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Abstract. We give a number theoretic proof of the integrality of certain BPS invariants
of knots. The formulas for these numbers are sums involving binomial coefficients and the
Möbius function. We also prove a conjecture about further divisibility properties of the
invariants.

A recent SQuaREs group at AIM asked us if we could prove directly that nr is always

an integer where

nr = r−2
∑
d|r

µ
(r
d

)(3d− 1

d− 1

)
.

It was already known that the nr are integers by work of Garoufalidis, Kucharski, and

Su lkowski [1, Proposition 1.2] in which the sums are identified as the formulas for the

extremal BPS invariants of certain twist knots, but the question put to us was whether

the integrality could be proved from the formula. In addition, we noticed that often nr/r

was also an integer and that 2nr/r appeared always to be an integer. The observation that

2nr/r is an integer is one case of the same authors’ “Improved Integrality” conjecture [1,

Conjecture 1.3]. In this article we prove that and describe exactly when nr/r is not an

integer.

We show that if r is odd then nr/r is integral. Empirically somewhere around 32% of

even r have nr/r integral. For even r, the results are a little complicated to state; the case

that r = 2p where p is a prime is fairly easy to describe. The initial list of primes for which

n2p/(2p) is an integer are

{5, 17, 37, 41, 73, 137, 149, 257, 277, 293, 337, 521, 577, 593,

641, 661, 673, 677, 1033, 1061, 1093, 1097 . . . }

We can prove that n2p/(2p) is integral precisely for the primes p which have no consecu-

tive ones in their binary expansion. For example 100010010012 = 1097 is on the list but

1000110012 = 281 is not. We say that r is binarily “well-spaced” if its binary expansion

does not have consecutive 1’s. More precisely a number

r =

J∑
j=0

εj2
j

with εj ∈ {0, 1} is well-spaced if and only if εjεj+1 = 0 for j = 0, 1, . . . , J − 1.
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Turning to more general even r we let W be the set of odd integers which are binarily

well-spaced

W = {1, 5, 9, 17, 21, 33, 37, 41, 65, 69, 73, 81, 85, 129, 133, 137, 145,

149, 161, 165, 169, 257, 261, 265, 273, 277, 289, 293, 297, 321, 325,

329, 337, 341, 513, 517, 521, 529, 533, 545, 549, 553, 577, 581, 585,

593, 597, 641, 645, 649, 657, 661, 673, 677, 681, . . . }

Our basic result is the following.

Theorem 1. For any r the ratio 2nr
r is an integer. Moreover, nr

r is an integer if and only

if either r is odd or else r = 2kr1 where k > 0 and r1 is odd and the set of w ∈ W for which

w | r1 and r1
w is squarefree has even cardinality.

1. Opening arguments

Suppose that the exact power of p which divides r is pk, i.e. pk | r and pk+1 - r. Then

we can write r = pkr1 where p - r1 and

r2nr =
∑
d|r1

µ
(r1
d

)((3pkd− 1

pkd− 1

)
−
(

3pk−1d− 1

pk−1d− 1

))
.(1)

The expression in (. . . ) may be written as(
3pk−1d− 1

pk−1d− 1

)
×


∏

j≤dpk

p-j
(x+ j)∏

j≤dpk

p-j
j

− 1


where x = 2pkd. It suffices to show that∏

j≤dpk

p-j
(x+ j)∏

j≤dpk

p-j
j

≡ 1 mod p3k.(2)

The coefficient of x on the left hand side is∑
j≤dpk

p-j

1

j
(3)

and the coefficient of x2 is ∑
1≤i<j≤dpk

p-ij

1

ij
.(4)

At this point we consider odd p versus p = 2.
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2. Integrality of nr/r for odd r

Assume in this section that p is odd. We have∑
j≤dpk

p-j

1

j
=

∑
j<dpk/2

p-j

(
1

j
+

1

dpk − j

)
= dpk

∑
j<dpk/2

p-j

1

j(dpk − j)
.

Since pk | x it remains only to show that∑
j<dpk/2

p-j

1

j(dpk − j)
+ 2

∑
1≤i<j≤dpk

p-ij

1

ij
≡ 0 mod pk,

which is equivalent to ∑
j<dpk/2

p-j

1

j2
≡ 2

∑
1≤i<j≤dpk

p-ij

1

ij
mod pk.

