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Abstract. In scientific computations using floating point arithmetic, rescaling a data set

multiplicatively (e.g., corresponding to a conversion from dollars to euros) changes the

distribution of the mantissas, or fraction parts, of the data. A scale-distortion factor for

probability distributions is defined, based on the Kantorovich distance between distribu-

tions. Sharp lower bounds are found for the scale-distortion of n-point data sets, and the

unique data set of size n with the least scale-distortion is identified for each positive inte-

ger n. A sequence of real numbers is shown to follow Benford’s Law (base b) if and only

if the scale-distortion (base b) of the first n data points tends zero as n goes to infinity.

These results complement the known fact that Benford’s Law is the unique scale-invariant

probability distribution on mantissas.

1. Introduction

In analyzing real-valued numerical data, it is important not only to study the distribution

of the raw data itself, but also to study the distribution of the mantissas of the data. For

example, as Knuth states in The Art of Computer Programming [12, pp. 238], “In order

to analyze the average behavior of floating-point arithmetic algorithms (and in particular

to determine their average running time), we need some statistical information that allows

us to determine how often various cases arise.” The decision to terminate an algorithm is

often based on the observed values of the mantissas of the output—for example, to stop if n

values in a row are identical, or if the difference between successive values is less than a given

amount. Thus the running time of the algorithm depends on the empirical distribution of
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the mantissas. As another example, the analysis of mantissas via goodness-of-fit tests to

Benford’s Law, the well-known logarithmic probability distribution on mantissas, is now

widely used for fraud detection, for tests of homogeneity of data, and for diagnostic tests

of mathematical models [11, 14].

In general, however, the distribution of both the raw data and the mantissas of the data

depends on the units used—converting from dollars to euros, or from meters to feet, will

almost always alter the distributions. It is an easy fact that no finite set of mantissas is

exactly invariant under arbitrary changes of scale, and it is one of the goals of this article

to establish sharp inequalities and bounds on how close to scale-invariant a data set of size

n can be, and to identify the data sets altered the least by changes of scale.

Using the classical Kantorovich metric for the distance between probability distribu-

tions on a bounded set (the mantissas), a natural scale-distortion factor for distributions

of mantissas is defined. For each positive integer n, a sharp lower bound is found for the

scale-distortion of every n-point data set, and the unique most scale-invariant (i.e, least

scale-distorted) set of size n is identified (Theorem 3.22). These extremal data sets are

then compared with the n-point data sets that are closest to the unique scale-invariant

distribution, Benford’s logarithmic distribution. These inequalities are used to show that

the mantissas of a sequence of real numbers are Benford-distributed if and only if the scale-

distortion of the first n points goes to zero as n goes to infinity (Theorem 3.19), from which

it follows that the scale-distortion of a sequence of i.i.d. random variables with mantissa

distribution P approaches zero almost surely as n goes to infinity, if P is Benford’s Law, and

if not, then the lim sup of the successive scale-distortions is almost surely strictly positive

(Theorem 3.21).

2. Notation and Basic Tools

Throughout this article, b denotes a natural number greater than 1, referred to as the

base. For every t ∈ R
+, 〈t〉b is the (base b) mantissa of t, i.e., 〈t〉b is the unique number

u ∈ [1, b) with t = ubk for some k ∈ Z.

Example 2.1. 〈71〉10 = 〈7.1〉10 = 〈0.71〉10 = 7.1.
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Given a data set X = {x1, . . . , xn} of points in R
+, i.e., X is an unordered n-tuple of

positive real numbers, possibly with repetitions, define the probability measures

PX =
1

n

∑n

i=1
δxi and 〈PX〉b =

1

n

∑n

i=1
δ〈xi〉b ,

where δt denotes the probability measure concentrated at t ∈ R. Note that 〈PX 〉b
(
[1, b)

)
= 1.

The next definition recalls one of the best-known probability distributions on mantissas,

namely Benford’s Law [2, 11, 13], which will play a special role in the scale-distortion

inequalities below, essentially since it is known to be the unique scale-invariant probability

distribution on mantissas [10]. (It is also known to be the unique atomless base-invariant

and the unique sum-invariant distribution [1, 10].)

Definition 2.2. A sequence (xn) of positive real numbers is b-Benford (or Benford base b)

if

limn→∞
#{i ≤ n : 〈xi〉b ≤ t}

n
= logb t for all t ∈ [1, b) .

Inherent in Definition 2.2 is Benford’s Law, the Borel probability measure Bb on R
+ with

Bb([1, t]) = logb t for all t ∈ [1, b) .

Obviously, Bb

(
[1, b)

)
= 1. (Here and throughout, the symbol logb denotes the logarithm

base b; if used without a subscript, log means the natural logarithm.)

Recall that a sequence (Pn) of probability measures on R, with associated distribution

functions (d.f.’s) FPn , converges weakly to P , with d.f. FP , if and only if (FPn) converges

pointwise to FP at every point of continuity of FP .

Proposition 2.3. The sequence (xn) of positive real numbers is b-Benford if and only if

〈PXn〉b → Bb weakly as n → ∞, where Xn = {x1, . . . , xn} for each n ∈ N.

Proof. Let Fn be the d.f. of 〈PXn〉b. Then

Fn(t) =
#{i ≤ n : 〈xi〉b ≤ t}

n
,

and 〈PXn〉b → Bb weakly if and only if Fn(t) → logb(t) for all t ∈ [1, b), that is, if and only

if (xn) is b-Benford. �
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Let P(R) denote the family of all Borel probability measures on R. It is well-known that,

with the topology of weak convergence, P(R) can be given the structure of a complete,

separable metric space in different ways, that is, by means of different metrics. For the

practical purpose of quantifying scale-distortion an easily computed metric is required.

Since mantissas are bounded, it is enough to consider probability measures with finite

expectation only, i.e., to restrict to the subset

P1(R) :=

{
P ∈ P(R) :

∫

R

|t| dP (t) < ∞
}

of P(R). For every P ∈ P(R) denote by suppP its support, i.e., suppP is the smallest

closed set with P -measure 1. Clearly P ∈ P1(R) whenever suppP is compact. If FP is the

d.f. of P ∈ P(R) then, by Fubini’s theorem,

P ∈ P1(R) if and only if

∫ 0

−∞
FP (t) dt +

∫ ∞

0

(
1 − FP (t)

)
dt < ∞ .

Let P1, P2 ∈ P1(R) with d.f.’s FP1 , FP2 . Recall that the Kantorovich (or Wasserstein)

metric dK is defined by

dK(P1, P2) =

∫ ∞

−∞
|FP1(t) − FP2(t)| dt .

Given any d.f. F , let F−1 : (0, 1) → R denote its generalized upper inverse (or upper quan-

tile) function, that is, F−1(t) = sup{u : F (u) ≤ t}. Note that, again by Fubini’s theorem,

(2.1)

∫ ∞

−∞
|FP1(t) − FP2(t)| dt =

∫ 1

0
|F−1

P1
(t) − F−1

P2
(t)| dt .

