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1. INTRODUCTION. It is natural to use integer matrices for examples and exercises
when teaching a linear algebra course, or, for that matter, when writing a textbook in
the subject. After all, integer matrices offer a great deal of algebraic simplicity for par-
ticular problems. This, in turn, lets students focus on the concepts. Of course, to insist
on integer matrices exclusively would certainly give the wrong idea about many im-
portant concepts. For example, integer matrices with integer matrix inverses are quite
rare, although invertible integer matrices (over the rational numbers) are relatively
common. In this article, we focus on the property of diagonalizability for integer ma-
trices and pose the question of the likelihood that an integer matrix is diagonalizable.
Specifically, we ask: What is the probability that an n × n matrix with integer entries is
diagonalizable over the complex numbers, the real numbers, and the rational numbers,
respectively?

Probabilistic questions about the integers have a rich history. In 1874, Mertens
proved that the probability that two positive integers are relatively prime is 6/π2, and,
in 1885, Gegenbauer proved that the probability that a positive integer is square-free
is also 6/π2. Hardy and Wright [2] is a good source for these and related results. The
use of the term “probability” in this context by Hardy and Wright needs to be ex-
plained. Following Kolmogorov’s axiomatization of the foundations of probability in
the 1930s, mathematicians have required that a probability measure be countably ad-
ditive. This means that the process of randomly selecting an integer, with each integer
equally probable, is impossible to achieve. The results of Mertens and Gegenbauer are
actually statements about limits of probabilities. In particular, for each positive inte-
ger k let pk be the probability that two integers between 1 and k are relatively prime,
where the probability measure on {1, 2, . . . , k} is normalized counting measure (i.e.,
P({i}) = 1/k for i = 1, 2, . . . , k). Then, as k goes to infinity, the limit of pk is 6/π2.
In a similar way, the probability that an integer between 1 and k is square-free has the
limit 6/π2 as k → ∞. For this article, we adopt an analogous approach. That is, for
n × n integer matrices and some property of matrices we first consider the probability
that such matrices with entries in the range from −k to k have that property. We then
define the limit of these probabilities as k goes to infinity to be the “probability” that
this property holds among all integer matrices of a given size.

We could choose to avoid the term “probability” in this sense by using “density” in
its place. As in [4], the (natural) density of a subset S of the positive integers is the
limit as k → ∞ (if it exists) of the probability that an integer between 1 and k is in S.
However, we prefer to use the more familiar term “probability” with the understanding
that it does not arise from a countably additive measure on the sample space of integer
matrices. Although the axiom of countable additivity is orthodox, it has not been uni-
versally accepted. One notable probabilist opposed to countable additivity was Bruno
de Finetti, who advocated the less restrictive axiom of finite additivity for a probability
measure. The “probabilities” that we are concerned with can be seen as coming from
finitely additive measures on countable sample spaces.

Throughout this article, |S| signifies the cardinality of a set S . We use the notation
Z, Q, R, and C to denote the sets of integers, rational numbers, real numbers, and
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complex numbers, respectively. In addition, the notation N will be used to designate
the natural numbers, that is, the set of positive integers.

We would also like to mention that this work had its genesis in an undergraduate
research project. Thus, at the end of section 4, we have provided three open questions
based upon this work that may be suitable for other undergraduate research projects.

2. DIAGONALIZABILITY OVER THE COMPLEX NUMBERS. In order to de-
termine the probability of diagonalizability over C, we first begin with the probability
that a square matrix with integer entries has a repeated eigenvalue, as stated in Theo-
rem 2.1. This theorem, in turn, gives rise to the most useful result in this article, which
is expressed in Corollary 2.2.

Theorem 2.1. For positive integers n and k let Rn(k) be the number of n × n matrices
with integer entries in the interval [−k, k] that have repeated eigenvalues, and let
Tn(k) be the total number of n × n matrices with integer entries in the interval [−k, k].
Then

lim
k→∞

Rn(k)

Tn(k)
= 0.