But ∑
j<dpk/2

p-j

1

j2
≡ 1

2

∑
j<dpk

p-j

1

j2
≡ 1

2

∑
j<dpk

p-j

j2 mod pk.

And

2
∑

1≤i<j≤dpk

p-ij

1

ij
≡ 2

∑
1≤i<j≤dpk

p-ij

ij ≡
( ∑

1≤i≤dpk

p-i

i

)2

−
∑

1≤i≤dpk

p-i

i2 mod pk.

But ∑
1≤i≤dpk

p-i

i ≡ 0 mod pk

so it remains to show that

1

2

∑
j<dpk

p-j

j2 ≡ −
∑

1≤i≤dpk

p-i

i2 mod pk.

This is obvious if p > 3 just by summing. If p = 3 then we need to use the fact that

1

2
≡ −1 mod 3.

It follows that nr/r is an integer for any odd r.
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3. Twos

We now turn to the divisibility of nr by powers of 2. We begin by showing that 2nr/r is

an integer. Let r = 2kr1 where r1 is odd. We have

r2nr =
∑
d|r1

µ
(r1
d

)((3 · 2kd− 1

2kd− 1

)
−
(

3 · 2k−1d− 1

2k−1d− 1

))
.(5)

The expression in (. . . ) may be written as

(
3 · 2k−1d− 1

2k−1d− 1

)
×


∏

j≤d·2k
2-j

(x+ j)∏
j≤dpk

2-j
j

− 1


where x = 2k+1d. The quantity in (. . . ) is

x
∑
j≤d2k

2-j

1

j
+ x2

∑
1≤i<j≤d2k

2-ij

1

ij
+O(x3)(6)

Now ∑
j≤d2k

2-j

1

j
=

∑
j≤d2k−1

2-j

(
1

j
+

1

2kd− j

)
= 2kd

∑
j≤d2k−1

2-j

1

j(2kd− j)

and

2
∑

j≤d2k−1

2-j

1

j(2kd− j)
≡ −

∑
j≤d2k

2-j

1

j2
mod 2k

Therefore (6) is 22k times a quantity which is

≡
(
− d2

∑
j≤d2k

2-j

1

j2
+ 4d2

∑
1≤i<j≤d2k

2-ij

1

ij

)
mod 2k

Replacing i and j by 1/i and 1/j the above is

≡
(
− d2

∑
j≤d2k

2-j

j2 + 4d2
∑

1≤i<j≤d2k

2-ij

ij

)
mod 2k

Since d is odd, it is easily checked that this is

≡ 2k−1 mod 2k.

Thus we have established that 2nr/r is always integral.
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4. When is the factor of 2 actually needed?

To begin to analyze this question, we introduce b(t) which is the sum of the binary digits

of t. In other words b(t) is the number of ones in the expression of t in base 2. Then we

can prove: If p is prime then n2p/(2p) is an integer if and only if

2b(p) = b(3p− 1) + 1.

Moreover the only primes p which satisfy this condition are those that are well-spaced.

4.1. Sketch of proof. To study the integrality of n2p/(2p) we have to consider

1− 5−
(

3p− 1

p− 1

)
+

(
6p− 1

2p− 1

)
modulo 8 and modulo p3. Let’s consider it modulo 8. What is the exponent of 2 in the

prime factorization of each of these? Recall that the power of 2 that divides t! is t − b(t).
Therefore the power of 2 which divides (

3p− 1

p− 1

)
is

b(p− 1) + b(2p)− b(3p− 1) = b(p)− 1 + b(p)− b(3p− 1) = 2b(p)− 1− b(3p− 1)

since for any odd prime it is easy to show that b(p) = b(p− 1) + 1. Similarly, the exponent

of 2 in (
6p− 1

2p− 1

)
is

b(2p− 1) + b(4p)− b(6p− 1) = b(2(p− 1) + 1) + b(p)− b(2(3p− 1) + 1)

= b(p− 1) + 1 + b(p)− b(3p− 1)− 1

= 2b(p)− 1− b(3p− 1)

which is the same power of 2 as for (3p−1p−1 ).

