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1 Random Permutations

Much of this section deals with the cycles of a random permutation in Sn. Let Ck, 1 ≤ k ≤
n, be the random variable that counts the number of k-cycles in a permutation. Note that
C1 is the number of fixed points.

Theorem 1. The expected number of k-cycles is 1/k.

Proof. Write Ck as the sum of indicator random variables 1γ , for γ a k-cycle. This means
that 1γ(π) is 1 if γ is a cycle of π and 0 otherwise. Then E(Ck) =

∑
γ E(1γ). To determine

E(1γ) we count the number of permutations having γ as a cycle. That number is (n− k)!.
Thus, E(1γ) = (n − k)!/n!. Now, the number of possible γ is n(n − 1) · · · (n − k + 1)/k,
since a k-cycle is an ordered selection of k elements from n in which any of the k elements
can be put first. Thus, E(Ck) = (n(n− 1) · · · (n− k + 1)/k)((n− k)!/n!) = 1/k.

Corollary 2. The expected number of cycles is the harmonic number Hn = 1 + 1/2 + · · ·+ 1/n.

Proof. The total number of cycles is the random variable
∑
Ck and its expected value is∑

E(Ck).
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An alternative proof of the corollary was outlined in the exercises fall quarter. It uses the
generating function

f(z) =
n∑
k=1

[
n

k

]
zk (1)

Then the expected number of cycles is f ′(1)/n!, and the derivative can be calculated using
properties of the Stirling numbers.

Next we consider the distribution of Ci, that is we calculate the probability that a random
permutation has k i-cycles. First we will deal with the case that k = 0 and i is arbitrary.
For example, the case that k = 0 and i = 1 gives the probability of a derangement. The
standard way to count derangements is to use the principal of inclusion-exclusion, and that
is the way to deal with this more general problem. Let di(n) be the number of permutations
in Sn with no i-cycles. (Hence, d1(n) is the number of derangements.)

Theorem 3. The number of permutations in Sn with no i-cycles is

di(n) = n!

bn/ic∑
j=0

(−1)j 1

j!ij
.

Proof. For each i-cycle γ define

Aγ = {π ∈ Sn|γ is a cycle of π}.

The set of permutations with no i-cycles is

Sn \
⋃
γ

Aγ .

By PIE we have
|Sn \

⋃
γ

Aγ | =
∑

J⊂i-cycles
(−1)|J ||AJ |

where
AJ =

⋂
γ∈J

Aγ .

Because AJ is empty unless J consists of disjoint cycles, we only need to sum over the
subsets J where |J | ≤ n/i, equivalently for |J | ≤ bn/ic. For a subset J consisting of
disjoint cycles and |J | = j we have

|AJ | = (n− ji)!

To count the number of such J we make an ordered selection of ji elements from n ele-
ments. This can be done in nji ways. The first i form a cycle but since any of its i elements
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can be first we divide by a factor of i. The second group of i elements form a cycle; again
we divide by i. We do this for the j groups, which gives a factor of ij in the denominator.
But since the order of the j disjoint cycles is unimportant, we also divide by j!. Therefore,
the number of subsets of size j is

nji

j!ij

and so

∑
J

(−1)|J ||AJ | =

bn/ic∑
j=0

(−1)j n
ji(n− ji)!
j!ij

(2)

= n!

bn/ic∑
j=0

(−1)j 1

j!ij
(3)

The last step follows from nji(n− ji)! = n!.

Now we are in a position to find the probability of exactly k i-cycles in a random permu-
tation.

Theorem 4. In Sn the number of permutations with exactly k i-cycles is

n!

k!ik

bn/i−kc∑
j=0

(−1)j 1

j!ij
.