There are at least three reasons for choosing the Kantorovich distance as a means to quan-

tify scale-distortion. First, it is easy to compute, unlike the Lévy and Prokhorov metrics.

Second, it is a bona fide metric and metrizes weak convergence on spaces of bounded di-

ameter (see Lemma 2.6 below). Third, it has a clear intuitive probabilistic interpretation:

By the celebrated Kantorovich-Rubinstein theorem [8, Theorem 11.8.2], it is the minimal

expected distance between two jointly distributed random variables ξ1, ξ2 with marginals

P1 and P2, respectively, that is,

(2.2) dK(P1, P2) = inf
{

E|ξ1 − ξ2| : L(ξ1) = P1, L(ξ2) = P2, ξ1, ξ2 jointly distributed
}

,

where L(ξ) denotes the law, or probability distribution, of the random variable ξ.
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Example 2.4. Let P be uniform on [1, b). Then

dK(P, Bb) =

∫ b

1

(
logb t − t − 1

b − 1

)
dt =

b + 1

2
− b − 1

log b
> 0 .

Example 2.5. Let b = 10, X = {1, 2}, Y = {2, 3}, Z = {1, 2, 3}. Then

dK(〈PX〉b, 〈PY 〉b) = 1 , dK(〈PX〉b, 〈PZ〉b) = 1/2 , dK(〈PY 〉b, 〈PZ〉b) = 1/2 .

That the Kantorovich metric is truly a metric and that it metrizes weak convergence

of probability measures on spaces of bounded diameter is known [8, 9]; a proof of these

facts for the special case of probability measures on mantissas is included for completeness.

Denote by P[1, b) the set of Borel probability measures on [1, b), that is,

P[1, b) =
{
P ∈ P(R) : P

(
[1, b)

)
= 1
}

,

and recall that a metric d(·, ·) on a space of probability measures S metrizes weak conver-

gence on S if, for all P ∈ S and all sequences (Pn) in S, d(P,Pn) → 0 if and only if Pn → P

weakly.

Lemma 2.6. For all b ∈ N \ {1}:

(i) dK is a metric on P[1, b);

(ii) dK metrizes weak convergence on P[1, b).

Proof. (i) Obviously, P[1, b) ⊂ P1(R), hence dK(P1, P2) < ∞ for any two P1, P2 ∈ P[1, b).

The right-continuity of d.f.’s implies that two d.f.’s that agree almost everywhere are identi-

cal. Thus, the standard one-to-one correspondence between Borel probability measures

P ∈ P[1, b) and d.f.’s F on [1, b) (i.e., F is non-decreasing and right-continuous with

F (1) ≥ 0 and limt↑b F (t) = 1, see e.g. [6, Theorem 2.2.4]) implies that P[1, b) may be

identified via P 7→ FP with a subset of L1[1, b), the space of L1-functions on [1, b). Hence

dK is simply the standard L1-metric on L1[1, b), restricted to the set of d.f.’s.

(ii) Let dP denote the Prokhorov metric on P[1, b) (cf. [8]), that is,

dP (P1, P2) = inf
{
ε > 0 : P1(B) ≤ P2(B

ε) + ε for all Borel subsets B of [1, b)
}

,

where

Bε = {t ∈ [1, b) : infu∈B |u − t| < ε} .
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By [9, Theorem 2],

(dP )2 ≤ dK ≤ b dP ,

and since dP metrizes weak convergence on any separable metric space (e.g., [8, p.81]), this

implies that dK metrizes weak convergence on P[1, b). �

Recall that 〈PX〉b 6= Bb for every finite data set X. To quantify how small dK(〈PX 〉b, Bb)

can be for a data set X of size n, it is helpful to address the following more general ques-

tion: Given P ∈ P1(R), what is the smallest possible value of dK(P, 1
n

∑n
i=1 δxi), where

x1, . . . , xn ∈ R? This question will be answered completely in Theorem 2.8 below; for

n = 1 the latter reduces to the well-known fact [4, p.54] that, for any integrable real-valued

random variable ξ,

(2.3) E(|ξ − x1|) is minimal ⇐⇒ x1 is a median of ξ.

Generally, given P ∈ P(R) with corresponding d.f. FP and t ∈ (0, 1), the t-quantile set IP
t

of P is defined as

IP
t =

[
inf{u : FP (u) ≥ t}, sup{u : FP (u) ≤ t}

]
.

The following lemma records several well-known useful facts about quantile sets; proofs are

included for the sake of completeness.

Lemma 2.7. Let P ∈ P(R) with d.f. FP . Then, for every t ∈ (0, 1):

(i) IP
t is a non-empty, compact (possibly one-point) interval [α, β];

(ii) {α, β} ⊂ suppP and (α, β) ⊂ R\suppP ;

(iii) FP

(
(α, β)

)
⊂ {t}.

Furthermore, if t1 < t2 then u ≤ v for every u ∈ IP
t1 and every v ∈ IP

t2 , and IP
t1 ∩IP

t2 contains

at most one point.

Proof. Fix t ∈ (0, 1) and let α = inf{u : FP (u) ≥ t}, β = sup{u : FP (u) ≤ t}.
(i) Since FP is non-decreasing with limu→−∞ FP (u) = 0 and limu→∞ FP (u) = 1, both

α and β are finite. Moreover, FP (u) < t whenever u < α and thus β ≥ u. Consequently,

β ≥ α, and IP
t = [α, β] is a non-empty, compact interval.
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(ii) Suppose FP (α−ε) = FP (α) for some ε > 0. Then FP (α−ε) = FP (α) ≥ t, an obvious

contradiction to the definition of α. Therefore α ∈ suppP . Similarly, if FP (β) = FP (β + ε)

for some ε > 0 then P ({β}) > 0 because otherwise FP (β + ε) ≤ t, which clearly contradicts

the definition of β. Hence, {α, β} ⊂ suppP . For any u with α < u < β clearly FP (u) = t,

implying that u ∈ R\suppP .

(iii) This is obvious from part (ii).

To conclude the proof of the lemma, let t1 < t2 and pick any u ∈ IP
t1 , v ∈ IP

t2 . If u > v

then FP

(
1
2(u + v)

)
≥ FP (v) ≥ t2 and so limw↑u FP (w) ≥ t2, which is impossible. Thus

u ≤ v. If u ∈ IP
t1 ∩ IP

t2 and v > u then limw↑v FP (w) ≥ FP (u) ≥ t2, and so v 6∈ IP
t1 .