Now it follows from (7) and (8) below that for an odd prime p it is never the case that

2b(p) − 1 − b(3p − 1) = 1. Using this, then the only case in question is when 2b(p) − 1 −
b(3p− 1) = 0. In this case it always holds that −(3p−1p−1 ) + (6p−12p−1) ≡ 4 mod 8. This leads to

the proof that n2p/2p is integral precisely when 2b(p) = b(3p− 1) + 1.

5. A basic lemma

In this section we prove that for any d the exact power of 2 dividing (3d−1d−1 ) is the same

as that dividing (6d−12d−1); moreover this exact power is never 1 and it is 0 precisely when the

binary digits of d are well spaced.
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Lemma 1. (
3d− 1

d− 1

)
6=
(

6d− 1

2d− 1

)
mod 8

if and only if d is odd and the binary digits of d are well-spaced.

Proof. The proof has several parts. First we prove that the exact power of 2 dividing each

of the above binomial coefficients is the same. Then we prove that that exact power is never

1. Then we prove that in the case that both are odd, then they are inequivalent mod 8.

Finally, we show that it is precisely the odd d with well spaced binary digits which give odd

values of the two binomial coefficients.

Recall that the power of 2 that divides t! is t − b(t). Therefore the power of 2 which

divides (
3d− 1

d− 1

)
is

b(d− 1) + b(2d)− b(3d− 1) = b(d− 1) + b(d)− b(3d− 1)

since for any d it is clear that b(2d) = b(d). Similarly, the exponent of 2 in(
6d− 1

2d− 1

)
is

b(2d− 1) + b(4d)− b(6d− 1) = b(2(d− 1) + 1) + b(d)− b(2(3d− 1) + 1)

= b(d− 1) + 1 + b(d)− b(3d− 1)− 1

= b(d− 1) + b(d)− b(3d− 1)

which is the same power of 2 as for (3d−1d−1 ).

Now consider the situation where d is odd and has a well-spaced binary expansion. Then

d− 1 is even and so

b(d− 1) + 1 = b(d).

Also, d − 1 has well spaced binary digits, too, since its expansion is the same as that of

d but with the final 1 replaced by a 0. Now, multiplication of a well spaced number by

3 = 112 results is a number with twice the binary digit sum, because there is no carrying.

In other words, for any well-spaced d it is the case that

b(3d) = 2b(d).

Now we are assuming that d is odd; therefore 3d is odd so that

b(3d− 1) = b(3d)− 1 = 2b(d)− 1.(7)

Therefore,

b(3d− 1) = b(d− 1) + b(d)

as claimed.
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Now suppose that d is odd but its binary expansion is not well-spaced. If d is not

well-spaced, then

b(3d) < 2b(d)− 1.(8)

To see this imagine the base 2 multiplication:

(1 . . . 011 . . . 10 . . . 1)2 × (11)2

We have isolated a block of 1’s with a zero at the left. Therefore,

b(3d− 1) = b(3d)− 1 < 2b(d)− 1 = b(d) + b(d− 1).

�

6. The case where r is twice an odd number

In this case nr/r will be integral if and only if 8 divides∑
d| r

2

µ
( r

2d

)((6d− 1

2d− 1

)
−
(

3d− 1

d− 1

))
.

Now for each d | r2 for which r
d is squarefree and d is binarily well-spaced, by Lemma 1 we

get a contribution of 4 mod 8 to the sum above. Consequently the sum will be 0 modulo 8

precisely when there are an even number of such terms.

7. Final arguments

Now suppose that r = 2kr1 where r1 is odd. Then by (1) nr/r is integral precisely when∑
d|r1

µ
(r1
d

)((3 · 2kd− 1

2kd− 1

)
−
(

3 · 2k−1d− 1

2k−1d− 1

))
≡ 0 mod 23k

By our work in the section on twos this is

≡ 23k−1
∑
d|r1

µ
(r1
d

)(3 · 2k−1d− 1

2k−1d− 1

)
mod 23k.

The terms for which (
3 · 2k−1d− 1

2k−1d− 1

)
is even will end up contributing 0 mod 23k, so we just need to account for the terms when

this is odd. By Lemma 1 these will be the terms for which 2k−1d is binarily well-spaced.

Clearly these are the terms for which d is binarily well-spaced. Hence our theorem is proven.
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