Proof. Since the result is trivially true in the case n = 1, we may assume, without
loss of generality, that n ≥ 2. Let A represent an n × n matrix whose entries are
the independent variables x1, x2, . . . , xn2 each of which may take on an integer value
uniformly from the interval [−k, k], and let f (x) = xn + cn−1xn−1 + · · · + c0 be the
characteristic polynomial of A. Following [4, Definition A.1, p. 487], we define the
discriminant D( f ) of f by

D( f ) =
∏

1≤i< j≤n

(ri − r j )
2,

where r1, r2, . . . , rn are the roots (counted with multiplicity) of f .
Now, for fixed values of the variable entries of A the discriminant D( f ) vanishes

precisely when the corresponding matrix A has a repeated eigenvalue. Furthermore,
D( f ) is a symmetric polynomial in r1, r2, . . . , rn. The fundamental theorem for sym-
metric polynomials asserts that there exists a polynomial P(y1, y2, . . . , yn) such that
D( f ) = P(b1, b2, . . . , bn), where bk := (−1)kcn−k for k = 1, 2, . . . , n. However,
since each of the coefficients ci of f is expressible as a polynomial in the n2 variables
that constitute the entries of A, the discriminant D( f ) can be expressed as a polyno-
mial in these same variables. Let g0(x1, x2, . . . , xn2) be this (nonzero) polynomial. Our
goal is then to determine an upper bound on the number of n2-tuples (a1, a2, . . . , an2)

such that ai is an integer in the interval [−k, k] for each i and g0(a1, a2, . . . , an2) = 0.
Say that the (total) degree of g0 is m. Note that g0 can be viewed as a polynomial in

x1 of degree m1, where 0 ≤ m1 ≤ m. Let g1(x2, x3, . . . , xn2) be the leading coefficient
of this polynomial (possibly g1 = g0). Now, g1 can itself be viewed as a (nonzero)
polynomial in x2 of degree m2, where 0 ≤ m2 ≤ m. Let g2(x3, x4, . . . , xn2) be the
leading coefficient of this polynomial (again, possibly g2 = g1). In general, let gi (i =
1, 2, . . . , n2) be the leading coefficient of gi−1 when gi−1 is viewed as a polynomial
in xi (note that gn2 is a nonzero constant). Write mi for the degree of gi−1 viewed as a
polynomial in xi , and observe that 0 ≤ mi ≤ m for each i .

Now, let S be the set of all n2-tuples (a1, a2, . . . , an2) such that each a j is an integer
in the interval [−k, k] and g0(a1, a2, . . . , an2) = 0, and for i = 1, 2, . . . , n2 let Si be
the subset of S whose elements satisfy g0(a1, a2, . . . , an2) = g1(a2, a3, . . . , an2) =
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· · · = gi−1(ai , ai+1, . . . , an2) = 0 and gi (ai+1, ai+2, . . . , an2) �= 0. Then S = ∪n2

i=1Si ,

where the union is, in fact, a disjoint union. Thus, |S| = ∑n2

i=1 |Si |. However, by
the fundamental theorem of algebra, if gi (xi+1, xi+2, . . . , xn2) �= 0 for some val-
ues of xi+1, xi+2, . . . , xn2 , then for arbitrary values of x1, x2, . . . , xi−1 and these
same values of xi+1, xi+2, . . . , xn2 there are at most m distinct values for xi such
that gi−1(xi , xi+1, . . . , xn2) = 0. We infer that |Si | ≤ m(2k + 1)n2−1 for each i , so
|S| ≤ n2m(2k + 1)n2−1. Therefore, it follows that 0 ≤ Rn(k) ≤ n2m(2k + 1)n2−1 and
Tn(k) = (2k + 1)n2

, whence the assertion of the theorem easily follows from the
“squeeze property” of limits.

