THE PROBABILITY THAT A SUBSPACE CONTAINS A POSITIVE VECTOR

KENT E. MORRISON

Abstract

We determine the probability that a random k-dimensional subspace of \mathbf{R}^{n} contains a positive vector.

For positive integers k and n with $k \leq n$, let $p(n, k)$ denote the probability that a random k-dimensional subspace of \mathbf{R}^{n} contains a positive vector. The aim of this article is to prove

$$
\begin{equation*}
p(n, k)=\frac{1}{2^{n-1}} \sum_{j=0}^{k-1}\binom{n-1}{j} . \tag{1}
\end{equation*}
$$

First we make the definitions precise. A vector $t \in \mathbf{R}^{n}$ is positive if $t_{i} \geq 0$ for all i and $t_{i}>0$ for at least one i, and a random subspace is a point in the Grassmann manifold $G(n, k)$ with its natural $\mathrm{O}(n)$-invariant probability measure. This measure is constructed by starting with Haar measure on the orthogonal group $\mathrm{O}(n)$, which is bi-invariant and has total mass 1 , and then pushing Haar measure down to $G(n, k)$ using the natural projection $\mathrm{O}(n) \rightarrow G(n, k)$. We also call this Haar measure.

To prove (1) we use a result of J. G. Wendel [2] showing that $p(n, d)$ is the probability that n random points in \mathbf{R}^{d} lie in a half-space or, equivalently, that the convex hull of the points does not contain the origin. Let $d=n-k$ be the complementary dimension for our random subspaces. Given points $z_{1}, \ldots, z_{n} \in \mathbf{R}^{d}$ we define the linear map

$$
\hat{z}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{d}:\left(t_{1}, \ldots, t_{n}\right) \mapsto \sum t_{i} z_{i} .
$$

Then the convex hull of the z_{i} contains the origin if and only if ker \hat{z} contains a positive vector. (The forward implication is immediate. For the converse, suppose $t \in \operatorname{ker} \hat{z}$ is a positive vector. Thus, $\sum t_{i} z_{i}=0$. Then $\sum_{i}\left(t_{i} / T\right) z_{i}=$ 0 is a convex combination of the z_{i}, where $T=\sum_{i} t_{i}$.)

If the points z_{i} are random, then with only mild restrictions on their distribution, \hat{z} has maximal rank, and so the kernel of \hat{z} has dimension k. This holds, for example, if the z_{i} are iid with a distribution absolutely continuous with respect to Lebesgue measure. But if we further assume that the z_{i} are drawn from the probability distribution on \mathbf{R}^{d} for which the components are iid standard normal variables, then ker \hat{z} is Haar distributed in $G(n, k)$.

To prove this we note that the distribution of \hat{z} is $\mathrm{O}(n)$-invariant and that the kernel map from the subset of $d \times n$ matrices of maximal rank to the Grassmannian $G(n, k)$ is $\mathrm{O}(n)$-equivariant. In particular, for a $d \times n$ matrix A and an orthogonal matrix $g \in \mathrm{O}(n)$, we have $\operatorname{ker}\left(A g^{-1}\right)=g(\operatorname{ker} A)$. It follows that the induced probability measure on $G(n, k)$ is $\mathrm{O}(n)$-invariant and must be Haar measure.

Then the probability that $\operatorname{ker} \hat{z}$ contains a positive vector is the probability that the origin is in the convex hull of the z_{i}, which is $1-p(n, d)$. Finally, $1-p(n, d)=p(n, k)$, which follows from the identity

$$
2^{n-1}=\sum_{j=0}^{n-1}\binom{n-1}{j} .
$$

This completes the proof of (1).
(The identity $p(n, k)+p(n, d)=1$ says that almost surely for V in $G(n, k)$ exactly one of the subspaces V and V^{\perp} contains a positive vector. This is a probabilistic version of the theorem stating that a subspace contains a positive vector if and only if its orthogonal complement does not contain a strictly positive vector, i.e., a vector all of whose components are positive [1].)

References

[1] S. Roman, Advanced Linear Algebra, 3rd ed., Springer, New York, 2008.
[2] J. G. Wendel, A problem in geometric probability, Math. Scand. 11 (1962) 109-111.
California Polytechnic State University, San Luis Obispo, CA 93407
Current address: American Institute of Mathematics, Palo Alto, CA 94306
E-mail address: kmorriso@calpoly.edu