Analogously, if v < u then FP (v) ≤ limw↑u FP (w) ≤ t1, so v 6∈ IP
t2 . Hence, IP

t1 ∩ IP
t2 = {u}

and P ({u}) ≥ t2 − t1 > 0. �

Given a random variable ξ with L(ξ) = P and a one-point data set X = {x1}, (2.2)

implies that an equivalent form of (2.3) is

(2.4) dK(P,PX) is minimal ⇐⇒ x1 ∈ IP
1/2 .

The following theorem, the main theorem of this section, generalizes (2.4) to arbitrary finite

data sets X. This result will be used in the next section to show that the n-point data

set having the least scale-distortion is not the same as—although a scaled version of—

the n-point data set closest (w.r.t. the Kantorovich metric) to the unique scale-invariant

distribution Bb.

Theorem 2.8. Let P ∈ P1(R) and n ∈ N. For the data set X = {x1, . . . , xn} ⊂ R with

x1 ≤ . . . ≤ xn the distance dK(P,PX) is minimal if and only if xi ∈ IP
(2i−1)/(2n) for all

i = 1, . . . , n.

Proof. Assume that X is a data set of size n such that dK(P,PX ) is minimal. First, suppose

that there is some i ∈ {1, 2, . . . , n} such that FP (xi) < 2i−1
2n and let

ki = min
{
1 ≤ k ≤ i : xk = xi, FP (xi) < 2k−1

2n

}

and also

li = max{i ≤ l ≤ n : xl = xi} ,
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so that in particular 1 ≤ ki ≤ i ≤ li ≤ n. Since FP is right-continuous, there exists ε1 > 0

such that

2ki−3
2n ≤ FP (t) < 2ki−1

2n for all t ∈ [xi, xi + ε1] ,

and hence

(2.5)
∣∣∣FP (t) − ki−1

n

∣∣∣ ≤ 1
2n for all t ∈ [xi, xi + ε1] .

If li = n let ε = ε1, otherwise let ε = min
(
ε1,

1
2(xli+1 − xi)

)
, and consider the n-point data

set

X̃ = {x1, . . . , xki−1, xki
+ ε, . . . , xli + ε, xli+1, . . . , xn} ,

i.e., X̃ is created from X by moving xki
, . . . , xli slightly to the right, see also Figure 1.

Clearly, FP eX
(t) = FPX

(t) whenever t 6∈ [xi, xi + ε]. Then

dK(P,PX) − dK(P,P eX ) =

∫ ∞

−∞
|FP (t) − FPX

(t)| dt −
∫ ∞

−∞
|FP (t) − FP eX

(t)| dt

=

∫ xi+ε

xi

(
|FP (t) − FPX

(t)| − |FP (t) − FP eX
(t)|
)
dt

=

∫ xi+ε

xi

(
li
n − FP (t) − |FP (t) − ki−1

n |
)

dt

≥
∫ xi+ε

xi

(
2li−1

2n − FP (t)
)

dt ≥
∫ xi+ε

xi

(
2ki−1

2n − FP (t)
)

dt > 0 ,

where the last two weak inequalities follow from (2.5) together with li ≥ ki. This implies that

dK(P,PX) > dK(P,P eX ), contradicting the minimality of dK(P,PX). Hence FP (xi) ≥ 2i−1
2n .

The argument for the case that limt↑xi
FP (t) > 2i−1

2n is analogous but slightly different

because of the right-continuity of distribution functions. In this case let

ki = min{1 ≤ k ≤ i : xk = xi} ,

and

li = max
{
i ≤ l ≤ n : limt↑xi

FP (t) > 2l−1
2n

}
,

so that again 1 ≤ ki ≤ i ≤ li ≤ n. There now exists ε1 > 0 such that

2li−1
2n < FP (t) ≤ 2li+1

2n for all t ∈ [xi − ε1, xi) ,
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xki
= xi = xlixki

= xi = xli

xli+1xli+1 xki−1xki−1

FP (t)

FP (t)

FPX
(t)

FPX
(t)

FPfX
(t)

FPfX
(t)

(ki − 1)/n

(ki − 1)/n

ki/n

ki/n

li/n

li/n

ε

ε

tt

FP (xi) < 2ki−1
2n limt↑xi

FP (t) > 2li−1
2n

Figure 1. If FP (xi) < 2i−1
2n or if limt↑xi

FP (t) > 2i−1
2n then dK(P,PX ) is not

minimal. The shaded areas illustrate the net decrease in dK(P,PX) if some

xj are moved slightly to the right or left, respectively.

and thus
∣∣∣FP (t) − li

n

∣∣∣ ≤ 1
2n for all t ∈ [xi − ε1, xi) .

If ki = 1 let ε = ε1, otherwise let ε = min
(
ε1,

1
2 (xi − xki−1)

)
, and consider the n-point data

set

X̃ = {x1, . . . , xki−1, xki
− ε, . . . , xli − ε, xli+1, . . . , xn} ,

i.e., X̃ is created from X by moving xki
, . . . , xli slightly to the left (cf. Fig. 1). Clearly, FP eX

and FPX
coincide outside [xi − ε, xi], and

dK(P,PX ) − dK(P,P eX) =

∫ ∞

−∞
|FP (t) − FPX

(t)| dt −
∫ ∞

−∞
|FP (t) − FP eX

(t)| dt

=

∫ xi

xi−ε

(
|FP (t) − ki−1

n | − |FP (t) − li
n |
)

dt

=

∫ xi

xi−ε

(
FP (t) − ki−1

n − |FP (t) − li
n |
)

dt

≥
∫ xi

xi−ε

(
FP (t) − 2ki−1

2n

)
dt ≥

∫ xi

xi−ε

(
FP (t) − 2li−1

2n

)
dt > 0 ,
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so that dK(P,PX) > dK(P,P eX
), again contradicting the minimality of dK(P,PX). Hence

limt↑xi
FP (t) ≤ 2i−1

2n . Overall therefore

limt↑xi
FP (t) ≤ 2i − 1

2n
≤ FP (xi) for all i = 1, . . . , n ,

or, equivalently,

(2.6) xi ∈ IP
(2i−1)/(2n) for all i = 1, . . . , n ,

whenever dK(P,PX) is minimal for X = {x1, . . . , xn}.
For the converse, assume that (2.6) holds, let ∆n = {x ∈ R

n : x1 ≤ . . . ≤ xn}, and

consider the non-negative function

ϕ :





∆n → R ,

x 7→ dK(P,PX) ,
where X = {x1, . . . , xn} .

