Matrices over \mathbf{F}_{q} With No Eigenvalues of 0 or 1*

Kent E. Morrison
Department of Mathematics
California Polytechnic State University
San Luis Obispo, CA 93407
kmorriso@calpoly.edu

19 October 2004

We present a proof of conjecture (68) in Ralf Stephan's article "Prove or Disprove. 100 Conjectures from the OEIS" [5]. The conjecture is that the number of matrices A over the binary field \mathbf{F}_{2} with the property that both A and $A+I$ are invertible is given by

$$
2^{n(n-1) / 2} a_{n}, \quad \text { with } a_{0}=1, a_{n}=\left(2^{n}-1\right) a_{n-1}+(-1)^{n} .
$$

The sequence begins (starting from $n=0) 1,0,2,48,5824,2887680, \ldots$. The sequence starting with the $n=2$ term is A002820 in the Online Encyclopedia of Integer Sequences. In the listing for this sequence there is a reference to a 1971 paper of Duvall and Harley [1]. The sequence $\left\{a_{n}\right\}$ is A005327 in the OEIS and it is the inverse binomial transform of sequence A005321, which counts the number of upper-triangular binary matrices with no row or column that is all zero.

The matrices in question can also be characterized as those A having no eigenvalue equal to 0 or 1 . This is equivalent to A defining a projective linear derangement, which means that the map on projective space induced by A has no fixed points. To prove the conjecture we find a generating function for the number of $n \times n$ matrices over \mathbf{F}_{q} that do not have an eigenvalue of 0 or 1 . Let e_{n} be the number of such matrices and define $e_{0}=1$. We show that the sequence $\left\{e_{n}\right\}$ satisfies the recurrence

$$
e_{n}=e_{n-1}\left(q^{n}-1\right) q^{n-1}+(-1)^{n} q^{n(n-1) / 2} .
$$

(Note that for $q>2$, projective derangements correspond to matrices with no eigenvalues in the base field \mathbf{F}_{q}. We will point out the generating function for them, but we will not determine the coefficients.)

[^0]Define

$$
\gamma_{n}=\prod_{0 \leq i \leq n-1}\left(q^{n}-q^{i}\right)
$$

which is the order of the general linear group of invertible $n \times n$ matrices over \mathbf{F}_{q}. Let e_{n} be the number of $n \times n$ matrices with entries from \mathbf{F}_{q} that do not have an eigenvalue of 0 or 1 .

Theorem 1

$$
1+\sum_{n \geq 1} \frac{e_{n}}{\gamma_{n}} u^{n}=\frac{1}{1-u} \prod_{r \geq 1}\left(1-\frac{u}{q^{r}}\right) .
$$

The proof will be given later.

Theorem 2 Define

$$
a_{n}=\frac{e_{n}}{q^{n(n-1) / 2}} .
$$

Then a_{n} satisfies the recursion: $a_{0}=1, a_{n}=a_{n-1}\left(q^{n}-1\right)+(-1)^{n}$.

Proof From Theorem 1 it follows that e_{n} / γ_{n} is the sum of the u^{i} coefficients of $\prod_{r \geq 1}(1-$ u / q^{r}) for $i=0,1, \ldots, n$. Now the u^{i} coefficient is

$$
(-1)^{i} \sum_{1 \leq r_{1}<r_{2}<\cdots<r_{i}} \frac{1}{q^{r_{1}+r_{2}+\cdots+r_{i}}} .
$$

By induction one can easily show that this coefficient is

$$
\frac{(-1)^{i}}{\left(q^{i}-1\right)\left(q^{i-1}-1\right) \cdots(q-1)} .
$$

Therefore

$$
\frac{e_{n}}{\gamma_{n}}=1+\sum_{1 \leq i \leq n} \frac{(-1)^{i}}{\left(q^{i}-1\right)\left(q^{i-1}-1\right) \cdots(q-1)} .
$$

Next,

$$
\frac{e_{n}}{\gamma_{n}}=\frac{e_{n-1}}{\gamma_{n-1}}+\frac{(-1)^{n}}{\left(q^{n}-1\right) \cdots(q-1)} .
$$

Making use of the formula for γ_{n} and γ_{n-1} and canceling where possible we see that

$$
e_{n}=e_{n-1}\left(q^{n}-1\right) q^{n-1}+(-1)^{n} q^{n(n-1) / 2} .
$$

Divide both sides by $q^{n(n-1) / 2}$ and simplify to see that

$$
\frac{e_{n}}{q^{n(n-1) / 2}}=\frac{e_{n-1}}{q^{(n-1)(n-2) / 2}}\left(q^{n}-1\right)+(-1)^{n} .
$$