Corollary 2.2. For positive integers n and k and for a field K containing Z let E K
n (k)

be the number of n × n matrices with integer entries in the interval [−k, k] whose
eigenvalues all lie in K , let DK

n (k) be the number of n × n matrices with integer en-
tries in the interval [−k, k] that are diagonalizable over K , and let Tn(k) be the total
number of n × n matrices with integer entries in the interval [−k, k]. Then

lim
k→∞

DK
n (k)

Tn(k)
= lim

k→∞
E K

n (k)

Tn(k)
,

if either limit exists.

Proof. Let SK
n (k) be the number of n × n matrices with integer entries in the inter-

val [−k, k] that have n distinct eigenvalues in K . As in the statement of Theorem 2.1,
Rn(k) signifies the number of n × n matrices with integer entries in the interval [−k, k]
that have repeated eigenvalues. Then SK

n (k) ≤ DK
n (k) ≤ E K

n (k) ≤ SK
n (k) + Rn(k).

Thus, we see that

SK
n (k)

Tn(k)
≤ DK

n (k)

Tn(k)
≤ E K

n (k)

Tn(k)
≤ SK

n (k)

Tn(k)
+ Rn(k)

Tn(k)
. (1)

Now, if either limk→∞ DK
n (k)/Tn(k) or limk→∞ E K

n (k)/Tn(k) exists, then by apply-
ing Theorem 2.1 to (1), we can conclude that limk→∞ SK

n (k)/Tn(k) exists, hence that
the other limit exists as well. Moreover, under this existence hypothesis, the desired
equality follows.

It is interesting to note that if A is a square matrix with integer entries and K is a
field containing Z, then A has a Jordan canonical form over K precisely when each
eigenvalue of A lies in K . Thus, by Corollary 2.2, the probability (if it exists) that a
square matrix of fixed size with integer entries is diagonalizable over K is the same as
the probability (if it exists) that a square matrix of the same size with integer entries
has a Jordan canonical form over K .

In [5], Zhang uses Lebesgue measure to establish that the probability that a square
matrix of arbitrary fixed size with real entries is diagonalizable over C is 1. However,
such a result implies nothing concerning the case for matrices with integer entries.
Nevertheless, Corollary 2.3 shows that, in fact, the probability is also 1 if one considers
square matrices of arbitrary fixed size with integer entries.

Corollary 2.3. For positive integers n and k let DC
n (k) be the number of n × n matri-

ces with integer entries in the interval [−k, k] that are diagonalizable over C, and let
Tn(k) be the total number of n × n matrices with integer entries in the interval [−k, k].

June–July 2007] A MATRIX OF INTEGERS 493



Then

lim
k→∞

DC
n (k)

Tn(k)
= 1.

Proof. For any n × n matrix with integer entries in the interval [−k, k], the funda-
mental theorem of algebra guarantees that all of the roots of the corresponding char-
acteristic polynomial lie in C. The result then follows from an appeal to Corollary
2.2.

3. DIAGONALIZABILITY OVER THE REALS AND THE RATIONALS. Un-
fortunately, our information is far less complete for the probabilities of diagonalizabil-
ity over R and Q, respectively. In each of these cases, the complexity of the problem
grows rapidly with the increasing size of the matrices considered. Nevertheless, The-
orems 3.1 and 3.3 offer definitive results for the case of 2 × 2 matrices.

Theorem 3.1. For each positive integer k let DR
2 (k) be the number of 2 × 2 matrices

with integer entries in the interval [−k, k] that are diagonalizable over R, and let T2(k)

be the total number of 2 × 2 matrices with integer entries in the interval [−k, k]. Then

lim
k→∞

DR
2 (k)

T2(k)
= 49

72
(≈ 68.056%) .

Proof. If ER
2 (k) is the number of 2 × 2 matrices with integer entries in the interval

[−k, k] whose eigenvalues each lie in R, then by Corollary 2.2 it is sufficient to show
that

lim
k→∞

ER
2 (k)

T2(k)
= 49

72
.