Endow ∆n with a metric induced by any norm on R
n (e.g. the ℓ1-norm, see Proposition 2.12

below). It is easy to check that ϕ is Lipschitz continuous, and ϕ(x) → ∞ as x1 → −∞ or

xn → ∞. Hence ϕ attains a minimum, say at y = (y1, . . . , yn) ∈ ∆n. Fix i ∈ {1, 2, . . . , n}
and note that yi ∈ IP

(2i−1)/(2n). Let x1 ≤ . . . ≤ xn satisfy (2.6). If xi 6= yi then IP
(2i−1)/(2n)

is not a singleton, and so FP (t) = 2i−1
2n for every t in the interior of IP

(2i−1)/(2n). Let

IP
(2i−1)/(2n) = [α, β] and consider the data set X̃ = {x1, . . . , xi−1, yi, xi+1, . . . , xn}. Clearly,

FP eX
and FPX

coincide outside IP
(2i−1)/(2n). From

dK(P,PX ) − dK(P,P eX
) =

∫

IP
(2i−1)/(2n)

|FP (t) − FPX
(t)| dt −

∫

IP
(2i−1)/(2n)

|FP (t) − FP eX
(t)| dt

=

∫

IP
(2i−1)/(2n)

∣∣2i−1
2n − FPX

(t)
∣∣ dt −

∫

IP
(2i−1)/(2n)

∣∣2i−1
2n − FP eX

(t)
∣∣ dt

=

∫ xi

α

∣∣ 2i−1
2n − i−1

n

∣∣ dt +

∫ β

xi

∣∣ 2i−1
2n − i

n

∣∣ dt

−
∫ yi

α

∣∣2i−1
2n − i−1

n

∣∣ dt −
∫ β

yi

∣∣2i−1
2n − i

n

∣∣ dt = 0 ,

it follows that ϕ(x1, . . . , xi−1, yi, xi+1, . . . , xn) = ϕ(x1, . . . , xi−1, xi, xi+1, . . . , xn). Since i

was arbitrary, it follows that ϕ(x) = ϕ(y). Thus ϕ(x) = dK(P,PX ) is minimal. �
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Corollary 2.9. Let P ∈ P1(R), n ∈ N, and X = {x1, . . . , xn} ⊂ R with x1 ≤ x2 ≤ . . . ≤
xn. If P has no atoms (i.e., FP is continuous) then dK(P,PX) is minimal if and only if

FP (xi) = 2i−1
2n for all i = 1, . . . , n. If suppP = R then the data set X minimizing dK(P,PX )

is unique.

Proof. If FP is continuous at xi then xi ∈ IP
t if and only if FP (xi) = t. By Lemma 2.7(i)

and (ii), every quantile set is a singleton if suppP = R. In particular, X is unique in this

case. �

The next corollary identifies the unique n-point mantissa data set in [1, b) that is closest

in the Kantorovich metric to the unique scale-invariant mantissa distribution Bb, and it

identifies the minimal distance. As will be seen in the next section, this unique set is not

the same as the n-point data set having the least scale-distortion.

Corollary 2.10. Let X = {x1, . . . , xn} ⊂ R
+ be a finite data set. Then

(2.7) dK(〈PX〉b, Bb) ≥
b − 1

log b
· b1/(2n) − 1

b1/(2n) + 1
=

b − 1

log b
tanh

(
log b

4n

)
.

Equality holds in (2.7) if and only if {〈x1〉b, . . . , 〈xn〉b} = {b(2i−1)/(2n) : i = 1, . . . , n}.

Proof. Since FBb
is continuous and strictly increasing, IBb

t is the singleton {bt} for each

t ∈ (0, 1). Thus, equality is attained if and only if {〈x1〉b, . . . , 〈xn〉b} = {b(2i−1)/(2n) : i =

1, . . . , n}. Consequently, a straightforward computation yields

dK

(
1

n

n∑

i=1

δb(2i−1)/(2n) , Bb

)

=

∫ b1/(2n)

0
logb t dt +

∑n−1

i=1

∫ b(2i+1)/(2n)

b(2i−1)/(2n)

∣∣∣∣logb t − i

n

∣∣∣∣ dt +

∫ b

b(2n−1)/(2n)

(1 − logb t) dt

=

∫ b1/(2n)

0
logb t dt +

∫ b1/(2n)

b−1/(2n)

| logb t| dt
∑n−1

i=1
bi/n +

∫ b

b(2n−1)/(2n)

(1 − logb t) dt

=
b − 1

log b
· b1/(2n) − 1

b1/(2n) + 1
=

b − 1

log b
tanh

(
log b

4n

)
.

�
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Remark 2.11. (i) Defining Φ(z) = (tanh z)/z and Φ(0) = 1, the minimal distance given

by the right-hand side in (2.7) is

b − 1

log b
tanh

(
log b

4n

)
=

b − 1

4n
Φ

(
log b

4n

)
.

The function Φ is analytic, strictly decreasing on R
+, and Φ(z) = 1 − 1

3z2 + O(z4). Hence,

for every data set X of size n,

dK(〈PX 〉b, Bb) ≥
b − 1

4n

(
1 − log2 b

48n2
+ O

(
log4 b

n4

))
as n → ∞ ,

so the distance between Bb and any n-point data set is at least O(1/n).

(ii) If, more generally, P ∈ P(R) is any probability measure with # suppP ≤ n (i.e., P

is purely atomic with at most n atoms), then dK(P, Bb) can be smaller than the right-hand

side in (2.7). However, the universal estimate, differing from (2.7) by merely one symbol,

dK(P, Bb) ≥
b − 1

4n
Φ

(
log b

4

)

holds, with equality for a unique P having exactly n atoms in (1, b); see [3] for details.

Finally, to develop the concept of scale-distortion for finite data sets in the next section,

the following proposition records a useful relationship between the Kantorovich metric and

the ℓ1-norm ‖ · ‖1 on R
n,

‖x‖1 =
∑n

i=1
|xi| .

For the data set X = {x1, . . . , xn}, let x1,n ≤ x2,n ≤ . . . ≤ xn,n be the order statistics of X;

e.g., x1,n = min1≤i≤n xi and xn,n = max1≤i≤n xi.

Proposition 2.12. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be real data sets. Then

dK(PX , PY ) =
1

n

∥∥(x1,n, . . . , xn,n) − (y1,n, . . . , yn,n)
∥∥

1
.

Proof. Without loss of generality, assume that x1 ≤ x2 ≤ . . . ≤ xn and y1 ≤ y2 ≤ . . . ≤ yn,

so xi = xi,n and yi = yi,n for all i = 1, . . . , n. Let FPX
and FPY

be the d.f.’s of PX and PY ,

respectively, so that

FPX
(t) = PX

(
(−∞, t]

)
=

1

n
#{i ≤ n : xi ≤ t} for all t ∈ R ,
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and similarly for FPY
. Note that

F−1
PX

(t) = xi and F−1
PY

(t) = yi for all t ∈
[
i − 1

n
,

i

n

)
.

Consequently, by (2.1)

dK(PX , PY ) =

∫ 1

0
|F−1

PX
(t) − F−1

PY
(t)| dt =

∑n

i=1

(
i

n
− i − 1

n

)
|xi − yi| =

1

n

∑n

i=1
|xi − yi|

=
1

n

∥∥(x1, . . . , xn) − (y1, . . . , yn)
∥∥

1
.