With the definition given for a_{n} in the statement of the theorem this gives

$$
a_{n}=a_{n-1}\left(q^{n}-1\right)+(-1)^{n} .
$$

Proof of Theorem 1 We use the cycle index for matrices over finite fields introduced by Kung [3] and extended by Stong [6]. See also [2, 4]. The treatment in section 1 of [4] is most convenient for the purpose here. The series of lemmas there give us the following. Let \mathcal{A} be any set of monic irreducible polynomials with coefficients in \mathbf{F}_{q}. Let μ_{n} be the number of $n \times n$ matrices over \mathbf{F}_{q} whose characteristic polynomial factors into powers of elements of \mathcal{A}. Then

$$
1+\sum_{n \geq 1} \frac{\mu_{n}}{\gamma_{n}} u^{n}=\prod_{\phi \in \mathcal{A}} \prod_{r \geq 1}\left(1-\frac{u^{\operatorname{deg} \phi}}{q^{r \operatorname{deg} \phi}}\right)^{-1}
$$

Taking \mathcal{A} to be the full set of monic irreducibles (which we denote $\boldsymbol{\Phi}$) we have

$$
1+\sum_{n \geq 1} \frac{q^{n^{2}}}{\gamma_{n}} u^{n}=\prod_{\phi \in \boldsymbol{\Phi}} \prod_{r \geq 1}\left(1-\frac{u^{\operatorname{deg} \phi}}{q^{r \operatorname{deg} \phi}}\right)^{-1}
$$

Taking \mathcal{A} to be all monic irreducibles except for $\phi(z)=z$ gives us the invertible matrices with $\mu_{n}=\gamma_{n}$ and so

$$
\begin{equation*}
1+\sum_{n \geq 1} u^{n}=\prod_{\phi \in \boldsymbol{\Phi} \backslash\{z\}} \prod_{r \geq 1}\left(1-\frac{u^{\operatorname{deg} \phi}}{q^{r \operatorname{deg} \phi}}\right)^{-1} \tag{1}
\end{equation*}
$$

Taking $\mathcal{A}=\boldsymbol{\Phi} \backslash\{z, z-1\}$ gives us the matrices without factors of z or $z-1$ in their characteristic polynomial, which is exactly the set of matrices without 0 or 1 as eigenvalues. Therefore

$$
\begin{equation*}
1+\sum_{n \geq 1} \frac{e_{n}}{\gamma_{n}} u^{n}=\prod_{\phi \in \boldsymbol{\Phi} \backslash\{z, z-1\}} \prod_{r \geq 1}\left(1-\frac{u^{\operatorname{deg} \phi}}{q^{r \operatorname{deg} \phi}}\right)^{-1} . \tag{2}
\end{equation*}
$$

Now multiply the right side of (1) by $\prod_{r \geq 1}\left(1-u / q^{r}\right)$ to get the right side of (2) by taking out the factor corresponding to the polynomial $z-1$. Hence, we have the statement of the theorem:

$$
\begin{aligned}
1+\sum_{n \geq 1} \frac{e_{n}}{\gamma_{n}} u^{n} & =\left(1+\sum_{n \geq 1} u^{n}\right) \prod_{r \geq 1}\left(1-\frac{u}{q^{r}}\right) \\
& =\frac{1}{1-u} \prod_{r \geq 1}\left(1-\frac{u}{q^{r}}\right)
\end{aligned}
$$

By omitting all the linear polynomials we can derive the following for the number of projective derangements. Let d_{n} be the number of $n \times n$ matrices over \mathbf{F}_{q} with no eigenvalues in \mathbf{F}_{q}. Then

$$
1+\sum_{n \geq 1} \frac{d_{n}}{\gamma_{n}} u^{n}=\frac{1}{1-u} \prod_{r \geq 1}\left(1-\frac{u}{q^{r}}\right)^{q-1}
$$

Note that we are counting matrices here with no fixed points on projective space. Since matrices which are non-zero scalar mutliples of each other define the same map on projective space, we need to divide d_{n} by $q-1$ to count distinct maps. Finally, the generating functions presented here will easily give the asymptotic probability that a matrix has no eigenvalues of 0 or 1 or that a matrix has no eigenvalues in the base field. For example, for $q=2$

$$
\lim _{n \rightarrow \infty} \frac{e_{n}}{2^{n^{2}}}=\prod_{r \geq 1}\left(1-\frac{1}{2^{r}}\right)^{2} \approx 0.0833986
$$

References

[1] P. F. Duvall, Jr., and P. W. Harley, III, A note on counting matrices, SIAM J. Appl. Math., 20 (1971), 374-377.
[2] J. Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51-85 (electronic); MR 2002i:60012, arXiv:math.GR/0003195
[3] J. P. S. Kung, The cycle structure of a linear transformation over a finite field, Linear Algebra Appl. 36 (1981), 141-155; MR 82d:15012
[4] K. E. Morrison, Eigenvalues of random matrices over finite fields, unpublished (1999), www.calpoly.edu/ ${ }^{\text {kmorriso/Research/ERMFF.pdf. }}$
[5] R. Stephan, Prove or disprove. 100 Conjectures from the OEIS, unpublished (2004), arXiv:math.CO/0409509.
[6] R. Stong, Some asymptotic results on finite vector spaces, Adv. in Appl. Math. 9 (1988), no. 2, 167-199; MR 89c:05007

[^0]: *www.calpoly.edu/ ~kmorriso/Research/mnev01.pdf