Let x , y, z, and w be independent real-valued random variables. Define the

function F on R4 by F(x, y, z, w) = 1 if each eigenvalue of the matrix

[
x y
z w

]
is a real number and F(x, y, z, w) = 0 otherwise. Notice that F(x, y, z, w) =
F(x/k, y/k, z/k, w/k) everywhere. Accordingly,

ER
2 (k) =

k∑
w=−k

k∑
z=−k

k∑
y=−k

k∑
x=−k

F(x, y, z, w)

= k4
k∑

w=−k

k∑
z=−k

k∑
y=−k

k∑
x=−k

F
( x

k
,

y

k
,

z

k
,
w

k

)
�

( x

k

)
�

( y

k

)
�

( z

k

)
�

(w

k

)
,

where, for example, �(x/k) represents the change in x/k, that is, 1/k. Therefore,
since T2(k) = (2k + 1)4, it follows that

lim
k→∞

ER
2 (k)

T2(k)
=

lim
k→∞

k4

(2k + 1)4

k∑
w=−k

k∑
z=−k

k∑
y=−k

k∑
x=−k

F
( x

k
,

y

k
,

z

k
,
w

k

)
�

( x

k

)
�

( y

k

)
�

( z

k

)
�

(w

k

)
.
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Now, it turns out that each eigenvalue of the matrix

[
x y
z w

]
is a real number precisely

when (x − w)2 + 4yz ≥ 0, a fact that can be verified by considering the discriminant
of the corresponding characteristic polynomial of the matrix. Hence F is, in fact, Rie-
mann integrable. Moreover, the limit on the right-hand side of the foregoing equality
is equal to

1

16

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
F(x, y, z, w) dx dy dz dw. (2)

In order to evaluate (2), consider the inequality (x − w)2 + 4yz ≥ 0 and partition
the quadruple integral in (2) according as either (i) y, z ≥ 0, (ii) y, z ≤ 0, (iii) y ≥ 0
and z ≤ 0, or (iv) y ≤ 0 and z ≥ 0. In the first two cases, note that any values of x
and w will satisfy (x − w)2 + 4yz ≥ 0. Hence, each of the parts of (2) corresponding
to these two cases evaluates to 1/4. On the other hand, in cases (iii) and (iv), observe
that (x − w)2 + 4yz ≥ 0 is equivalent to the assertion that either x ≥ w + √−4yz or
x ≤ w − √−4yz. So, for example, if y ≥ 0, z ≤ 0, and x ≥ w + √−4yz, then the
part of (2) corresponding to these conditions evaluates to

1

16

∫ 0

−1

∫ 1

0

∫ 1−√−4yz

−1

∫ 1

w+√−4yz
1 dx dw dy dz = 13

288
.

Similarly, the parts of (2) corresponding to the three remaining scenarios each evaluate
also to 13/288. Therefore, we have

lim
k→∞

ER
2 (k)

T2(k)
= 2

(
1

4

)
+ 4

(
13

288

)
= 49

72
,

as desired.

Remark 3.2. (a) In an analogous fashion to the “natural density approach” for the
2 × 2 matrices with integer entries in Theorem 3.1, we can define the probability that
a 2 × 2 matrix with real entries is diagonalizable over R. Specifically, let the function
F be as in the proof of Theorem 3.1. Then the probability that a 2 × 2 matrix with real
entries is diagonalizable over R can be given by the expression

lim
k→∞

1

(2k)4

∫ k

−k

∫ k

−k

∫ k

−k

∫ k

−k
F(x, y, z, w) dx dy dz dw, (3)

provided such a limit exists. However, since F(x, y, z, w) = F(x/k, y/k, z/k, w/k)

everywhere, it is not difficult to argue that

1

(2k)4

∫ k

−k

∫ k

−k

∫ k

−k

∫ k

−k
F(x, y, z, w) dx dy dz dw

= 1

16

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
F(x, y, z, w) dx dy dz dw.

Since the right-hand side of this equality is 49/72 (see the proof of Theorem 3.1), it
follows that the probability, as defined by (3), that a 2 × 2 matrix with real entries is
diagonalizable over R is also 49/72.