�

Example 2.13. For b = 10, the unique 2-point and 3-point data sets closest to B10 in the

Kantorovich metric are {101/4, 103/4} and {101/6, 101/2, 105/6}, respectively. Moreover, for

example, every other 3-point data set is at a distance from B10 strictly larger than

9

log 10

(
101/6 − 1

101/6 + 1

)
≈ 0.741.

Remark 2.14. Even when the data sets X and Y are of different size, say m and n,

respectively, Proposition 2.12 can be applied by creating new data sets X̂ and Ŷ with

P bX
= PX and PbY

= PY . The points in X̂ are those in X repeated n/gcd(m,n) times, and

the points in Ŷ are those in Y repeated m/gcd(m,n) times.

3. Scale-Distortion

With the tools developed in the previous section, the scale-distortion of probability mea-

sures and data sets will now be defined and analyzed. Recall that the base b ∈ N \ {1} is

fixed.

Definition 3.1. For any Borel probability measure P on R
+, let 〈P 〉b denote the probability

measure on [1, b) induced via the (base b) mantissa function x 7→ 〈x〉b, i.e., the distribution

function of 〈P 〉b is given by

F〈P 〉b(t) = P ({u : 〈u〉b ≤ t}) for all t ∈ [1, b).

Note that this notation is consistent with the earlier use of 〈PX〉b.

Example 3.2. If P ∈ P[1, b), e.g., P = Bb or P uniform on [1, b), then 〈P 〉b = P .
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Example 3.3. Let P be uniform on (0, 1]. Then 〈P 〉b is the Borel probability measure on

[1, b) with d.f. given by

F〈P 〉b(t) = P ({u : 〈u〉b ≤ t}) = P
(⋃∞

n=1
[b−n, tb−n]

)
=
∑∞

n=1
(t − 1)b−n =

t − 1

b − 1
.

Hence, 〈P 〉b is uniform on [1, b). This could be seen directly and without any computation

by observing that the map T : x 7→ (〈x〉b−1)/(b−1) on (0, 1] has countably many full (that

is, onto) linear branches and hence preserves Lebesgue measure on (0, 1], i.e., the uniform

distribution P ; see [7].

Definition 3.4. For any Borel probability measure P on R
+ and any real number s > 0,

the scaling (or dilation) of P by s, denoted by sP , is the probability measure on R
+ induced

via the scaling x 7→ sx, i.e.,

FsP (t) = (sP )
(
(0, t]

)
= P

(
(0, t/s]

)
= FP (t/s) for all t > 0 .

Example 3.5. If P is uniform on (0, 1] then sP is uniform on (0, s]. If X = {x1, . . . , xn},
then scaling by s gives the scaled data set sX = {sx1, . . . , sxn} so that sPX = PsX .

Definition 3.6. Given a probability measure P on R
+ and s > 0, the (base b) scale-

distortion of P by s is defined by

DS(s;P ) = dK(〈P 〉b, 〈sP 〉b).

The function DS(·;P ) quantifies how much P changes under scaling. A few simple properties

of this function are contained in the following lemma.

Lemma 3.7. Let P be a Borel probability measure on R
+, and b ∈ N\{1}. Then, for every

s ∈ R
+:

(i) DS(sbk;P ) = DS(s;P ) for all k ∈ Z;

(ii) 0 ≤ DS(s;P ) < b − 1;

(iii) The function DS(·;P ) is right-continuous, limσ↑s DS(σ;P ) exists, and

|DS(s;P ) − limσ↑s DS(σ;P )| ≤ (b − 1)P ({bk/s : k ∈ Z}) .

In particular, D(·;P ) has at most countably many discontinuities all of which are

jumps, and is continuous at s whenever P ({bk/s : k ∈ Z}) = 0.
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Proof. Note first that, for every s ∈ R
+,

(3.1) F〈sP 〉b(t) =
∑

k∈Z

(
FP (bkt/s) − FP (bk/s)

)
+ P ({bk/s : k ∈ Z}) for all t ∈ [1, b) .

(i) Replacing s by sbk with any k ∈ Z leaves the right-hand side of (3.1) unchanged.

Hence 〈sbkP 〉b = 〈sP 〉b, and so DS(sbk;P ) = DS(s;P ).

(ii) Since 〈P 〉b and 〈sP 〉b are both elements of P[1, b),

0 ≤ DS(s;P ) =

∫ b

1

∣∣F〈P 〉b(t) − F〈sP 〉b(t)
∣∣ dt <

∫ b

1
1 dt = b − 1 ,

unless |F〈P 〉b(t) − F〈sP 〉b(t)| = 1 for almost all t ∈ [1, b), and thus F〈P 〉b(t) ∈ {0, 1}. In the

latter case, 〈P 〉b = δa for some a ∈ [1, b). A direct computation shows that

DS(s; δ1) = s − 1 < b − 1 for all s ∈ [1, b) ,

and, for all a 6= 1,

DS(s; δa) =





a(s − 1) if 1 ≤ s < b
a ,

a − a
b s if b

a ≤ s < b ,

so that DS(s; δa) ≤ max{b − a, a − 1} < b − 1. In either case, therefore, DS(s;P ) < b − 1,

by virtue of (i).

(iii) It follows from the right-continuity of FP and (3.1) that

limσ↑s F〈σP 〉b(t) =
∑

k∈Z

(
FP (bkt/s) − FP (bk/s)

)
(3.2)

= F〈sP 〉b(t) − P ({bk/s : k ∈ Z}) for all t ∈ [1, b) ,

and also

limσ↓s F〈σP 〉b(t) =
∑

k∈Z

(
FP (bkt/s) − P ({bkt/s}) − FP (bk/s) + P ({bk/s})

)

= F〈sP 〉b(t) − P ({bkt/s : k ∈ Z}) for all t ∈ [1, b) .

Consequently,

(3.3) limσ↓s F〈σP 〉b(t) = F〈sP 〉b(t) for all but countably many t.
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Therefore

lim supσ↓s
∣∣DS(σ;P ) − DS(s;P )

∣∣ = lim supσ↓s
∣∣dK(〈P 〉b, 〈σP 〉b) − dK(〈P 〉b, 〈sP 〉b)

∣∣

≤ lim supσ↓s dK(〈σP 〉b, 〈sP 〉b)

= lim supσ↓s

∫ b

1

∣∣F〈σP 〉b(t) − F〈sP 〉b(t)
∣∣ dt = 0 ,

where the last equality follows from (3.3) and the Dominated Convergence Theorem.

Hence limσ↓s DS(σ;P ) = DS(s;P ), i.e., the scale-distortion function is right-continuous.