Proof. All such permutations are constructed by selecting k i-cycles and then selecting a
permutation of the remaining elements with no i-cycles. The first selection of the cycles
can be done in nki/(k!ik) ways, and the second selection can be done in di(n − ki) ways.
From the previous theorem we know the value for di(n−ki). Multiplying the two together
gives

nki

k!ik
di(n− ki) =

nki

k!ik
(n− ki)!

b(n−ki)/ic∑
j=0

(−1)j 1

j!ij
(4)

=
n!

k!ik

bn/i−kc∑
j=0

(−1)j 1

j!ij
(5)

Corollary 5. In a random permutation the probability of exactly k i-cycles is

P (Ci = k) =
1

k!ik

bn/i−kc∑
j=0

(−1)j 1

j!ij
.
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Proof. Just divide the number from the theorem by n!.

Corollary 6.
bn/ic∑
k=0

1

k!ik

bn/i−kc∑
j=0

(−1)j 1

j!ij
= 1

bn/ic∑
k=1

1

(k − 1)!ik

bn/i−kc∑
j=0

(−1)j 1

j!ij
= 1/i

Proof. The first identity is that the probabilities sum to 1. The second is that the expected
number of i-cycles is 1/i.

Corollary 7. As n → ∞ the distribution of the number of i-cycles approaches a Poisson distribu-
tion with parameter λ = 1/i.

Proof. We have

lim
n→∞

P (Ci = k) = lim
n→∞

1

k!ik

bn/i−kc∑
j=0

(−1)j 1

j!ij
(6)

=
1

k!ik

∞∑
j=0

(−1)j 1

j!ij
(7)

=
1

k!ik
e−1/i (8)

= e−1/i
(1/i)k

k!
. (9)

Consider the random vector C = (C1, C2, . . . , Cn) describing the complete cycle structure
of a permutation, which is the same as describing its conjugacy class in Sn. Each of the
components in asymptotically Poisson, but C has exactly the same distribution as the ran-
dom vector Z = (Z1, Z2, . . . , Zn) conditioned on the weighted sum

∑n
i=0 iZi = n, where

Zi is Poisson with mean 1/i. This is not an asymptotic result, but one that holds for each n.
These results can be found in [1].

Theorem 8. (Cauchy’s Formula) If a = (a1, a2, . . . , an) ∈ Nn and
∑
ai = n, then the number

of permutations in Sn with ai i-cycles is

n!∏
ai!iai

.
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Proof. The cycle structure specifies a form

(x) · · · (x)(xx) · · · (xx) · · ·

with a1 1-cycles, etc. There are n! ways to place the elements 1, 2, . . . , n but each π ∈ Sn
with this cycle structure will occur

∏
ai!i

ai times.

Corollary 9. (The Law of Cycle Structures) If a = (a1, a2, . . . , an) ∈ Nn and
∑
ai = n, then

P (C = a) =
n∏
i=1

1

ai!
(1/i)ai .

Proof. This follows immediately from Cauchy’s Formula.

Corollary 10. ∑
a∈Nn,

∑
iai=n

∏
i

1

ai!
(1/i)ai = 1.

Proof. Sum the probabilities to get 1.

Theorem 11. Suppose Zi is Poisson with parameter 1/i and that Zi, 1 ≤ i ≤ n, are independent.
Define Tn =

∑
iZi. If a = (a1, a2, . . . , an) ∈ Nn, then

P (Z = a|Tn = n) =

n∏
i=1

1

ai!
(1/i)ai .

Proof. The definition of conditional probability gives

P (Z = a|Tn = n) =
P (Z = a)

P (Tn = n)
(10)

The independence of the Zi implies that

P (Z = a) =

n∏
i=1

P (Zi = ai)

=

n∏
i=1

e−1/i(1/i)ai
1

ai!
.

The denominator P (Tn = n) is the sum over all a ∈ Nn, with
∑
iai = n, of the probability

that Z = a. Since the Zi are independent,

P (Tn = n) =
∑

a∈Nn,
∑
iai=n

∏
i

e−1/i(1/i)ai
1

ai!

