
Matrices over Fq With No Eigenvalues of 0 or 1 ∗

Kent E. Morrison
Department of Mathematics

California Polytechnic State University
San Luis Obispo, CA 93407

kmorriso@calpoly.edu

19 October 2004

We present a proof of conjecture (68) in Ralf Stephan’s article “Prove or Disprove. 100
Conjectures from the OEIS” [5]. The conjecture is that the number of matrices A over the
binary field F2 with the property that both A and A + I are invertible is given by

2n(n−1)/2an, with a0 = 1, an = (2n − 1)an−1 + (−1)n.

The sequence begins (starting from n = 0) 1, 0, 2, 48, 5824, 2887680, . . .. The sequence start-
ing with the n = 2 term is A002820 in the Online Encyclopedia of Integer Sequences. In
the listing for this sequence there is a reference to a 1971 paper of Duvall and Harley [1].
The sequence {an} is A005327 in the OEIS and it is the inverse binomial transform of
sequence A005321, which counts the number of upper-triangular binary matrices with no
row or column that is all zero.

The matrices in question can also be characterized as those A having no eigenvalue equal to
0 or 1. This is equivalent to A defining a projective linear derangement, which means that
the map on projective space induced by A has no fixed points. To prove the conjecture we
find a generating function for the number of n × n matrices over Fq that do not have an
eigenvalue of 0 or 1. Let en be the number of such matrices and define e0 = 1. We show
that the sequence {en} satisfies the recurrence

en = en−1(qn − 1)qn−1 + (−1)nqn(n−1)/2.

(Note that for q > 2, projective derangements correspond to matrices with no eigenvalues
in the base field Fq. We will point out the generating function for them, but we will not
determine the coefficients.)
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Define
γn =

∏
0≤i≤n−1

(qn − qi),

which is the order of the general linear group of invertible n × n matrices over Fq. Let en

be the number of n× n matrices with entries from Fq that do not have an eigenvalue of 0
or 1.

Theorem 1

1 +
∑
n≥1

en

γn
un =

1
1− u

∏
r≥1

(
1− u

qr

)
.

The proof will be given later.

Theorem 2 Define
an =

en

qn(n−1)/2
.

Then an satisfies the recursion: a0 = 1, an = an−1(qn − 1) + (−1)n.

Proof From Theorem 1 it follows that en/γn is the sum of the ui coefficients of
∏

r≥1(1−
u/qr) for i = 0, 1, . . . , n. Now the ui coefficient is

(−1)i
∑

1≤r1<r2<···<ri

1
qr1+r2+···+ri

.

By induction one can easily show that this coefficient is

(−1)i

(qi − 1)(qi−1 − 1) · · · (q − 1)
.

Therefore
en

γn
= 1 +

∑
1≤i≤n

(−1)i

(qi − 1)(qi−1 − 1) · · · (q − 1)
.

Next,
en

γn
=

en−1

γn−1
+

(−1)n

(qn − 1) · · · (q − 1)
.

Making use of the formula for γn and γn−1 and canceling where possible we see that

en = en−1(qn − 1)qn−1 + (−1)nqn(n−1)/2.

Divide both sides by qn(n−1)/2 and simplify to see that

en

qn(n−1)/2
=

en−1

q(n−1)(n−2)/2
(qn − 1) + (−1)n.
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With the definition given for an in the statement of the theorem this gives

an = an−1(qn − 1) + (−1)n.

�

Proof of Theorem 1 We use the cycle index for matrices over finite fields introduced
by Kung [3] and extended by Stong [6]. See also [2, 4]. The treatment in section 1 of [4]
is most convenient for the purpose here. The series of lemmas there give us the following.
Let A be any set of monic irreducible polynomials with coefficients in Fq. Let µn be the
number of n × n matrices over Fq whose characteristic polynomial factors into powers of
elements of A. Then

1 +
∑
n≥1

µn

γn
un =

∏
φ∈A

∏
r≥1

(
1− udeg φ

qr deg φ

)−1

.

Taking A to be the full set of monic irreducibles (which we denote Φ) we have

1 +
∑
n≥1

qn2

γn
un =

∏
φ∈Φ

∏
r≥1

(
1− udeg φ

qr deg φ

)−1

.

Taking A to be all monic irreducibles except for φ(z) = z gives us the invertible matrices
with µn = γn and so

1 +
∑
n≥1

un =
∏

φ∈Φ\{z}

∏
r≥1

(
1− udeg φ

qr deg φ

)−1

. (1)

Taking A = Φ \ {z, z − 1} gives us the matrices without factors of z or z − 1 in their
characteristic polynomial, which is exactly the set of matrices without 0 or 1 as eigenvalues.
Therefore

1 +
∑
n≥1

en

γn
un =

∏
φ∈Φ\{z,z−1}

∏
r≥1

(
1− udeg φ

qr deg φ

)−1

. (2)

Now multiply the right side of (1) by
∏

r≥1(1− u/qr) to get the right side of (2) by taking
out the factor corresponding to the polynomial z − 1. Hence, we have the statement of the
theorem:

1 +
∑
n≥1

en

γn
un =

1 +
∑
n≥1

un

 ∏
r≥1

(
1− u

qr

)

=
1

1− u

∏
r≥1

(
1− u

qr

)
.

�
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By omitting all the linear polynomials we can derive the following for the number of pro-
jective derangements. Let dn be the number of n× n matrices over Fq with no eigenvalues
in Fq. Then

1 +
∑
n≥1

dn

γn
un =

1
1− u

∏
r≥1

(
1− u

qr

)q−1

.

Note that we are counting matrices here with no fixed points on projective space. Since
matrices which are non-zero scalar mutliples of each other define the same map on projective
space, we need to divide dn by q−1 to count distinct maps. Finally, the generating functions
presented here will easily give the asymptotic probability that a matrix has no eigenvalues
of 0 or 1 or that a matrix has no eigenvalues in the base field. For example, for q = 2

lim
n→∞

en

2n2 =
∏
r≥1

(
1− 1

2r

)2

≈ 0.0833986.

References

[1] P. F. Duvall, Jr., and P. W. Harley, III, A note on counting matrices, SIAM J. Appl.
Math., 20 (1971), 374–377.

[2] J. Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.) 39
(2002), no. 1, 51–85 (electronic); MR 2002i:60012, arXiv:math.GR/0003195

[3] J. P. S. Kung, The cycle structure of a linear transformation over a finite field, Linear
Algebra Appl. 36 (1981), 141–155; MR 82d:15012

[4] K. E. Morrison, Eigenvalues of random matrices over finite fields, unpublished (1999),
www.calpoly.edu/˜kmorriso/Research/ERMFF.pdf.

[5] R. Stephan, Prove or disprove. 100 Conjectures from the OEIS, unpublished (2004),
arXiv:math.CO/0409509.

[6] R. Stong, Some asymptotic results on finite vector spaces, Adv. in Appl. Math. 9 (1988),
no. 2, 167–199; MR 89c:05007

4