By (3.2),

limσ↑s dK(〈P 〉b, 〈σP 〉b) = limσ↑s

∫ b

1

∣∣F〈P 〉b(t) − F〈σP 〉b (t)
∣∣ dt

=

∫ b

1

∣∣∣F〈P 〉b(t) − F〈sP 〉b(t) + P ({bk/s : k ∈ Z})
∣∣∣ dt ,

and so limσ↑s DS(σ;P ) also exists. Moreover,

∣∣DS(s;P ) − limσ↑s DS(σ;P )
∣∣ ≤

∫ b

1
|P ({bk/s : k ∈ Z})| dt = (b − 1)P ({bk/s : k ∈ Z}) .

Thus if P ({bk/s : k ∈ Z}) = 0 then the two one-sided limits coincide, and DS(·;P ) is

continuous at s. Observing that P ({bk/s : k ∈ Z}) 6= 0 for at most countably many s

completes the proof. �

Example 3.8. Let P be uniform on [1, b). Then 〈P 〉b = P , and a short computation shows

that

DS(s;P ) =
(s − 1)(b − s)

2s
for all s ∈ [1, b) .

Since FP is continuous, so is the scale-distortion function DS(·;P ).

Example 3.9. The condition P ({bk/s : k ∈ Z}) = 0 is not necessary for the continuity of

DS(·;P ) at s. If, for example, P = δ(b+1)/2, then

DS(s;P ) =
b + 1

4b

(
(b − 1)s −

∣∣(b + 1)s − 2b
∣∣) for all s ∈ [1, b) ,

so that DS(·;P ) is continuous everywhere, even though P ({bk/s : k ∈ Z}) = 1 for s =

2b/(1 + b). If, on the other hand, P = δ√b then P ({bk/s : k ∈ Z}) = 1 for s =
√

b, and
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DS(·;P ) has a jump there, because

DS(
√

b;P ) − lims↑
√

b DS(s;P ) = −(
√

b − 1)2 < 0 .

By Lemma 3.7(ii), DS(·;P ) is bounded by b − 1. However, a maximum may not be

attained, as can be seen in Example 3.9 where DS(s; δ√b) <
√

b(
√

b − 1) for all s ∈ R
+,

and yet sups∈R+ DS(s; δ√b) =
√

b(
√

b− 1). Also, if P has atoms then DS(·;P ) is in general

neither upper nor lower semi-continuous. Nevertheless, the supremum of DS(·;P ) provides

a useful indicator of how far P is from being scale-invariant.

Definition 3.10. The (base b) scale-distortion DS(P ) of a Borel probability measure P on

R
+ is

(3.4) DS(P ) = sups∈R+ DS(s;P ) = sups∈R+ dK(〈P 〉b, 〈sP 〉b).

For a data set X = {x1, . . . , xn} ⊂ R
+ the scale-distortion of X is DS(X) = DS(PX).

Example 3.11. Let P be uniform on [1, b). It immediately follows from Example 3.8 that

DS(s;P ) is maximal for s ∈ {bk+1/2 : k ∈ Z}, and DS(P ) = 1
2(
√

b − 1)2.

Example 3.12. A simple computation shows that 〈sBb〉b = Bb for all s > 0, and therefore

DS(Bb) = 0. In fact, if P is any Borel probability measure on R
+ then DS(P ) = 0 if and

only if 〈P 〉b = Bb, see Theorem 3.15(iii) below.

Example 3.13. If P = δ(b+1)/2 then Example 3.9 shows that DS(P ) = 1
2(b − 1), and also

DS(δ√b) =
√

b(
√

b − 1). Note that DS(δ(b+1)/2) < DS(δ√b). In fact DS(δ(b+1)/2) ≤ DS(δa)

for every a > 0, and equality holds exactly if a = 1
2bk(b + 1) for some k ∈ Z; see Theorem

3.22 below.

Remark 3.14. Scaling defines a (continuous) action of the multiplicative group R
+ on the

space of probability measures on R
+. Via projection onto the mantissa, i.e., via P 7→ 〈P 〉b,

scaling also defines a (discontinuous) action of R
+ on the space of probability measures

on [1, b). Here, the multiplicative subgroup consisting of powers of b acts as the identity.

Consequently, the action of R
+ descends to an action of the quotient group R

+/{bk : k ∈ Z}
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which, as a topological group, is isomorphic to the circle. Thus to compute the scale-

distortion DS(P ) of P it suffices to take the supremum in (3.4) over 1 ≤ s < b; the latter is

also evident from Lemma 3.7(i).

The next theorem summarizes the basic properties of scale-distortion.

Theorem 3.15. Let P be a probability measure on R
+, and b ∈ N\{1}. Then:

(i) 0 ≤ DS(P ) ≤ b − 1;

(ii) DS(〈P 〉b) = DS(P );

(iii) DS(P ) = 0 if and only if 〈P 〉b = Bb;

(iv) DS(P ) = b − 1 if and only if 〈P 〉b = δ1;

(v) If P has no atoms, and if (Pn) is a sequence of probability measures on R
+ with

Pn → P weakly, then DS(Pn) → DS(P ), i.e., DS is continuous at P .

Proof. (i) This is an obvious consequence of Lemma 3.7(ii).

(ii) This follows immediately from the fact that 〈s〈t〉b〉b = 〈st〉b for all s, t ∈ R
+.

(iii) Consider the continuous map p : R
+ → S1 defined as p(t) = e2πi logb t and note that

p(〈t〉b) = p(t) as well as p(st) = p(s)p(t) = Rlogb s ◦ p(t) for all s, t ∈ R
+; here Rϑ denotes

the counter-clockwise rotation of S1 by an angle 2πϑ. Clearly, DS(P ) = 0 if and only if

〈sP 〉b = 〈P 〉b for all s > 0. In this case, the probability measure 〈P 〉b ◦ p−1 on S1 satisfies

〈P 〉b ◦ p−1 = 〈sP 〉b ◦ p−1 = (sP ) ◦ p−1 = Rlogb s

(
P ◦ p−1

)
= Rlogb s

(
〈P 〉b ◦ p−1

)
,

i.e., 〈P 〉b ◦ p−1 is invariant under all rotations of S1. Consequently, 〈P 〉b ◦ p−1 equals

(normalized) Lebesgue measure on S1. This in turn implies that

F〈P 〉b(t) = 〈P 〉b([1, t]) = 〈P 〉b ◦ p−1({e2πiu : 0 ≤ u ≤ logb t}) = logb t for all t ∈ [1, b) .

Hence 〈P 〉b = Bb. The converse, i.e. DS(Bb) = 0, is now obvious.

(iv) The proof of Lemma 3.7(ii) has shown that DS(P ) < b−1 for every P ∈ P[1, b) with

P 6= δ1, and DS(δ1) = b − 1. Generally, therefore, DS(P ) = b − 1 if and only if 〈P 〉b = δ1.
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(v) Since P has no atoms, F〈sPn〉b(t) → F〈sP 〉b(t) for all t ∈ [1, b) holds uniformly in

s ∈ [1, b), as does

∣∣DS(s;Pn) − DS(s;P )
∣∣ =

∣∣dK(〈Pn〉b, 〈sPn〉b) − dK(〈P 〉b, 〈sP 〉b)
∣∣

≤ dK(〈Pn〉b, 〈P 〉b) + dK(〈sPn〉b, 〈sP 〉b) → 0 .