=
∏
i

e−1/i
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The second line follows using the corollary above on the sum of the probabilities. Then

P (Z = a|Tn = n) =
∏
i

(1/i)ai
1

ai!
. (11)

Now we turn to some results from the point of view of an element of {1, 2, . . . , n} when a
random permutation acts on it. We may as well assume the element is 1.

Theorem 12. The probability that the cycle containing 1 has length k is 1/n. That is, the length
of the cycle containing 1 is equiprobably distributed on the integers from 1 to n.

Proof. We count the permutations that have 1 contained in a cycle of length k. There are
(n − 1)k−1 cycles of length k containing 1, since we simply have to choose k − 1 distinct
elements from n−1 possibilites to fill up the cycle. There are (n−k)! remaining possibilities
for the rest of the permutation. The product of these two numbers is (n − 1)!. Hence, the
probability we seek is (n− 1)!/n! = 1/n.

Corollary 13. The expected length of the cycle containing 1 is (n+ 1)/2.

Proof. The cycle lengths range from 1 to n and each is equally probable.

Look at all the cycles of all the permutations in Sn. We know that there are n!Hn cycles
from Corollary 1. The total length of all these cycles is n!n because the subtotal for each
permutation is n. The average length of these cycles is

n!n

n!Hn
=

n

Hn
(12)

which is approximately n/ log n. From this point of view the average cycle length is much
smaller than from the element’s point of view. (This is reminiscent of the paradox of av-
erage class size. The student’s average class size can be much larger than the college’s
average class size. Average family size is another example. The paradox is explained be-
cause large classes are counted once for each student in the class from the student point of
view but only once from the college point of view.)

Exercise 14 Show the probability that 1 and 2 are in the same cycle is 1/2. And show that
the probability that 1,2, and 3 are in the same cycle is 1/3.
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Proposition 15. Assume m ≤ n. The probability that 1, 2, . . . ,m are in the same cycle is 1/m.

Proof. First we will count the permutations that have 1, 2, . . . ,m in the same k-cycle for a
fixed value of k. Let’s put 1 as the first element of the k-cycle. Then there are (k − 1)m−1

choices for placing 2, . . . ,m in the cycle. The remaining elements can be placed in (n−m)!
independent ways. The product (n −m)!(k − 1)m−1 is the number of permutations with
1, 2, . . . ,m in the same k-cycle. Now we sum over k to get the number of permutations
with 1, 2, . . . ,m in the same cycle. Then we divide by n! to get the probability that they are
in the same cycle. Let Pn,m denote this probability. Hence,

Pn,m =
(n−m)!

n!

n∑
k=m

(k − 1)m−1 =
1

nm

n∑
k=m

(k − 1)m−1. (13)

Some routine algebra shows that

Pn+1,m =
n+ 1−m
n+ 1

Pn,m +
1

n+ 1
. (14)

We know that Pm,m = 1/m and so we only have to check that 1/m is a solution to the
recurrence equation. This is easy to do.

2 Random Maps

We consider all maps from one finite set to another, paying particular attention to the maps
from one set to itself. Let n denote the finite set {1, 2, . . . , n}. Let Mn,m denote the set of all
maps from n to m with the equiprobable measure and let Mn denote the self-maps from n
to itself. (The self-maps are also called endo-functions by Cameron.) There are mn maps in
Mn,m.

First consider the size of the image as an integer valued random variable on Mn,m.

Theorem 16. The probability that the image size is k is

k!

mn

(
m

k

){
n

k

}
.

Proof. There are
(
m
k

)
possible image sets. There are

{
n
k

}
possible partitions for the inverse

images of the k image points. There are k! ways to assign map the inverse image sets to
the image.

7



Corollary 17.
m∑
k=1

k!

mn

(
m

k

){
n

k

}
= 1

Theorem 18. The expected image size is

m(1−
(
m− 1

m

)n
).

