (5) dA *F(A) = dA * (A?X) = dA(A) = 0 
(5) = (3) By splitting into irreducible components we may assume that A 

is an irreducible Yang-Mills connection and hence that F(A) = iXI, ? ) for 
some A E R by the equivalence of (1) and (2) above. The formula shows 
that the span of the curvature {F(A)(u, v)lu, v e T M} is the multiples of 
the identity, and hence by the Holonomy Theorem [KN] the Lie algebra of 
the restricted holonomy group is isomorphic to R. The holonomy around a 
contractible path a: [0,1] - M is exp(fg a A) = exp(f, A) = exp(fs dA) , by 
Stokes' Theorem where a is the boundary of S. But dA is the curvature of 
A since the restricted holonomy group is abelian, and so the holonomy around 
a is exp(fs F(A)) = exp(iX area(S)) I,. If a E 0,,(M), then area(S) = 0 and 
so aeKerp. z 

Atiyah and Bott have shown that the Yang-Mills connections on a Riemann 
surface M can be characterized as coming from representations of a central 
extension of 7I (M). A brief summary of what is contained in [AB, ?6] is the 
following. 

Let M be a compact orientable surface of genus g > 1 endowed with a 
Riemannian metric (the complex structure of the Riemann surface is not used). 
The fundamental group 7r (M) has the standard presentation using 2g gener- 
ators a ag fl, , fig and one relation 1ig=I[ai, fli] = 1. Define the 
central extension of I(M) by Z using an additional generator J that com- 
mutes with the generators al, /3i and satisfies the relation HgI [ca ] = . 
The subgroup generated by J is isomorphic to Z and is the normal subgroup 
of this extension, which is denoted by F. Thus we have the exact sequence 

0 - , Z- F -+ 71(M) -,0. 

Now extend the center of F from Z to R to obtain the group FR that fits into 
the exact sequence 

0 -R ,FR -7,(M) *0. 

Theorem 2.2. If M is a surface of genus g > 1, then the groups FR and 
(D(M)1/?,,,(M) are isomorphic. 
Proof. The natural projection D(M)/(,o,(M) -+ 7 (M) has kernel DO(M)/ 
D,o,(M) isomorphic to R. Viewing M as being constructed from the identifica- 
tion of the edges of a 4g-sided polygon, with the edges labelled by the generators 
according to the relation, we see that the contractible path Hlg I [ais, , I3 encloses 
the total area of M, normalized to be 1, and so its class in (o (M) /t,, (M) is 
identified with 1 E R. Thus D(M)/F,(M) is an extension of 7r1(M) by R 
in exactly the same way that FR is constructed by Atiyah and Bott. Z1 
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Theorem 2.3 (Genus zero). The group D(S2)/(Dt) (S2) is isomorphic to U(1). 

Proof. On the sphere all paths are contractible so that (DO(S2) = (D(S2). The 
interior of the path a is the exterior of a 1 and so the area enclosed by a -1, 
which is the total area of 1, must also be considered as area 0. Therefore the 
quotient group FD(S 2)//(iF(S2) is not isomorphic to R as it is for surfaces of 
positive genus, but instead is isomorphic to R/Z or U(1). 0 

From this we recover the results of [FH]; specifically, that the gauge equiva- 
lence classes Yang-Mills connections on S2 are in one-to-one correspondence 
with the conjugacy classes of homomorphisms from U(1) to U(n), which are 
the closed geodesics through the identity of U(n), and that they are isolated. 
These results also hold for any compact Lie group G in place of U(n). 

Proposition 2.4. Yang-Mills connections on S2 are isolated. More precisely, 
the space Hom(U(1), G)/G of equivalence classes of Yang-Mills connections is 
discrete. 
Proof. If H and G are Lie groups, then the Zariski tangent space at [p] E 
Hom(H, G)/G can be identified with H , g) where g is an H-module via 
Ad op and Ad is the adjoint action of G on g. Now when H is compact its 
cohomology groups vanish, and Hom(H, G)/G has zero-dimensional tangent 
spaces. Notice that it is the compactness of U(1) that matters and not the 
compactness of G. 0 

REFERENCES 

[AB] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. 
Roy. Soc. London Ser. A. 308 (1982), 523-615. 

[K] S. Kobayashi, La connexion des varietesfibrees I and II. C.R. Acad. Sci. Paris. 238 (1954), 
318-319, 443-444. 

[KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 1, New York; Wiley 
Interscience, 1963. 

[FH] Th. Friedrich and L. Habermann, Yang-Mills equations on the two-dimensional sphere, 
Comm. Math. Phys. 100 (1985), 231-243. 

DEPARTMENT OF MATHEMATICS, CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS 
OBISPO, CALIFORNIA 93407 