June–July 2007] A MATRIX OF INTEGERS 495



(b) In Remark 3.2 (a), the probability of 49/72 was achieved by first considering
how often the roots of a particular monic quadratic polynomial, namely, the charac-
teristic polynomial of a random matrix, were real numbers. It is interesting to contrast
this probability with the probability that the roots of a random monic quadratic poly-
nomial with real coefficients, say x2 + bx + c, are real numbers. Observe that such a
polynomial has real roots precisely when c ≤ b2/4. Thus, if A(k) is the area beneath
the graph of y = x2

4 and within the square [−k, k] × [−k, k], where k in N is arbitrary,
the probability that a random monic quadratic polynomial with real coefficients has
real roots is

lim
k→∞

A(k)

(2k)2
= lim

k→∞

(
1 − 2

3
√

k

)
= 1.

Theorem 3.3. For each positive integer k let DQ

2 (k) be the number of 2 × 2 matrices
with integer entries in the interval [−k, k] that are diagonalizable over Q, and let
T2(k) be the total number of 2 × 2 matrices with integer entries in the interval [−k, k].
Then

lim
k→∞

DQ

2 (k)

T2(k)
= 0.

Proof. If EQ

2 (k) is the number of 2 × 2 matrices with integer entries in the interval
[−k, k] whose eigenvalues each lie in Q, then by Corollary 2.2 it is sufficient to show
that limk→∞ EQ

2 (k)/T2(k) = 0. Let r , s, t , and u in Z be such that −k ≤ r, s, t, u ≤ k,
and put

A =
[

r s
t u

]
.

By considering the discriminant of the characteristic polynomial of A, one can see that
it is necessary and sufficient that (r − u)2 + 4st = x2 for some x in Z in order for each
eigenvalue of A to be a rational number. Thus, for fixed values of s and t we consider
integer solutions (x, y) to the Diophantine equation

x2 − y2 = 4st, (4)

where y = r − u.
We first dispense with the case where either s = 0 or t = 0. In this case, we may

take x = r − u for any choices of r and u. Therefore, each of 2(2k + 1)3 − (2k + 1)2

matrices A where either s = 0 or t = 0 has only rational eigenvalues.
Consider now the case where both s and t are positive. Observe that (4) can be

reexpressed as 4st = (x + y)(x − y). Thus, if (x, y) is an integer solution to (4), then
x + y must divide 4st . Conversely, if v is a divisor of 4st , then there exist unique
values of x and y such that x + y = v and x − y = 4st/v (although (x, y) may not
represent an integer solution to (4)). As in [2] or [4], let d be the number theoretic
divisor function (i.e., for each n in N, d(n) is the number of positive divisors of n).
Then there are at most d(4st) distinct integer values for y such that (x, y) is a solution
to (4) for some x in Z. Hence, for each choice of u there are at most d(4st) integers r
in the interval [−k, k] such that (r − u)2 + 4st = x2 for some x in Z. Therefore, there
are at most

∑k
s=1

∑k
t=1(2k + 1) d(4st) matrices A such that s > 0, t > 0, and each
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eigenvalue of A is a rational number. However, since d(4st) ≤ d(4)d(s)d(t) for any
values of s and t in the interval [1, k], we arrive at the inequality

k∑
s=1

k∑
t=1

(2k + 1) d(4st) ≤ 3(2k + 1)

(
k∑

s=1

d(s)

)2

.

The three remaining cases—namely, where s > 0 and t < 0, where s < 0 and t >

0, and where s < 0 and t < 0—are treated in similar fashion. The upshot is that

EQ

2 (k) ≤ 2(2k + 1)3 − (2k + 1)2 + 4

⎛
⎝3(2k + 1)

(
k∑

s=1

d(s)

)2
⎞
⎠ .