Proof. Let Yj be the random variable with value 1 if j is in the image and 0 otherwise. Then
Y = Y1+ · · ·+Ym is the image size andE(Y ) = E(Y1)+ · · ·+E(Ym). The expected value of
Yj is the probability that j is in the image, which is 1− P (j /∈ image), and the probability
that j is not in the image is

(
m−1
m

)n.

Corollary 19.
m∑
k=1

k
k!

mn

(
m

k

){
n

k

}
= m(1−

(
m− 1

m

)n
)

Exercise 20 Determine the variance for the image size.

Solution. (Thanks to Robert Sawyer, via e-mail, for pointing out that an earlier solution was
incorrect because it assumed that the Yi were independent and for supplying the correct
solution below.)

For independent (more generally, uncorrelated) random variables the variance of the sum
is the sum of the variances, but in general the variance of a sum is the sum of all the
the pairwise covariances. Recall, that the covariance of random variables X1 and X2 is
cov (X1, X2) = E((X1 − E(X1))E(X2 − E(X2)), which is also E(X1X2) − E(X1)E(X2).
Then one can show that

var (Y ) = var (
∑
i

Yi)

=
∑
i

var (Yi) +
∑
i 6=j

cov (Yi, Yj)

= m var (Y1) +m(m− 1) cov (Y1, Y2)

The last line comes from the fact that the variances of the Yi are the same as are the covari-
ances of the Yi and Yj for i 6= j. Now

var (Y1) = E(Y 2
i )− E(Yi)

2 =

(
m− 1

m

)n
−
(
m− 1

m

)2n
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but for cov (Y1, Y2) a little trick makes it easier. Use the fact that

cov (Y1, Y2) = cov ((1− Y1), (1− Y2))

(proof left for the reader). Then E((1 − Y1)(1 − Y2) is the probability that Y1 = 0 and
Y2 = 0, which is the probability that both 1 and 2 are not in the image, and this probability
is
(
m−2
m

)n. Thus,

cov (Y1, Y2) =

(
m− 2

m

)n
−
(
m− 1

m

)2n

Putting these results together we get the variance of the image size

var (Y ) = m

{(
m− 1

m

)n
−
(
m− 1

m

)2n
}

+m(m− 1)

{(
m− 2

m

)n
−
(
m− 1

m

)2n
}

Exercise 21 Determine the limit of 1−
(
m−1
m

)n as m,n→∞with m/n = r fixed. This will
be the asymptotic proportional image size of a random map.

Solution.

lim

(
m− 1

m

)n
= lim

(
m− 1

m

)m/r
=

(
lim

(
m− 1

m

)m)1/r

= e−1/r.

The asymptotic proportional image size is 1− e−1/r.

Consider the random variable Y/m, which is the proportional image size. The variance of
Y/m is m−2var (Y ). In the expression for var (Y ) in Exercise 21, the second term coming
from the covariances is negative. Therefore

var (Y ) < m

{(
m− 1

m

)n
−
(
m− 1

m

)2n
}

and so m−2var (Y ) → 0 as m and n go to infinity with a fixed ratio. Thus the probability
distribution of the proportional image size becomes more and more concentrated at 1 −
e−1/r.
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Example 22 The birthday paradox involves a random map from n people to m = 365
birthdays. (Disregard February 29 and assume each birthday is equally likely.) The proba-
bility that none of the people have the same birthday is the probability that the image size
is n, which is

n!

mn

(
m

n

){
n

n

}
=
mn

mn
. (15)

As is well-known, this probability is less than 1/2 when n ≥ 23.

Question 23 There are m coupons that a collector is seeking to acquire. He buys them one
at a time, sight unseen. How many purchases are expected before he has them all?

Exercise 24 What is the expected number of purchases for the coupon collector when
m = 2?

Exercise 25 What is the probability that the coupon collector has all m coupons after n
purchases? For small values of m, say between 2 and 10, determine the smallest n so that
this probability is greater than 1/2 or greater than 0.9.