Given ε > 0, there exists s ∈ [1, b) such that DS(s;P ) ≥ DS(P )− 1
2ε, and, for all sufficiently

large n,

DS(Pn) ≥ DS(s;Pn) ≥ DS(s;P ) − 1
2ε ≥ DS(P ) − ε .

Since ε > 0 was arbitrary, lim infn→∞ DS(Pn) ≥ DS(P ). On the other hand, DS(s;Pn) ≤
DS(s;P )+ ε ≤ DS(P )+ ε for all sufficiently large n and all s, so that DS(Pn) ≤ DS(P )+ ε.

Hence lim supn→∞ DS(Pn) ≤ DS(P ), and so limn→∞ DS(Pn) = DS(P ). �

Corollary 3.16. For every ρ ∈ [0, b − 1] there exists a Borel probability measure P on R
+

such that DS(P ) = ρ.

Proof. Let P = ρ
b−1δ1 + (1− ρ

b−1 )Bb. Obviously, P ∈ P(R) if and only if 0 ≤ ρ ≤ b− 1, and

a short calculation confirms that DS(s;P ) = ρ s−1
b−1 , and hence DS(P ) = ρ. �

Remark 3.17. (i) A slight refinement of the argument proving Theorem 3.15(v) shows

that P ({bk : k ∈ Z}) = 0 is enough to ensure that lim infn→∞ DS(Pn) ≥ DS(P ) whenever

Pn → P weakly, i.e., DS is lower semi-continuous at P . If, however, P ({bk : k ∈ Z}) > 0

then this is no longer true in general. For a simple example consider Pn = 1
2(δn/(n+1) + δ1)

for which Pn → δ1 weakly, yet DS(Pn) < 1
2 (b−1) for all n. At the time of writing the authors

do not know of any probability measure P on R
+ for which DS is not upper semi-continuous

at P .

(ii) Convex combinations of δ1 and Bb, as used in the proof of Corollary 3.16, are exactly

the probability measures on [1, b) identified as base-invariant in [10].

Example 3.18. Consider the space of two-point (ordered) data sets in [1, 10), i.e. {(x1, x2) :

1 ≤ x1 ≤ x2 < 10}. Scaling moves a point (x1, x2) along the straight line connecting it with

the origin until either the first coordinate reaches 1 or the second coordinate reaches 10.

The boundary points (a, 10) and (1, a) are identified. Therefore, it is easy to see that
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the trajectory under scaling of a two-point set consists of at most two line segments. For

X = {2, 4} and b = 10 one segment goes from (1, 2) to (5, 10) and the other segment goes

from (1, 5) to (2, 10); see Figure 2. The point on the trajectory of (2, 4) most distant from

the latter (w.r.t. the ℓ1-metric on R
2) clearly is (5, 10), corresponding to s = 5

2 , and therefore

DS(X) = lims↑ 5
2
DS(s;PX) = 1

2‖(2, 4) − (5, 10)‖1 = 9
2 , by Proposition 2.12. Also indicated

in Figure 2 by means of a dashed line is the trajectory corresponding to the scaling of the

data set X∗ =
{

1+
√

10
2 ,

√
10+10

2

}
, which is the unique two-point set in [1, 10) with minimal

(base 10) scale-distortion, see Theorem 3.22 below.

1

1

10

10

x1

x2

X = {2, 4}

X∗

(1, 2)

(1, 5)

(2, 10) (5, 10)(
√

10, 10)

s
=

5

s
=

5
2

Figure 2. The trajectory of X = {2, 4} under scaling consists of two line

segments (solid line). The data set X∗ =
{

1+
√

10
2 ,

√
10+10

2

}
has minimal (base

10) scale-distortion and its scaling trajectory consists of one segment only

(dashed line), see Examples 3.18 and 3.23.

The next theorem provides a characterization of Benford sequences in terms of limits

of the scale-distortions of the first n points in the sequence. In principle, this yields a

test of whether data sets are Benford or not. Since conformance to the logarithmic Benford
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distribution is now widely used for fraud detection and as a diagnostic test for mathematical

models, the scale-distortion characterization may prove to be a useful alternative in practical

applications.

Theorem 3.19. Let (xn) be a sequence in R
+ and Xn = {x1, . . . , xn}. Then (xn) is

b-Benford if and only if DS(Xn) → 0 as n → ∞.

The next lemma will be used in the proof of this theorem.

Lemma 3.20. Let P be a probability measure on R
+ with 〈P 〉b 6= Bb. Then there exists

s∗ ∈ [1, b) such that

(i) 〈s∗P 〉b 6= 〈P 〉b and

(ii) P ({bk/s∗ : k ∈ Z}) = 0.

Proof of Lemma 3.20. The first statement is immediate from Lemma 3.15(iii), and in case

P has no atoms the overall statement is obvious. Assume, therefore, that P has an atom.

Then P ({a}) = ε > 0 for some a ∈ R
+, and so 〈sP 〉b({〈sa〉b}) ≥ ε for all s. This implies

that 〈sP 〉b 6= 〈P 〉b for those s for which 〈P 〉b({〈sa〉b}) < ε, that is,

(3.5) 〈sP 〉b 6= 〈P 〉b for all but a finite number of s in [1, b)

since P is a probability measure. Furthermore,

(3.6) P ({bk/s : k ∈ Z}) = 0 for all but a countable number of s in [1, b).

By (3.5) and (3.6) properties (i) and (ii) hold simultaneously for all s from an appropriate

set S ⊂ [1, b), where [1, b)\S is countable. �

Proof of Theorem 3.19. Assume first that (xn) is b-Benford. By Proposition 2.3 this means

that 〈PXn〉b → Bb weakly. Since Bb does not have atoms,

DS(Xn) = DS(〈PXn〉b) → DS(Bb) = 0 ,

by Proposition 3.15(v) and Example 3.12.

Conversely, suppose that (xn) is not b-Benford. Since 〈PXn〉b ∈ P[1, b), the family

{〈PXn〉b : n ∈ N} is tight and so contains a convergent subsequence [5, Theorem 29.3]; let
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Pn = 〈PXn〉b and assume without loss of generality that Pn → P for some probability mea-

sure P 6= Bb. By Lemma 3.20 there exists s∗ ∈ [1, b) and δ > 0 such that dK(P, 〈s∗P 〉b ≥ δ

and P ({bk/s∗ : k ∈ Z}) = 0. It follows from (3.1) and the definition of weak convergence

that F〈s∗Pn〉b(t) → F〈s∗P 〉b(t) for almost all t ∈ [1, b), hence dK(〈s∗Pn〉b, 〈s∗P 〉b) → 0. Since

dK metrizes weak convergence,

DS(Xn) ≥ dK(Pn, 〈s∗Pn〉b) ≥ dK(P, 〈s∗P 〉b) − dK(Pn, P ) − dK(〈s∗Pn〉b, 〈s∗P 〉b)

→ dK(〈P 〉b, 〈s∗P 〉b) > 0 .