However, we note that

k∑
s=1

d(s) =
k∑

j=1

⌊
k

j

⌋
,

where �·� is the floor function (i.e., �a� signifies the greatest integer that is less than or
equal to a), since j divides exactly �k/j� integers in the interval [1, k]. As a result,

k∑
s=1

d(s) ≤ k

(
1 + 1

2
+ 1

3
+ · · · + 1

k

)
≤ k(1 + ln k).

Thus, for each ε > 0 there exists a positive constant Cε such that
∑k

s=1 d(s) < Cεk1+ε

whenever k ≥ 1. Choose ε such that 0 < ε < 1/2. Then there exists a positive constant
C such that

∑k
s=1 d(s) < Ck1+ε for each positive integer k. Therefore, since T2(k) =

(2k + 1)4, it follows that

0 ≤ EQ

2 (k)

T2(k)
<

2(2k + 1)3 − (2k + 1)2 + 12C2(2k + 1)k2+2ε

(2k + 1)4
,

whence an application of the “squeeze property” of limits produces the desired result.

Remark 3.4. By the “rational roots theorem,” any rational eigenvalue of a square
matrix with integer entries must be an integer. Hence, in view of Theorem 3.3 and
Corollary 2.2, the probability that a 2 × 2 matrix with integer entries has only inte-
gral eigenvalues is 0. Moreover, Kowalsky [3] has demonstrated that for each ε > 0
there are O(k3+ε) 2 × 2 matrices with integer entries in the interval [−k, k] (k ∈ N)
that have integer eigenvalues. In fact, Kowalsky’s result coupled with the observation
concerning the rational eigenvalues of a square matrix can be used to recover Theorem
3.3.

4. EVIDENCE FOR HIGHER DIMENSIONAL MATRICES. In the final section
of this article, we provide some numerical evidence for the probability that an n × n
matrix with integer entries is diagonalizable over R (respectively, Q) when n > 2.
Thanks to Corollary 2.2, it is enough to develop data that indicate approximately how
often a square matrix with integer entries has eigenvalues each of which lies in R
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Table 1. Probability of having all eigenvalues in R (respectively, Q),
based upon 100,000 randomly generated n × n matrices with integer en-
tries taken uniformly from the interval [−1000, 1000].

n R Q

3 0.32061 0.00000

4 0.10526 0.00000

5 0.02553 0.00000

6 0.00435 0.00000

7 0.00050 0.00000

8 0.00003 0.00000

9 0.00000 0.00000

10 0.00000 0.00000

(respectively, Q). Such data are given in Table 1 and were generated using Release 8.2
of SAS with 100,000 random matrices with integer entries taken uniformly from the
interval [−1000, 1000].

It is interesting to note how close the probabilities in the R-column of Table 1 are
to the value 2−n(n−1)/4 for each n, which Edelman gives in [1] as the probability that
an n × n matrix whose entries are independent random variables, each with a standard
normal distribution, has all real eigenvalues.

In conclusion, we pose three questions. First, if n > 2, can one find the exact prob-
ability, as in Theorem 3.1, that an n × n matrix with integer entries is diagonalizable
over R? Second, can one prove, à la Theorem 3.3, that the probability that an n × n
matrix with integer entries is diagonalizable over Q is 0 when n > 2? Third, in view
of Theorem 3.1 and Table 1, is there a correspondence between 2 × 2 matrices with
integer entries that have complex, nonreal eigenvalues and 3 × 3 matrices with integer
entries that have all real eigenvalues that justifies the nearly complementary probabil-
ities of diagonalizability (that is, approximately 0.68056 and 0.32061, respectively)?

ACKNOWLEDGMENT. We wish to express our gratitude to Kristi Hetzel and A. Dale Magoun for their
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Back to the Drawing Board Lime

You’ve completed a beautiful proof,
But your colleague has spotted a goof.
So that one minus one
Isn’t two, it is none,
And the beautiful proof just went poof !

—Submitted by Bob Scher, Mill Valley, CA
(By the author’s definition, a “lime” is a “clean limerick.”)
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