Define the random variable Fi onMn,m to be the size of the inverse image of i (the fiber over
i). Let F = (F1, . . . , Fm) be the random vector of all fiber sizes. Then F1 + · · ·+ Fm = n.

Proposition 26. For 0 ≤ k ≤ n,

P (Fi = k) =

(
n
k

)
(m− 1)n−k

mn
.

Proof. Immediate.

Theorem 27. Let s = (s1, . . . , sm) ∈ Nm such that
∑
si = m. Then

P (F = s) =

(
n

s1,s2,...,sm

)
mn

.

Proof. The multinomial coefficient in the numerator is the number of ways to select si
elements to comprise the fiber over i.
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Example 28 The California lottery and other state lotteries can have multiple winners be-
cause tickets can be sold with the same numbers chosen. If we assume that each possible
choice of numbers is equally likely (an assumption that is not borne out in practice be-
cause people prefer certain combinations over others), then we have a random map from
n tickets to m =

(
51
6

)
= 18, 009, 460 choices of the numbers. Suppose that 20 million tickets

are sold and that you have a winning ticket. What is the probability that you are the only
winner? What is the expected number of winning tickets? Can you answer these questions
for general n andm? (Answers: the probability you are the only winner is ((m−1)/m)n−1.
If you are a winner the expected number of additional winners is (n− 1)/m. The expected
number of winners is n/m.)

Let the random variable Gi be the number of fibers of size i. Then
∑
iGi = n and the

probability law for the vector random variable G = (G1, . . . , Gn) is analagous to the law
for the number of cycles for random permutations and the derivation runs along the same
lines. First we need the number of maps with no fibers of size i.

Theorem 29. The number of maps in Mn,m having no fibers of size i is

bn/ic∑
j=0

(−1)j
(

n

i, i, . . . , i︸ ︷︷ ︸
j

)(
m

j

)
mn−ji.

Proof. We use the Principle of Inclusion-Exclusion. Let γ be a subset of size i in Nn, that is,
a possible fiber of size i. Let Aγ = {f ∈Mn,m|γ is a fiber of f}. The maps we seek to count
are the complement of the union of the Aγ . By PIE we have

|Mn,m \
⋃
γ

Aγ | =
∑

J⊂ i-sets
(−1)|J ||AJ |

where
AJ =

⋂
γ∈J

Aγ .

Note that AJ is empty unless the elements of J are disjoint i-sets. Suppose that J =
{γ1, . . . , γj}where the γk are disjoint. Then

|AJ | =
(
m

j

)
j!mn−ji.

The number of such J whose elements are j disjoint i-sets is

1

j!

(
n

i, i, . . . , i︸ ︷︷ ︸
j

)

11



Thus,

∑
J

(−1)|J ||AJ | =

bn/ic∑
j=0

(−1)j
(
m

j

)
j!mn−ji (16)

=

bn/ic∑
j=0

(−1)j
(

n

i, i, . . . , i︸ ︷︷ ︸
j

)(
m

j

)
mn−ji. (17)

Theorem 30. The number of maps in Mn,m with k fibers of size i is

(
m

k

)(
n

i, i, . . . , i︸ ︷︷ ︸
k

)
k!

bn/i−kc∑
j=0

(−1)j
(
n− ki
i, i, . . . , i︸ ︷︷ ︸

j

)(
m

j

)
mn−ki−ji.

Proof. Pick k points in Nm. Pick k i-sets in Nn to be the fibers of the points. Choose an
assignment of the i-sets to the points. The rest is equivalent to a map from Nn−ki to Nm

having no fibers of size i.

For self-maps of a set to itself there is a richer structure because of the possibility of iterating
a map. This gives fixed points and periodic points and lots of probabilistic questions about
them. Consider the number of fixed points of a random map in Mn. This is random
variable which is the sum of indicator random variables, one for each i, whose value is 1 if
i is a fixed point and 0 otherwise. The following is easy to prove.