Thus lim supn→∞ DS(Xn) ≥ dK(P, 〈s∗P 〉b) > 0. �

Theorem 3.19 has the following natural analogue in a statistical setting.

Theorem 3.21. Suppose X1,X2, . . . are independent, identically distributed random vari-

ables on R
+ with common distribution P . Then

(i) 〈P 〉b = Bb if and only if DS({X1, . . . ,Xn}) → 0 almost surely as n → ∞;

(ii) 〈P 〉b 6= Bb if and only if lim supn→∞ DS({X1, . . . ,Xn}) > 0 almost surely.

Proof. For each n ∈ N let Fn denote the empirical distribution function for X1, . . . ,Xn,

i.e., Fn(t) = Pn

(
(−∞, t]

)
, where Pn = 1

n

∑n
i=1 δXi . By the Glivenko-Cantelli Theorem [5,

Theorem 20.6], Fn converges to FP uniformly almost surely, so, almost surely, Pn → P

weakly. Conclusions (i) and (ii) then follow directly from Theorem 3.19. �

The next result is the main scale-distortion inequality in this article. It identifies, for

every positive integer n, the unique data set of n points that is least distorted by change

of scale, e.g., by change of monetary or physical units, and it identifies the minimal scale-

distortion attained by any n-point set.

Theorem 3.22. Let n ∈ N and let X = {x1, . . . , xn} ⊂ R
+ be an n-point data set. Then

DS(X) ≥ (b − 1)/(2n), and equality holds if and only if

(3.7) {〈x1〉b, . . . , 〈xn〉b} =

{
1 + b1/n

2
b(i−1)/n : i = 1, . . . , n

}
.
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Proof. Let yi = 〈xi〉b for i = 1, . . . , n, and assume without loss of generality that 1 ≤ y1 ≤
. . . ≤ yn < b. Hence {y1, . . . , yn} is an n-point ordered data set in [1, b). Identify the space

of all such data sets with the subset of R
n given by {y ∈ R

n : 1 ≤ y1 ≤ · · · ≤ yn < b}. The

scaling trajectory of y, i.e. the set {〈sy〉b = (〈sy1〉b, . . . , 〈syn〉b) : s ∈ [1, b)}, is a union of at

most n line segments. To see this, consider the scaling of y by increasing s, beginning with

s = 1. The resulting line will first reach the boundary for s = b/yn, that is, when the n-th

coordinate reaches b. The value b is then replaced by 1, which becomes the new first entry

of the data set. The vector representation is

( b

yn

)
(y1, y2, . . . , yn) =

(
1,

b

yn
y1, . . . ,

b

yn
yn−1

)
,

as the other components are shifted one place to the right. Then the scaling continues

with increasing s until the rightmost component reaches b, etc. Each time the rightmost

coordinate reaches b, there is a break. The trajectory resumes with a first coordinate equal

to 1 and the others shifted to the right by one place. The breaks occur for values s = b/yi

and so there are n breaks in the trajectory of y as s increases from 1 to b. When s = b the

trajectory closes at the starting point y.

The trajectory of y can also be characterized by the n-tuple of ratios (r1, r2, . . . , rn) where

ri = yi/yi−1for i = 2, . . . , n and r1 = by1/yn. Clearly, all the ratios ri are numbers in [1, b],

and they satisfy
∏n

i=1 ri = b. Any (r1, r2, . . . , rn) with these properties is associated to a

scaling trajectory, and two n-tuples of ratios describe the same trajectory when they are

cyclic permutations of each other. Given y, assume without loss of generality that r1 ≥ ri

for all i = 1, . . . , n. The scaling trajectory of y contains the two points

ηl = (1, r2, r2r3, . . . , r2r3 · · · rn) =

(
1,

y2

y1
,
y3

y1
, . . . ,

yn

y1

)

and

ηu = (r1, r1r2, r1r2r3, . . . , r1r2r3 · · · rn) =

(
b
y1

yn
, b

y2

yn
, b

y3

yn
, . . . , b

)
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as endpoints of one of its segments. From

‖ηu − ηl‖1 = r1 − 1 + r1r2 − r2 + r1r2r3 − r2r3 + . . . + r1r2r3 · · · rn − r2r3 · · · rn

= b − 1 + r1 − r2 + r2(r1 − r3) + . . . + r2r3 · · · rn−1(r1 − rn)(3.8)

≥ b − 1 ,

it follows that the trajectory of y contains a segment of ℓ1-length at least b − 1. Since

‖ηu − y‖1 + ‖ηl − y‖1 ≥ ‖ηu − ηl‖1 ≥ b − 1, one of the points ηu, ηl has ℓ1-distance no less

than 1
2(b − 1) from y so that, by Proposition 2.12,

DS(Y ) = sups∈[1,b) dK(〈PY 〉b, 〈sPY 〉b) =
1

n
sups∈[1,b) ‖〈y〉b − 〈sy〉b‖1 ≥ b − 1

2n
.

Moreover, since r1 ≥ ri for i = 1, . . . , n, (3.8) implies that the latter inequality is strict

unless r1 = r2 = . . . = rn and hence ri = b1/n for all i. In this case, the trajectory of y

consists of a single segment whose midpoint

y∗ =
ηu + ηl

2
=

1 + b1/n

2
(1, b1/n, . . . , b(n−1)/n)

satisfies dK(〈PY ∗〉b, 〈sPY ∗〉b) ≤ (b−1)/(2n) for all s > 0, so that DS(Y ∗) = (b−1)/(2n). �

Example 3.23. The n-point data set X∗ ⊂ [1, b) with minimal scale-distortion according

to (3.7) is not identical to the data set X ⊂ [1, b) that minimizes dK(PX , Bb), as given by

Corollary 2.10. However, both data sets are geometric progressions with ratio b1/n, and X∗

is a scaled version of X, namely, X∗ = sX with s = 1
2 (b1/(2n) + b−1/(2n)) = cosh

(
log b
2n

)
.

For b = 10, n = 2 the data set with minimal scale-distortion is X∗ = {1+
√

10
2 ,

√
10+10

2 } ≈
{2.08, 6.58}. Fig. 2 shows that the scaling trajectory of X∗ is a single segment with midpoint

(x∗
1, x

∗
2); this segment lies between the two segments of the trajectory of X = {2, 4}. Recall

from Example 2.13 that the 2-point data set closest to B10 in the Kantorovich metric is

{101/4, 103/4} ≈ {1.78, 5.62}.
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