Theorem 31. The expected number of fixed points is 1. The probability that the number of fixed
points is k is

n−n
(
n

k

)
(n− 1)n−k.

Corollary 32.
n∑
k=0

(
n

k

)
(n− 1)n−k = nn

n∑
k=1

k

(
n

k

)
(n− 1)n−k = nn

Proof. The first is equivalent to the sum of the probabilities of the number of fixed points
being 1. The second is equivalent to the expected value being 1.
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Exercise 33 Find the variance for the number of fixed points. Answer: (n− 1)/n.

Associated to a map φ in Mn is a directed graph with vertex set n and an edge going from
i to j if φ(i) = j. This graph breaks up into connected components. Each component
consists of a cycle with trees attached. When φ is a permutation the components are just
the cycles and there are no attached trees, so we can regard the components as a natural
generalization of the cycles of a permutation. As φ is repeatedly iterated (composed with
itself) the image of φm eventually settles down and does not change and this image is the
union of the cycles in the associated graph. Let us call this set the core of φ. The restriction
of φ to its core is a permutation on the core.

Theorem 34. The expected size of the core is

n∑
k=1

nk

nk
.

Proof. Write the core size as a sum of indicator random variables
∑n

i Xi with Xi = 1 if i
is in the core of the map and 0 otherwise. Then, E(

∑n
i Xi) =

∑n
i E(Xi), but the Xi are

identically distributed. Therefore, E(
∑n

i Xi) = nE(X1).

The probability that 1 is in a k-cycle is(
n− 1

n

)(
n− 2

n

)
· · ·
(
n− k + 1

n

)(
1

n

)
which is equal to nk/nk+1. Summing this over k from 1 to n, we get

E(X1) =

n∑
k=1

nk

nk+1
.

The expected core size is n times this, completing the proof.

Question 35 What is the asymptotic behavior of the expected core size as n goes to infinity?

Theorem 36. The expected core size is asymptotic to
√

πn
2 .
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Proof. From the previous theorem we have the expected core size. Then,

n∑
k=1

nk

nk
=

n∑
k=1

n!

(n− k)!nk
(18)

= n!

n−1∑
k=0

1

k!nn−k
(19)

=
n!

nn

n−1∑
k=0

nk

k!
(20)

For the sum we notice that e−n
∑n−1

k=0 n
k/k! is probability that a Poisson random variable

with parameter n has value less than n. However, such a random variable has the same
distribution as a sum of n independent Poisson random variables with parameter 1. The
Central Limit Theorem shows that the distribution of the average of a sum of n indepen-
dent Poisson random variables with parameter 1 approaches a normal distribution with
mean 1. Our random variable is just the sum or n times the average and so the probability
that it is less than n has a limit of 1/2. Therefore,

∑n−1
k=0 n

k/k! is asymptotic to en/2. By
Stirling’s Formula

n! ∼
√
2πn

(
n

e

)n
and combining these asymptotics gives us the result.

Question 37 Is there a limiting distribution for the core size?

Because the expected core size is asymptotic to
√
πn/2 we should divide the core size

random variable by
√
n and consider its distribution in the limit. For that we need to find

the probability that the core size is k. Count the number of maps in Mn with core size k
by first choosing k elements to be the core. The map is a permutation on these k elements,
which can be done in

(
n
k

)
k! ways. The remaining n − k elements must be attached to the

core as a forest of labeled rooted trees with the core elements as the roots. Cayley’s formula
for this gives the count of knn−k−1 [J. Spencer, Asymptopia, §6.5]. Thus, the number of maps
with core size k is (

n

k

)
k! k nn−k−1 = k nk nn−k−1.

Theorem 38. The probability that a random map in Mn has core size k is

k

n

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− k − 1

n

)
.
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Proof. Divide the number of maps with core size k by nn and simplify.

Theorem 39. As n → ∞ the distribution of the core size divided by
√
n approaches the Rayleigh

distribution with probability density function xe−x2/2.

Proof. Let pn,k be the probability of core size k given in Theorem 38. Imagine the plot of
the distribution of the core size as a histogram with height pn,k between k and k + 1. Now
compress the histogram by dividing the horizontal scale by

√
n. And multiply the heights

by
√
n so that the total area remains 1. That means we want to determine the limit of√

npn,k = as n, k →∞ and k/
√
n→ x. In the product

√
n pn,k =

k√
n

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− k − 1

n

)
the first factor k/

√
n goes to x, and so we focus on the other factors. The log of the remain-

ing product is the sum of the logs, which we expand as power series:

k−1∑
j=1

log

(
1− j

n

)
= −

k−1∑
j=1

∞∑
i=1

1

i

(
j

n

)i

= −
∞∑
i=1

1

i

k−1∑
j=1

(
j

n

)i
Now for a fixed i the inner sum can be rewritten

k−1∑
j=1

(
j

n

)i
=

1

(
√
n)i−1

k−1∑
j=1

(
j√
n

)i 1√
n
,

and the sum is a lower Riemann sum for
∫ x
0 t

i dt, where x = k/
√
n. For i = 1 the sum ap-

proaches
∫ x
0 t dt = x2/2. For i ≥ 2 each of the sums is bounded above by (1/

√
n
i−1

)xi/(i+
1) and so it is bounded above by the value of the integral, namely, xi/(i + 1). Therefore,
the sum over i ≥ 2 can be bounded by something that goes to 0,

∞∑
i=2

1

i

k−1∑
j=1

(
j

n

)i
<

∞∑
i=2

1

i(i+ 1)

1

(
√
n)i−1

xi+1 =

∞∑
i=2

1

i(i+ 1)

(
x√
n

)i−1
x2.

The series on the right goes to 0 by comparison with the geometric series having ratio
x/
√
n. This shows that log

√
npn,k approaches log x−x2/2 as n, k →∞ such that k/

√
n→ x,

and consequently
√
n pn,k has the limiting value xe−x

2
.
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Let Ck be the random variable that counts the number of k-cycles of a random map. Thus,
Ck counts the number of components consisting of a k-cycle with zero or more attached
trees.

Theorem 40. The expected number of k-cycles is

1

k

nk

nk
.

As n→∞ the expected number of k-cycles goes to 1/k.

Proof. For γ a k-cycle let 1γ be the indicator random variable that takes on the value 1 if γ
is a cycle of the random map and 0 otherwise. Then Ck =

∑
γ 1γ and E(Ck) =

∑
γ E(1γ).

The number of maps that have γ as a k-cycle is nn−k since each of the elements not in γ
can be mapped anywhere. Thus, E(1γ) = nn−k/nn = n−k, while the number of k-cycles
is nk/k. The product of these is the expected value of Ck. The limit as n goes to infinity is
straightforward keeping in mind that k is fixed.

Question 41 Does the distribution of Ck become Poisson with mean 1/k as n → ∞? I
suspect that is the case but have not worked it out except for k = 1.

Theorem 42. As n → ∞ the distribution of C1 approaches the distribution of a Poisson random
variable with mean 1.

Proof. The number of maps with j fixed points is
(
n
j

)
(n − 1)n−j since we choose a j-set

of fixed points and then map each of the remaining points to anything but themselves.
Dividing by nn we get

P (C1 = j) =

(
n

j

)
(n− 1)n−jn−n (21)

=
n!

j!(n− j)!
(n− 1)−j

(
n− 1

n

)n
(22)

But

lim
n→∞

n!

(n− j)!
(n− 1)−j = 1 and lim

n→∞

(
n− 1

n

)n
=

1

e

and so
lim
n→∞

P (C1 = j) =
1

j!

1

e
. (23)
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Theorem 43. The expected number of components is

n!

nn

n−1∑
k=0

1

n− k
nn−k

k!
.

Proof. The number of components (which is the same as the number of cycles) is the ran-
dom variable C =

∑
Ck, and therefore

E(C) =

n∑
k=1

1

k

nk

nk
(24)

=
n!

nn

n∑
k=1

1

k

nn−k

(n− k)!
(25)

=
n!

nn

n−1∑
k=0

1

n− k
nn−k

k!
(26)

where the last step is re-indexing with k in place of n− k.

Question 44 What is the asymptotic nature of E(C) as n→∞?

Notice that the expression is quite similar to that for the core size, but there is an extra
wrinkle that causes difficulty. One may proceed heuristically to conjecture the first order
asymptotics as follows. The expected core size is asymptotic to

√
πn/2 and we know that

for a random permutation on an n-set the expected number of cycles is asymptotic to log n.
So we proceed under the assumption that a random map is like a random permutation on
its core, and so it should have about log

√
πn/2 cycles. But log

√
πn/2 = 1

2(log(πn)− log 2),
which is asymptotic to 1

2 log(πn) =
1
2(log π + log n), which is asymptotic to (log n)/2. This

heuristic reasoning does give the correct first term. In 1954 Kruskal [4] proved that the
expected number of components is 1

2(log 2n+ γ) + o(1), where γ is Euler’s constant. (n.b.
In [3], it is claimed incorrectly that E(C) is asymptotic to log n.)

Here is some numerical evidence to back up the heuristic reasoning.

n E(C) log n E(C)/ log n

500 3.761 6.215 0.629
1000 4.102 6.908 0.594

10000 5.245 9.210 0.569
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Question 45 What is the probability distribution for the size of the components?

Question 46 What is the expected size of the components?

We will focus on a particular element, say 1, and consider what happens to it with the
selection of a random map. The orbit of i under the map f is the set of iterates of i, namely
{i, f(i), f(f(i)), . . .}.

Theorem 47. The probability that the orbit of 1 has size k is

k

nk
(n− 1)k−1.

Proof. The orbit of 1 must be a set {1, x1, x2, . . . , xk−1} of distinct elements and then xk
must be one of the k elements in the orbit set. Thus, there are n − 1 choices for x1, n − 2
choices for x2, etc. and n − k − 1 choices for xk−1. Finally, there are k choices for xk.
The remaining n − k elements can be mapped to any of the n elements. The number of
maps having 1 in an orbit of size k is then (n − 1)k−1knn−k. Dividing this by nn gives the
result.

Theorem 48. The probability that the orbit of 1 has size k and the unique cycle in the orbit has size
j is

(n− 1)k−1

nk
.

Note that this is independent of j.

Proof. Again we count the maps with this property. The orbit of 1 must be {1, x2, x3, . . . , xk−1}
and xk = xk−j . The remaining n − k elements can be mapped arbitrarily. There are
(n− 1)(n− 2) · · · (n− k + 1)nn−k such maps. Dividing by nn gives us the probability.

Corollary 49. The probability that the cycle in the orbit of 1 has size j is

n∑
k=j

(n− 1)k−1

nk
=

n∑
k=j

(n− 1)!

(n− k)!
1

nk
.

Proof. Sum over k, realizing that the orbit size must be at least as large as the cycle size.
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Corollary 50. The probability that 1 is l steps from the cycle is

n−l∑
j=1

(n− 1)!

(n− j − l)!nj+l
.

Proof. We sum over j from 1 to n− l the probability that the orbit of 1 has size j+ l and the
cycle has size l.

Corollary 51. The expected number of steps before 1 (or any element) reaches the cycle in its
component is

n−1∑
l=1

l
n−l∑
j=1

(n− 1)!

(n− j − l)!nj+l
.

Proof. Obvious from the previous corollary.

Question 52 What is the asymptotic expected number of steps to the cycle as n→∞?

The questions about components are interesting for random graphs, too. See, for example,
Appendix A of [3], which refers to [2].
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